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Abstract With the rapid development of large-scale low Earth orbit (LEO) satellite constellations, cohesive clustered

satellite (CCS) systems are considered critical spatial information infrastructures for augmenting space resource efficiency

by aggregating the service capabilities of multiple satellite platforms to form an ultracohesive virtual satellite. This paper

aims to fill the gaps identified in the literature by providing an extensive survey on communication and computing resources

management, integrating insights from academia and the industry of CCS systems. It discusses the evolution and components

of CCS systems and then introduces a native artificial intelligence architecture along with a hierarchical structure for resource

management. Furthermore, it provides the emerging technologies and applications brought by CCS. On this basis, the

modeling and metrics of resource management are established. Then, an exhaustive review of resource management methods

encompassing both traditional and artificial intelligence algorithms is presented. Among these methods, knowledge-driven

resource scheduling strategies are highlighted. Finally, some future directions of CCS systems are outlined.

Keywords cohesive clustered satellites, LEO, communication and computing resource, resource management, artificial

intelligence

Citation Zhang C, Wan X, Li W J, et al. A survey on communication and computing resources allocation and management

for cohesive clustered satellites systems. Sci China Inf Sci, 2025, 68(9): 190302, https://doi.org/10.1007/s11432-024-4450-6

1 Introduction

1.1 Background and motivation

To more effectively address the demands of 5G global ubiquitous interconnection [1,2], the progression of
nonterrestrial networks (NTNs) has evolved into an inexorable trend [3]. Through the establishment of
satellite networks collaborating with terrestrial networks, the restricted coverage of terrestrial networks
in remote areas, deserts, and oceans can be surmounted, thereby achieving global seamless services [4].

The traditional transparent forwarding mode [5] used in satellites offers the advantages of straightfor-
ward deployment and low complexity. However, it does not conduct any error detection or correction
on data packets, thereby restricting its application scenarios and lacking flexibility. With advancements
in hardware and payload capabilities, satellites have progressively adopted the onboard regenerative for-
warding mode, which encompasses functions such as signal regeneration, error detection and correction,
and data packet rerouting. Given the advantages of onboard processing, 5G NTN proposes the use of
complete or partial base station functions on satellites to realize “base station onboard” [6]. Consequently,
the 3rd Generation Partnership Project puts forward two architectures for onboard processing: store and
forwarding (S&F) and user equipment-satellite-user equipment (UE-SAT-UE) [7].

Meanwhile, the design concept of traditional geostationary Earth orbit (GEO) large satellites dictates
that a single payload possesses strong capabilities and multiple functions. Nevertheless, such satellites are
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typically costly and lack flexibility as they are unable to adapt to changes in service and task requirements
[4, 8]. In recent years, because of the advantages of miniaturization, integration, and functionalization
of low Earth orbit (LEO) satellites, as well as their low manufacturing and launch costs [9], they have
become a prominent focus within the industry [10].

The diversified application requirements and intelligent service paradigms under 5G NTN and the
anticipated 6G ecosystem are rapidly proliferating. Nevertheless, persistent institutional fragmentation
and the scarcity of heterogeneous network resources impose critical constraints on existing LEO satellite
systems, hindering their capacity to effectively support these intensifying demands. For instance, although
a single low-orbit satellite is part of a network, there is a notable absence of direct collaboration among
satellites within the LEO constellation. Consequently, conducting intricate, intelligent, and diversified
tasks such as joint data transmission, cooperative computing and observation is extremely challenging.
Moreover, each satellite’s resources and payload functions operate in relative isolation. Thus, they cannot
provide information services that are globally open, integrated, and unified.

Therefore, with the evolution of the service scenarios of 5G NTN/6G and the development of low-
orbit satellite payload technology, cohesive clustered satellite (CCS) systems integrating communication,
computing, sensing, and other functions become both feasible and promising. CCS systems are poised
to aggregate the service capabilities of conventional payload-integrated single-satellite platforms to form
an ultracohesive virtual satellite. Generally speaking, CCS systems refer to space information systems
constituted by a plurality of satellites that are distributed within one or more orbits in a specific collab-
orative manner. Their principal feature and design concept center around “multisatellite coordination”.
CCS systems can be regarded as a novel form of the LEO system and represent an inevitable future
development trend. Through the aggregation, reconstruction, and orchestration of heterogeneous satel-
lite resources, including communication, computation, and storage [11], several satellites are virtualized
into a single large one. This enables the joint accomplishment of tasks such as cooperative communica-
tion, earth observation, remote sensing, and scientific experiments, thereby circumventing the limitations
associated with the restricted payload capacity of an individual satellite [12].

The system composition model of a CCS is depicted in Figure 1. It clusters satellites to integrate the
service capabilities of traditional single-satellite platforms with payloads to form an ultracohesive virtual
satellite. This virtual satellite emerges as a crucial spatial information infrastructure that enhances the
efficiency of space resources [11]. At present, satellite networks are evolving from signal coverage to
capacity coverage and further to service coverage [13]. Therefore, CCS systems represent a significant
advancement in the satellite field, necessitating a comprehensive review and summarization of their
research issues and challenges to fully realize their potential.

1.2 Overview of related surveys and our contributions

For readability, Table 1 [13–19] summarizes the relevant reviews of satellite networks in recent years.
For instance, Wang et al. [13] comprehensively reviewed the integration of satellite and terrestrial net-
works, mainly aiming at the standardization work, application scenarios, and performance evaluations of
satellite-terrestrial networks. Thereafter, Li et al. [14] introduced edge computing technology, proposed a
satellite-terrestrial integrated edge computing network architecture, and analyzed various computing of-
fload mechanisms. For multilayer NTN, Chen et al. [15] focused on the network architecture and resource
allocation strategy for communication and computing. However, review studies concerning CCS systems
are scarce. Marrero et al. [16] primarily studied network topology and synchronization technology within
CCS. However, their study did not involve resource management in CCS systems. A comprehensive and
detailed comparison of these reviews is presented in Table 1.

It can be inferred that the current reviews associated with satellite networks predominantly concentrate
on NTN (LEO) or space-air-ground integrated networks (SAGINs), with relatively scant attention paid
to CCS systems. Meanwhile, resource management primarily centers around communication, and there
is a dearth of reviews regarding multidimensional resource scheduling for converged communication and
computing. Nevertheless, in contrast to the generalized LEO system, the principal distinctions of the
factors affecting resource management between these systems and CCS are as follows.

(1) Dynamic system configuration. In CCS systems, the high-speed motion of LEO makes the
Doppler frequency offset and time delay between satellite-ground links large, making synchronization
implementation and system performance difficult. More importantly, the topology, scale, and inter-
connection relationships of satellites in CCS undergo highly dynamic changes. Therefore, this highly
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Figure 1 (Color online) Architecture of a CCS system.

Table 1 Existing surveys related to NTNs. DSS: distributed satellite system; SAGSIN: space-air-ground-sea integrated network;

JCC-SAGIN: joint communication and computing-embedded SAGIN.

Reference Year Network
Management

structure
Comm.&

Computing
Emerging

tech
Traditional
algorithm

Data-driven
algorithm

Knowledge-driven
algorithm

Contribution

[13] 2020
Satellite-
terrestrial
network

× ×
√

× × ×

Focusing on the architecture of
satellite–terrestrial network,

providing standards and
key applications

[16] 2022 DSS × × × × × ×
Summarizing synchronization

techniques for DSS

[17] 2023
Satellite
network

×
√ √

× × ×
Presenting vision and challenges

for satellite computing

[14] 2023
Satellite-
terrestrial
network

√ √
×

√
× ×

Analyzing computing offloading
mechanisms and application

scenarios

[18] 2023 SAGSIN × × ×
√ √

×
Focusing on SAGSIN from a

resource optimization perspective
in 6G networks.

[19] 2024 SAGIN × × ×
√ √

×
Focusing on resource allocation

methods within SAGIN

[15] 2024 SAGIN ×
√ √ √ √

×

Focusing on enabling technologies,
applications, and resource management
modeling and optimization methods

in JCC-SAGIN

Ours 2025 CCS
√ √ √ √ √ √

Providing a comprehensive analysis and
survey for managing heterogeneous

resources in CCS, including
evolution, architecture, traditional,
and data- and knowledge-driven

AI algorithms

dynamic network topology poses higher challenges to the complexity and performance requirements of
CCS resource management and scheduling methods.

(2) Multisatellite coordination. An essential characteristic of CCS systems is their accomplishment
of diverse tasks via cooperative control and regulation among individual satellites. A crucial consider-
ation in resource management and scheduling is how to combine the service capabilities of traditional
single-satellite platforms with integrated payloads to create an ultracohesive virtual satellite. This virtual
satellite can then fulfill the requirements of various application scenarios, such as cooperative communi-
cation, cooperative computing, and cooperative beam hopping.

(3) Heterogeneous resources and diverse tasks. Within a CCS system, heterogeneous communi-
cation and computation resources are both diverse and widely distributed. Consequently, the system must
manage the substantial volume of data that is generated, exchanged, and processed among and within
heterogeneous network layers. Additionally, the multiplicity of communication services and computing
tasks, the nonuniformity of spatiotemporal distribution, and the variability of quality of service (QoS)
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requirements have become increasingly prominent. Thus, the resource management architecture of CCS
must be capable of enabling resource sharing and dynamic scheduling across and within heterogeneous
layers, thereby fulfilling the requirements of different communication and computing services and tasks.

Considering the aforementioned issues, our objective is to fill the gaps identified in the literature by
providing an extensive survey on heterogeneous resource management within CCS, contributing to both
theoretical research and practical system design advancements. This study provides an innovative native
artificial intelligence (AI) CCS system architecture and hierarchical heterogeneous resource scheduling
structure and deeply reviews resource management models and methods in CCS. To the best of our
knowledge, this paper represents the first exhaustive review to detail knowledge-driven intelligent resource
scheduling strategies in CCS. The main contributions of this paper are outlined as follows.

(1) This study sets itself apart from existing surveys by highlighting several critical distinctions. Un-
like other surveys on NTN or SAGIN, this research focuses on communication and computing resource
allocation and management in CCS. It emphasizes the evolution of CCS by considering its communica-
tion payload and onboard computing hardware and discusses resulting emerging technologies, such as
cooperative computing, cooperative transmission, and multisatellite cooperative beam-hopping. It also
addresses new resource management challenges inherent in CCS to support these emerging technolo-
gies. Then, it is primarily devoted to an in-depth review and analysis of key capabilities in cohesive
heterogeneous resource management, including resource scheduling orchestration, heterogeneous resource
characterization and modeling, and resource scheduling algorithms.

(2) Through the analysis of the enabling and emerging technologies within CCS systems, an innovative
native AI CCS system architecture is constructed, accounting for both the approach of AI for CCS
and CCS for AI. This transforms resource management in CCS from interactive control signaling to
information exchange and knowledge update among network elements. Correspondingly, a hierarchical
heterogeneous resource layout and scheduling structure for CCS is proposed. Considering the constraints
of computing capabilities and management ranges of different layers, resource scheduling AI models
of different scales are deployed layer by layer to intelligently manage and schedule multidimensional
resources.

(3) A deep literature review on the resource management of CCS is conducted, emphasizing model-
ing and optimization strategies. In addition to traditional optimization techniques, intelligent decision-
making methods are analyzed. On the basis of a survey of data-driven intelligent resource scheduling
methods and per the current cutting-edge development of artificial intelligence technology, this paper
comprehensively explores and reviews knowledge-driven resource scheduling strategies for CCS. To the
best of our knowledge, it is the first to provide the principles and advantages of knowledge-driven ap-
proaches and expound on the feasibility of their application in CCS systems.

Figure 2 illustrates the structural organization of this survey. The remainder of this article is struc-
tured as follows. Section 2 summarizes the architecture and evolution of CCS, with a particular emphasis
on an innovative native artificial intelligence CCS system architecture and a hierarchical heterogeneous
resource scheduling framework. Section 3 explores the emerging technologies facilitated by CCS, which
also constitute the application scenarios for resource management. Sections 4 and 5 deliberate on re-
source management modeling and optimization approaches, encompassing both traditional and AI-based
algorithms. Section 6 concludes our work and contemplates some prospective research directions. Finally,
all abbreviations used in this article have been compiled in Appendix A.

2 Evolution and architecture

This section describes the evolution of the CCS system, along with the development of communication
payloads and computing hardware onboard. Subsequently, the system components of CCS are eluci-
dated. After introducing software-defined networking (SDN) and network function virtualization (NFV)
technologies, which are the key technologies enabling CCS, it focuses on discussing system architecture
and resource management design.

2.1 Evolution of CCS

Evidently, the satellite payload technology and system architecture of CCS are in a continuous state of
evolution. The payload has advanced from transparent forwarding to regenerative forwarding, and its
function changed from single task to integration of communication, navigation, remote sensing and space
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Figure 2 (Color online) Structure of this paper.

computing [20]. With the decreasing manufacturing and launch costs of LEO, along with the maturity
of inter-satellite link and space networking technologies, the CCS system has progressively transformed
from satellite formations and clusters to satellite constellations [16]. Moreover, it has been integrated
with terrestrial networks to supply seamless, all-weather information services [21].

More importantly, the cooperation manner between satellites in the CCS system is also evolving with
a diverse trend. In terms of cooperative communication, multiple satellites are utilized for multi-satellite
and multi-beam transmission, or established distributed MIMO to enhance the communication diver-
sity gain [22]; by employing a phase array antenna, multi-satellite cooperative beamforming can also be
performed to suppress co-frequency interference, thereby improving the system capacity. In terms of co-
operative observation, CCS cooperatively performs observation tasks and transmits its data to the ground
station via scheduled beams to achieve stereo observation [11]. In terms of collaborative computing, by
employing promising technologies such as edge computing, model pruning and knowledge distillation, the
computing tasks can be offloaded between multiple satellites, aiming to improve service quality, as well
as circumvent the issues of limited local computing, storage, and power consumption resources [15].

Consequently, CCS systems have emerged as a focal point within both academia and the industry in
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Table 2 CCS systems launched and planned in recent years.

Country Satellite system Satellite function and orbit Number of satellites

China

Ling que Remote sensing SSO+LEO 132 in planning

Hongtu-1 (01 Unit) Remote sensing LEO 4 satellites formation

Tian suan Communication, computation LEO 6 in planning

Tian yi Remote sensing LEO 120 in planning

Sail Space (G60) Communication LEO 648 of 1st generation

USA

Dove Remote sensing SSO+LEO About 100+

Kuiper Communication LEO 3000+ in planning

Starlink/StarSheild
Communication/communication,

remote sensing and computing

integration LEO

4408 of 1st gen, 42000+ total planned

UK OneWeb Communication LEO 648 total planned

recent years. Table 2 presents a summary of the innovative CCS systems that have either been launched
or are in the planning stage. From Table 2, a significant evolution in satellite functionality is observed,
transitioning from transparent forwarding to onboard processing capabilities. And the payload type
displays a wide variety, encompassing communication, remote sensing, computing, as well as integrated
payloads.

2.2 Evolution of payload and hardware on board

2.2.1 Flexible payload of communication

The flexible payload is set to become the standard-configuration of the new generation communication
satellites [3], eventually replacing the payload of transparent transponder to fulfill the multi-mission
requirements and adapt to the changes within the CCS system [23]. It mainly includes the following key
technologies.

Regenerative processing. This methodology operates on the digital baseband data obtained after
waveform digitization, demodulation and decoding [24], which has been discussed for many decades.
However, with the demand for onboard base stations and lightweight core-net onboard represented by
Starlink and O3b, regeneration processing has been given new connotations and challenges. In addition
to signal processing, high-level protocol analysis, routing and switching are also carried out. Moreover,
reprogrammable functionality is also supported to avoid suffering from obsolescence of technology [25].

Digital transparent processor (DTP). It amalgamates the advantages of transparent forwarding
and regeneration processing. By leveraging digital channelization technology, it actualizes the functions
of channel demultiplexing, switching, and multiplexing within the digital domain. It is capable of ac-
complishing the routing and switching procedures of any sub-channel signal from any input beam to
any output beam, and can even achieve cross-band switching through resource pooling [26], it attains
the flexible allocation of beam, frequency, and power resources in accordance with application require-
ments [27]. More importantly, DTP based processing results in payload designs agnostic to air-interface
evolutions [24]. DTP has been employed in INMARSAT-4, SES 12, SES 17 satellites.

Beam hopping. In conventional multi-beam high throughput satellite, system can only allocate
available resources in the limit of a single beam. As a sequence, many satellite manufacturers and
operators such as Spaceway3 series satellites, European quantum satellite, have begun to test and verify
flexible beam configuration in recent years [28, 29]. The basic idea of beam hopping is that at a certain
moment, not all beams work, but only a part of the beams are activated on demand. That is, where
and when there is demand, there will be beam coverage and illuminating to service [30]. Different from
earlier beam switching [31], the current beam-hopping technology usually employs phased array antennas
to accomplish rapid beam forming and direction control. The principal advantage is that the direction,
size, shape, and EIRP of each beam can be adjusted as requirements [32, 33].

2.2.2 Onboard computational capacity

Space-based computing involves the processing of data and signals on platforms situated in space, whereas
onboard computational capacity denotes the velocity and efficacy of data processing during the execu-
tion of computational tasks by space-based computing systems. Recently, the next-generation onboard
computer, which is based on embedded cluster computing, has been designed with an architecture that
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Table 3 Performance metrics of high-performance aerospace computing processors.

CPU model Country/region Clock frequency Number of IP cores Computational ability Framework

TSC695F Europe 25 MHz 1 20 DMIPS SPARC

RAD750 USA 200 MHz 1 400 DMIPS PowerPC

GR712RC Europe 100 MHz 2 200 DMIPS SPARC

DAHLIA Europe 1.6 GHz 4 4000 DMIPS ARM

HPSC USA 800 MHz 8 7360 DMIPS ARM

Loongson 1F China 266 MHz 2 200 MIPS MIPS

BM3883 China 1 GHz 8 16 GIPS SPARC

Yulong 810 China 1 GHz 8 12 TOPS ARM

consists of a master processing node, a monitoring and detection node, and a slave processing node. This
architecture promotes distributed parallel computing, enhancing the overall computing efficiency and
performance of the system. Applications of space-based computing encompass satellite remote sensing
anomaly detection and image recognition [34].

Concurrently, to support space-based computing, the necessity for high-performance space computing
(HPSC) processors is paramount. In the aerospace domain, the reliability of chips outweighs their per-
formance. Only radiation-relistened chips can ensure the normal operation. With the advancement of
semiconductor technology, the mainstream onboard computers primarily use processors based on archi-
tectures such as PowerPC, SPARC, ARM, and MIPS [35]. Table 3 showcases the recent developments in
onboard computing products [36].

On the other hand, in line with the development of the diversification and integration of the missions
within the CCS system, the electronic system solution for space-based computing demands the utilization
of a processing architecture that combines FPGA + DSP + CPU. This combination enables the capacity
for functional reconstruction. Eventually, considering the requirement for complex parallel computing of
AI on board in the near future, the research and implementation of GPU on board become even more
crucial on the space computing platform.

2.3 System components of CCS

Space segment. The space segment of CCS primarily consists of satellites, which can be categorized
into three types: constellations, clusters and formations [20]. These satellites are usually distributed
on one or more orbits to jointly realize designated space missions, including earth observation, remote
sensing imaging, early warning, collaborative computing, and communication [11]. In addition, there
are two emerging approaches, fractionated and federated [12], which have not yet been implemented in
practical. Moreover, considering the communication links between the nodes of CCS, the space segment
can be classified as Ring, Star, Mesh and Tree topologies.

Ground segment. As depicted in Figure 1, the ground segment is comprised predominantly of user
equipment (UE), gateway station (GW), operation and maintenance subsystems, tracking, telemetry and
command (TT&C) subsystem. The types of UE are highly diverse, with requirements for both commu-
nication and computing services. The main ones include: handheld terminal devices (such as satellite
phones and satellite-direct-to-cell mobile phones), Internet of Things (IoT) devices (encompassing com-
munication services like data collection, as well as computing services such as edge processing), ground
stations (large fixed satellite communication stations), and airborne and shipborne satellite communica-
tion equipment. GWs serve as the intermediaries bridging the terrestrial and satellite networks. They
receive remote sensing data, communication data, and computational data through satellite feed links.
The remote sensing and computational data can be transmitted to the system data center for additional
processing, during which the raw data is converted into remote sensing and computational results as the
user’s requests. Meanwhile, the communication data is relayed to the core terrestrial network to enable
data exchange. Furthermore, the network control center (NCC) within operation and maintenance sub-
systems also constitutes a vital part of the CCS system, responsible for management and evaluation of
the entire network, users and services, as well as resource scheduling and management.

2.4 Resource virtualization via SDN and NFV

Traditional network management and control approaches prove inadequate when it comes to satellite
networks, which feature huge, distributed and dynamic nodes. By introducing SDN into satellite net-
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works, the data plane and control plane are separated, allowing the centralized controller to perform
complex operations, including routing decision, resource management [37]. Furthermore, the application
of NFV technology allows the decoupling of physical hardware, which facilitates the pooling of virtualized
resources. This provides the SDN controller with a global view of network resources, thereby enhancing
resource flexibility and utilization [38]. Within the CCS system’s heterogeneous networks, barriers exist
in terms of physical hardware and network protocols. Fortunately, SDN and NFV technologies are ca-
pable of fulfilling the interaction needs among these heterogeneous networks [39], thereby establishing a
basis for the unified management and efficient scheduling of resources.

SDN controllers can be deployed in a hybrid manner across ground gateway stations and satellites,
with each being assigned the responsibility of supervising network operations at different levels. In
the context of the CCS system, the strategy placement of SDN controllers across multiple satellites
facilitates adaptable distributed control strategies and enhances network resilience [40]. Typically, a
hybrid deployment configuration consists of two models [40,41]: a ground-based primary controller with
satellite support and a satellite-based primary controller with ground support. The former arrangement
reduces control latency while maintaining global oversight, whereas the latter shifts control to the satellite-
based controller in certain scenarios, such as remote locations or emergency situations, with the ground-
based controller acting as a secondary node, offering essential resource information and support.

NFV utilizes virtualization technology to separate network functions from hardware equipment. Com-
bining with network slicing, NFV transforms physical network resources into logical entities, enabling
the formation of separate virtual networks customized for different services. This promotes flexible and
efficient network management and resource allocation [1, 10, 38, 39]. The application of NFV to mobile
edge computing (MEC) allows for the virtualization and dynamic management of edge computing re-
sources [42, 43], which is employed for satellite-ground collaborative network [40], enhancing resource
utilization efficiency and the quality of network services.

2.5 System architecture and resource management design

By aggregating, reconstructing, and orchestrating heterogeneous satellite resources, including compu-
tation and communication, the CCS system enables resource sharing and provides information-centric
and intelligent on-demand services [11]. Due to the characteristics of complex system, dynamic topol-
ogy, heterogeneous resources, diversified and spatiotemporal variation service requirements within the
CCS system, its resource scheduling problem presents challenges when it comes to being modeled and
resolved using traditional approaches. Therefore, an artificial intelligence method must be employed for
multi-dimensional resource scheduling.

This paper proposes an innovative native AI CCS system architecture. This shifts the resource man-
agement of CCS from interactive control signaling to information exchange and knowledge update among
network elements. Based on this, a hierarchical heterogeneous resource layout and scheduling structure
for CCS is constructed. In accordance with the constraints of computing capabilities and management
scopes of different layers, AI models for resource scheduling of different scales are deployed layer by layer
to manage and schedule multi-dimensional resources in an intelligent manner. Therefore, by considering
both the approach of AI for CCS and CCS for AI, the network and AI support each other and enhance
mutual benefit, as follows.

2.5.1 Native AI-based CCS system architecture

As mentioned above, AI can effectively assist the system in decision-making and scheduling for complex
heterogeneous multi-dimensional resources. However, traditional “superimposed and externa” AI not
only brings massive transmission and computing overhead problems but also fails to fully leverage the
advantages of resource sharing and distributed collaboration in the CCS system.

Therefore, the CCS system architecture with native intelligence is proposed. Based on the comput-
ing and storage capabilities of different equipment of the network control center, regional autonomous
control sub-centers and edge satellite payloads, the resource scheduling intelligent models are designed
with different scales. As shown in Figure 3, due to the powerful computing and processing capabilities of
the network control center, a global resource scheduling large model can be deployed. On this basis, by
utilizing deep separable convolution, model pruning, model quantization and knowledge distillation tech-
nologies, lightweight neural network models are designed to maintain model performance while reducing
model parameters and increasing computational speed, which can be deployed in regional autonomous
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Figure 3 (Color online) Native artificial intelligence-based CCS system architecture.

control sub-centers. Further, in response to the complex scheduling tasks and diverse heterogeneous
resources on board, different sub-models are designed by using multi-agent deep reinforcement learning
and the mixture of experts (MoE) approach, forming an intelligent agent for satellite resource scheduling
to meet users’ diverse QoS requirements. MoE consists of multiple independent sub-models (experts).
According to different tasks, only one or part of the experts are activated during the inference. The gating
network calculates the weight of each expert based on the characteristics of the input data, then assigns
the input data to the corresponding expert. Finally, the outputs of all activated experts are weighted and
summed to generate the result. Compared with dense models, its pre-training speed is faster. Compared
with models with the same number of parameters, its inference speed is faster. Thus, the utilization rate
of satellite resources is optimized and complex resource scheduling problems are handled. By leveraging
the short-term strong correlation of user services and resource requirements, as well as the long-term
similarity of channels and electromagnetic environments, transfer learning and knowledge sharing are
carried out among multiple satellites to address the issues of limited onboard processing capacity and
high inter-satellite collaboration costs. This approach aims to reduce computational and collaborative
overhead, enhance edge service performance and solve the problem of real-time resource allocation and
scheduling on board. Specifically, driven by the different QoS requirements of computing and commu-
nication tasks, the collaboration mechanism of the CCS system is utilized to facilitate data exchange
and intelligent model parameter sharing between satellites through knowledge sharing. Satellites use the
intelligent model parameters obtained from knowledge sharing as the data foundation of transfer learning
and fine-adjust the pre-trained model according to the QoS requirements of the current user services,
realizing the real-time allocation of heterogeneous resources on board. Regarding heavy computing tasks,
by employing split learning, cooperative training and model segmentation are implemented between the
terminals and edge satellites with the aim of reducing the interaction overhead. On the other hand, the
distributed collaboration advantages of the CCS system are fully utilized, combining with the cloud-edge-
terminal network to support channel parameters aggregation, collaborative data distribution, and model
parameters passing, adapting to the high dynamics in the CCS system.

In summary, from both AI for CCS and CCS for AI perspectives, a native intelligent CCS system
architecture is established, thereby revolutionizing CCS resource management and control from signalling
interaction to information interaction and knowledge updates among network elements. When significant
changes occur in key system parameters such as constellation configuration, satellite tasks, and spectrum
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Figure 4 (Color online) CCS hierarchical layout and scheduling structure for heterogeneous resources.

resources, the regional autonomous control sub-centers will detect that the current resource scheduling
policy does not meet the users’ QoS requirements, resulting in degraded system performance. In this
case, they will retrain or fine-tune the intelligent model according to the updated system configurations,
then upload the newly intelligent model parameters through TT&C. In addition, the minimal incremental
method is usually adopted. Only the changed parameters are uploaded, and there is no need to update
all the parameters of the model, which further reduces the upload overhead.

2.5.2 Heterogeneous resource hierarchical scheduling structure

In order to achieve efficient management and scheduling of heterogeneous resources in the CCS system,
this paper proposes a hierarchical layout and scheduling structure, as shown in Figure 4. From the up-
permost to the lowermost level, the layout and management layer for the entire network, the control and
scheduling layer for regions, and the real-time allocation layer for satellites are established. Considering
the constraints of computational capability and the control scope of network elements at different hier-
archical levels. AI-assisted resource scheduling agents of different scales are deployed at each layer. The
goal is to achieve intelligent control and scheduling of multi-dimensional resources of communication,
computation, and storage in the entire network, regions, and satellites.



Zhang C, et al. Sci China Inf Sci September 2025, Vol. 68, Iss. 9, 190302:11

Entire-network-oriented layout and management layer. By comprehensively considering the
historical, perceived and predicted information, including but not limited to user behavior and distribu-
tion, dynamic change of service demand, real-time perception and prediction of network traffic, and the
situation of inter-system interference outside the system, this layer utilizes the large intelligent model
with global information to carry out system resources top-level planning, management and operation.

Region-oriented control and scheduling layer. It considers resource planning pool assigned by
the upper layer, dynamic topology of regional network, temporal and spatial distribution of services,
interference within the system, satellite payload types and processing capabilities. In the regional au-
tonomous control sub-centers of this layer, the lightweight resource management and control agent, after
model pruning and knowledge distillation, is used to execute multi-satellite cooperative scheduling on a
large spatial and temporal scale to meet the task requirements of communication and computing in the
regional subnetwork.

Edge-oriented real-time resource allocation layer. It considers changing channel state informa-
tion, high-speed motion of LEO and dynamic time-varying cooperative relationship between satellites.
Onboard resource schedulers are driven by diverse QoS requirements of computing and communication
tasks. Through knowledge sharing and transfer learning among satellites, the computing costs of onboard
resource management edge model can be reduced to solve the problem of limited onboard processing re-
sources and achieve real-time allocation of heterogeneous resources of satellites.

In summary, based on the proposed heterogeneous resource layout and scheduling hierarchical structure
of CCS, constrained by the computational capability and control scope of network elements at different
hierarchical levels, different scales of AI-assisted resource scheduling agents (models) are deployed at each
layer, laying the foundation for efficient utilization of heterogeneous resources.

3 Emerging technologies

This section primarily presents the utilization of the synergistic multi-satellite functions within CCS.
The emerging technologies thereby achieved predominantly comprise cooperative computing, cooperative
beam hopping, and cooperative transmissions. A state of the art is provided regarding the application
of these technologies in CCS systems, with a particular emphasis on the analysis of the influence and
challenges brought about by the resource management and scheduling in communication and computing.

3.1 Cooperative computing

For the current LEO system, by employing MEC, UE can offload local computing tasks to satellites [44].
Prior research has thoroughly examined task execution delays [45] and energy consumption [46], allocating
computational and communication resources to maintain system performance [47–51]. Additionally, some
studies have concentrated on parallel computing within the MEC framework [42] and resilience against
network failures [52]. On the other hand, for the CCS system, this survey principally focuses on the
substantial space computational tasks onboard, such as processing massive remote sensing image data [53].
In the CCS system, through multi-satellite distributed collaborative computing, the computing power of
each collaborative satellite in the cluster is fully utilized to achieve efficient matching of computing
resources and task requirements. In cluster satellites, cooperative computing between satellites requires
consideration of the following issues, which refer to different resource allocation issues.

Allocation and routing of computing capability. The advent of multi-satellite collaborative
computing has revolutionized the traditional single-satellite computation manner in satellite networks.
However, the dynamic and time-varying network has resulted in low utilization of satellite resources
and unbalanced computing load [54]. Consequently, it is imperative to investigate resource scheduling
strategies for multiple satellites under intricate constraints among satellite nodes, employing a distributed
satellite agent architecture [54]. The resource scheduling strategies include the allocation of inter satel-
lite computing resources and end-to-end computing power flow planning, which enables better matching
between onboard computing resources and computing demands. Furthermore, bandwidth contention on
multi-hop links during computational data flow cannot be ignored. As a result, the end-to-end trans-
mission demands for processing distributed data present significant challenges for dynamic collaborative
resource management. To tackle these issues, Ref. [55] suggested a service graph-driven inter-satellite
collaborative computing framework, which reimagines the collaborative computation problem as a graph
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mapping task from service graphs to network graphs. The work of [56] proposed a distributed collabo-
rative computing approach rooted in multi-dimensional gradients, selecting path nodes involved in task
processing to sequentially accomplish the computation and transmission of services. By capitalizing on
space collaborative computing, the latency associated with task processing is considerably reduced when
compared to both cloud computing and local computing alternatives.

Collaborative computation methodologies. Within the CCS system, a cooperative computing
relationship has been formed between the orchestrating satellite and the satellites it coordinates, man-
dating the consideration of data security and privacy preservation concerns. To tackle these challenges,
federated learning (FL) is employed for the collaborative processing of remote sensing data computation
tasks [57], where the orchestrating satellite and its coordinated satellites ensure data confidentiality and
security by exchanging only local model parameters, rather than raw data. Nevertheless, FL’s parallel
training of shared AI models on individual local datasets imposes substantial computational demands on
participating devices. Split learning (SL) effectively addresses these issues by splitting the AI model into
a device-side model and a server-side model at the cutting layer, training the AI model between devices
and edge servers. Ref. [58] proposed a cluster based parallel training algorithm, and proposes a dual time
scale algorithm that can jointly make cutting layer selection decisions on a large time scale, and jointly
make device clustering and radio spectrum allocation decisions on a small time scale, reducing training
latency. Thus, in the CCS system by employing SL, the model can be divided between collaborative
satellites to improve computational efficiency through collaborative training. In these distributed com-
puting methods, the computation of models and data of different scales on the CCS system requires the
planning of collaborative computing to match the design of the collaborative model. The virtualization
representation of computing resources is closely related to the model parameters, parameter transfer, and
computational consumption of the distributed collaborative model.

Aggregation and semantic of data. Collaborative computing will generate a large number of
onboard computing tasks and aggregation of computing data during the collaborative process. Aiming
at the problems of poor aggregation ability and high aggregation delay of inter-satellite data, Ref. [54]
suggested a data aggregation algorithm tailored for dynamic time-varying networks. This algorithm
establishes an inter-satellite communication link model to execute data protocol and aggregation tasks.
Furthermore, unlike conventional bit-level coordinated transmission protocols, semantic-aware technology
facilitates efficient, information-centric coordinated transmission within the CCS system [59]. Thus, to
maximize the utility of information per unit energy consumption within a limited connection window, Ref.
[11] proposed a novel semantic-aware coordinated transmission scheme for CCS, by employing a multi-
agent double and dueling deep Q-learning algorithm to improve the efficiency of cooperative observation
tasks. Through semantic perception, inter satellite aggregation of data streams becomes more efficient,
but for aggregated satellites, perceptual computing consumes more computational load on board.

In summary, key aspects of cooperative computing for CCS include computational resource manage-
ment, collaborative methods and data processing. Resource management and scheduling optimize com-
puting and storage resources through offloading and design end-to-end coordination of computing flow.
Collaborative methods like federated and split learning improve the efficiency of distributed computing
by sharing models and parameters while maintaining privacy and reducing latency. Semantic learning
can help improve the processing efficiency of massive data aggregation. Regarding the application of
collaborative computing for onboard computing tasks, experiments have also been conducted on remote
sensing satellites such as the Chaohu-1, Changguang Satellite, and TaiJing-3, where the deployment of
the Xingxi series space-based computing platforms has enabled multi-satellite collaborative computing.
Through collaborative computing, these systems achieve real-time perception of spatial high-speed object
anomalies. In the future, there will be a demand for AI as a service (AIaaS) provided by satellite, which
will make the corresponding computing tasks on board more diverse, posing greater challenges to the
collaborative deployment of computing tasks. At the same time, in the collaborative computing of clus-
ter satellites, research on computing resource management, collaborative methods, and data processing
has improved the efficiency of CCS systems in handling a large number of computing tasks. However,
the application of related technologies also brings additional computing requirements, which require the
design of resource models that take into account additional resource consumption.



Zhang C, et al. Sci China Inf Sci September 2025, Vol. 68, Iss. 9, 190302:13

3.2 Cooperative beam hopping

As previously mentioned, the traditional multibeam satellite system employs a rigid resource allocation
strategy leading to resource inefficiencies [60]. Beam hopping technology lays the groundwork for flexible
beam management. However, the current beam-hopping strategies for LEO system predominantly focus
on single-satellite scenarios. In contrast, the research on multi-satellite beam-hopping remains in its
infancy and requires more in-depth exploration for the CCS system. Additionally, current LEO beam-
hopping is mainly designed for communication services. Yet, within the CCS system, there is an urgent
need to conduct research on cooperative beam-hopping strategies dedicated to remote sensing applications
or communication-sensing integrated functions. Thus, the application of beam hopping technology within
the CCS system must also take into account the following design considerations.

Cell to satellite association. In contrast to the static of GEO systems, due to the high dynamics and
multiple coverage of LEO satellites, the cooperative hopping beam of the CCS system must first address
the association between the cell and the service satellites [61]. This association should consider satellite-
UE distance, service time, load balancing, and a weighting of the above factors, which is determined by
diverse QoS of services [62]. A satellite-terrestrial coordinated multi-satellite beam hopping scheduling
framework is proposed in [63]. In this framework, the complex multi-satellite beam hopping problem is
decomposed into a long-term sub-problem and a short-term sub-problem. The long-term sub-problem
focuses on the cell-satellite association issue. It is resolved by a low-complexity iterative algorithm
implemented in the network operation control center. The objective of this algorithm is to minimize
the traffic load gap among satellites while taking interference avoidance into account. Specifically, this
low-complexity iterative algorithm addresses the cell-satellite association problem in the following way.
Initially, based on long-term traffic statistics, each cell is greedily allocated to a satellite to achieve
the maximum possible inter-satellite load balance. Subsequently, an iterative process is designed. This
process further reduces the load gap between satellites while simultaneously considering the avoidance of
inter-satellite interference.

Interference avoidance. Since the hopping beam adopts full-frequency multiplexing to improve
resource utilization, the co-frequency interference between satellites and beams in the CCS system cannot
be ignored. It is of crucial importance to utilize the same frequency beams with spatial isolation while
they are being activated or to alternate their operation in a temporal manner [64]. However, for high-
demand service areas, simultaneous operation of adjacent beams with same-frequency may occur. Due
to the complexities of interference mitigation methods and their impact on resource efficiency, adopting
a precoding strategy is recommended. That is, only the beams suffering serious co-frequency interference
in the same beam hopping time slot need to be precoded [65]. Furthermore, the integrated of terrestrial
and satellite communication systems has highlighted inter-system interference, making spectrum sensing
based interference avoiding vital for enhancing the beam-hopping capabilities of CCS systems [66].

Joint beam control and beam-hopping pattern design. Unlike traditional fixed beam, by
utilizing phased-array beam shaping, it dynamically changes the beam position size to achieve load
balancing [67]. Subsequently, taking into account co-frequency interference, beam revisit, beam dwell
time, switching overhead and other factors, the beam hopping pattern design involving multi-satellite
and multi-beam cooperation is carried out. On the other hand, for the collaborative beam hopping in the
communication and sensing integrated CCS system, the design of the beam-hopping pattern is pivotal for
the CCS system. For the communication function, it is crucial for achieving agile coverage. Regarding the
radar function, it enables wide-area detection and targeted gazing at key areas. To solve these problems,
polling beam is employed to complete the wide-area communication user service application and radar
target position perception; on this basis, dynamic agile beams are employed to complete communication
and sensing tasks. Thus, the beam pattern arrangement problem of communication and sensing integrated
CCS system is transformed into the p-center problem [68] in the plane geometry. Its goal is that the
communication user and radar target are covered with the least number of beams. By this method,
the optimal arrangement of the beam position and hopping pattern not only solves the unevenness of
the communication traffic problem, but also considers the wide-area detection of radar targets. Thus, it
reduces the system delay, and lays the foundation for the efficient utilization of system resources.

In summary, the CCS system can effectively improve the quality of services such as communication and
remote sensing, and realize the flexible scheduling of beam resources by using multi-satellite cooperative
beam hopping, and can combine with beamforming to play to their respective advantages. Moreover,
Huawei Technologies Company [69] has developed an experimental platform that is built following 5G
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NTN protocol to validate cooperative beam hopping. They are seeking opportunities for in-orbit verifi-
cation.

On the other hand, as previous mentioned, the CCS system is characterized by its multi-fold cover-
age and dense beam configuration, which significantly enhances capacity and coverage. However, this
advancement introduces new challenges in beam-hopping. Key considerations include cells to satellites
association, co-frequency interference avoidance, effective joint resource scheduling and beam control are
also necessary, all of which complicate the optimization problem [66]. Moreover, due to the high dy-
namism of low-orbit satellites, the complexity and unpredictability of network topology, the diversity and
temporal and spatial inequalities of business requirements, the differences in the capabilities of satellite-
to-ground devices, and the complexity of the electromagnetic environment, the multi-satellite joint beam
hopping of CCS systems has become difficult to mathematically model and solve. Therefore, current
research focuses on the use of artificial intelligence methods to assist in decision scheduling. However, it
is worth noting that the traditional artificial intelligence method based on data training [63] relies heavily
on the transmission of a large amount of training data between user end points, satellites, and gateway
stations, the computing and storage resource limitations of the equipment itself, and the signaling co-
ordination between satellites and ground, which will become a challenge for the CCS system to achieve
cooperative hopping beam.

3.3 Cooperative transmissions

Collaborative transmission of the CCS system employs multiple transmission points within a satellite
cluster to deliver signals to users [12] increasing system capacity. By collaborating the beam resources of
multiple satellites to serve a common coverage area, the system capacity can break through the resource
limitations of different satellites serving successively. This collaborative transmission relies on precise
coordination among cluster satellites. Formation control ensures that time delays and Doppler frequency
shifts of received signals are approximately uniform [70], reducing the effects of incomplete information
sharing and unprecise time-frequency synchronization during high-dynamic processes.

Building on the precise control of the CCS system’s formation [9, 71–73], distributed MIMO and
cooperative beamforming techniques enhance collaborative transmission performance through diversity
gain and signal gain, respectively.

Distributed MIMO. Employing MIMO technology to satellite communication systems can effec-
tively harness diversity gain to enhance satellite communication performance and increase information
transmission rates [74]. On the basis of the original single satellite MIMO, multiple satellites in the
CCS system utilize distributed MIMO to generate spatial diversity. The transmission model from mul-
tiple satellites to multiple user terminals in the same region is equivalent to a virtual MIMO system.
Among them, multiple satellites form a giant antenna array and exchange data with multiple nodes on
the ground [75]. In MIMO satellite communications that rely solely on spatial division multiplexing,
channel capacity is determined by the geometric distribution of antennas [76] and inversely related to
channel correlation [77]. The work of [78] has constructed a multi-antenna system using two satellites
in different orbits, optimizing the layout of ground receiving antennas to maximize satellite communica-
tion system capacity. In consideration of the impact of satellite perturbation, fast moving and Doppler
frequency shift, an optimization is carried out for the antenna layout scheme. With this scheme, the
satellites within the formation can collaboratively form a large antenna array, thereby generating larger
diversity gain and substantially enhancing the channel capacity of the distributed satellite MIMO sys-
tem [79]. Through distributed MIMO technology, satellite clusters can distribute data processing tasks
across multiple nodes, reducing the need for data transmission back to the ground and thus lowering
latency [80].

Cooperative beamforming. It employs phased antenna arrays to boost signal gain towards the
communication direction while mitigating interference in other directions. In CCS systems, several small
satellites can constitute a loosely coupled phased array system by means of distributed phased arrays.
This eliminates the requirement for a single satellite to be equipped with extremely large antenna arrays
and remarkably diminishes manufacturing and launch costs [81]. Precise time and phase synchronization
among distributed phased arrays is of utmost importance, thereby mandating accurate satellite formation
control. On the one hand, by precisely controlling the specific radiation pattern of a large-scale satellite
antenna array and generating directional transmission beams, the gain of signals in specific directions and
positions can be improved; On the other hand, in order to better utilize scarce spectrum resources, satellite
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clusters can use full frequency reuse between beams of different satellites and multiple beams of the same
satellite to meet the demand for high-capacity data transmission rates. The core issue that needs to be
addressed in the above design is severe interference between multiple satellite beams [80]. The method
of DPS (dynamic point selection) picks the single best transmission point based on CSI (channel state
information), which can lessen inter-cell interference and it is appropriate for satellite cluster networks
with numerous satellites [12]. Nevertheless, acquiring ideal real-time CSI is impractical in a satellite
system. The work of [82] has proposed a multi-satellite cooperative robust beamforming strategies with
imperfect CSI to effectively counteract co-channel interference and improve system capacity. Thus, in
the CCS system, a key aspect of cooperative transmission is to coordinate the beam resources of different
satellites on the basis of balancing CSI effectiveness and jamming performance.

In summary, leveraging precise formation control, the CCS system significantly boosts data trans-
mission performance through cooperative transmission by utilizing distributed MIMO and cooperative
beamforming techniques. On the 5G NTN broadband satellite communication system, CICT (China
Information and Communication Technologies Group Corporation) has completed the end-to-end tech-
nical test verification in the orbit environment, built a 6G satellite ground fusion principle verification
platform, and verified the multi beam cooperative transmission technology. However, multi-satellite and
multi-beam cooperation, imperfect CSI and avoidance of co-frequency interference also bring new chal-
lenges to resource management and scheduling. In particular, unlike the acquisition of single satellite
CSI, cooperative transmission needs to consider the inter satellite interaction under the common coverage
of multiple satellites. With multiple satellites forming large-array antennas, the complexity of satellite-
ground channels and the need for inter-satellite cooperation via ISL in joint planning pose significant
challenges to resource planning in cooperative transmission. In addition, the high-speed and dynamic
satellite network will bring more complex multi satellite selection problems, which make it more difficult
to deal with the cooperative transmission under the dynamic satellite selection. The resource allocation
between satellites and the task requirements between multiple points need more effective planning and
matching.

4 Resource management modeling for CCS

This section primarily presents an overview of the resource management model in the CCS system,
including communication traffic and computing task modeling, channel modeling, resource modeling and
its performance metrics, which also form the foundation for subsequent optimization methods in resource
management.

4.1 System modeling and analysis

4.1.1 Communication traffic and computing task modeling

Communication services can be classified into two main categories: delay-sensitive GBR (guaranteed bit
rate) services (like real-time voice services), and non-delay-sensitive NGBR (non-guaranteed bit rate)
services (like most non-real-time data services), and priority is set for different service categories [83].
Furthermore, modeling methods such as two-state Markov processes, truncated Lognormal distributions,
and truncated Pareto distributions are employed for various traffic types including VoIP, FTP, web
browsing, video streaming, and gaming [84]. In addition to the small-scale packet-level service models,
a large-scale traffic model in terms of spatial distribution and temporal variation can be developed
by considering factors such as the prevalence of satellite services, economic development, and human
activities [85].

In the context of extensive computational tasks within a CCS system, which typically encompasses
parameters such as data volume, the CPU cycle count necessary for each bit of input, and the maximum
time threshold for task completion [86], the computational efficiency can be enhanced by decomposing a
complex task into several sub-tasks, thereby creating a task flow [87] that can be allocated to the processor
for concurrent processing. Since the computation of some tasks requires the result of the preceding
tasks, and there is a priority constraint relationship among tasks, the scheduling issue is represented
through a tree diagram of a directed acyclic graph, comprehensively considering the constraints such
as communication delay and processor resources [87]. In addition, the allocation about independent
tasks can be regarded as a 0/1 decision problem, while for the multi-task-computing node matching
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problem, centralized and distributed algorithms can be used respectively [88]. On the other hand, due
to the dynamics of the edge computing scenario, it is necessary to investigate the distributed computing
resource scheduling method for edge nodes. The main concept is that when edge devices are unable to
handle computational tasks, they broadcast offloading requests. Idle devices respond to these requests and
provide feedback regarding their computational resource availability. This approach further integrates the
computational resources of idle devices with the latency and power requirements of the tasks that need
to be scheduled [89], which facilitates task forwarding and execution to achieve efficient task scheduling.
Finally, during the process of task offloading, the collaborative communication and transmission among
satellite nodes should also be considered.

4.1.2 Channel modeling

Unlike the terrestrial mobile cellular communication system, the long propagation distance of the satellite-
ground link, the complexity of signal fading and the high-speed movement of LEO satellites [90] all have
a non-negligible impact on the performance of the CCS system. Consequently, these factors must be
carefully considered in the management of communication and computation resources. Based on different
channel modeling methods, it can be summarized as follows.

Empirical model. The measured data are processed by mathematical fitting methods to obtain a
formula for calculating link fading, which is related to factors such as carrier frequency, elevation angle,
antenna, and weather conditions of the satellite link [91]. Since the empirical model is a simple channel
model based on field measurement data, it is able to describe the sensitivity of important parameters but
cannot represent the propagation characteristics of the signal [92], while it is more difficult to measure
satellite communications.

Statistical model. The electromagnetic wave propagation theory and statistical theory are used to
determine the probability density function and establish the channel model. The single-state model usu-
ally assumes that the envelope of the signal at the receiving end obeys a definite probability distribution,
such as Rice distribution, Lognormal distribution, Nakagami distribution, etc. [93–95], which is appro-
priate for narrowband stationary channels. In contrast, the multi-state model is founded on a Markov
process, where each channel state is represented by a distinct probability distribution, making it suitable
for wideband non-stationary channels.

Stochastic geometric model. The specific communication environment is mapped onto the geom-
etry, which describes the positional relationship between the scatterer and the antenna. And different
scenarios can be simulated by changing the shape of the scattering area or the distribution function of
the scatterer [96, 97].

AI-based modeling. In order to cope with the increasingly massive and diverse wireless channel
data demands, AI-based channel modeling methods have been widely studied in recent years, such as
estimating the pathloss parameters and shadow fading using convolutional neural network (CNN) [98],
as well as predicting the rain fading and atmospheric attenuation using long short-term memory [99].
This approach not only effectively extracts channel characteristics from complex channel data, but also
adapts well to the high dynamics of satellite-ground channels.

4.1.3 Resource modeling and virtualization characterization

As previously stated, virtualization technology facilitates the abstraction and pooling of heterogeneous
resources, enabling the virtualization of multiple satellites within the CCS system into a singular “large
satellite”. This allows for the integrated management and scheduling of multidimensional resources
within the system. Consequently, it is essential to develop a cohesive virtualization characterization that
encompasses computation, storage, communication resource, and power consumption. Building upon this
foundation, it is crucial to distill it into granular metrics such as computational accuracy, computational
speed, communication bandwidth, cache size, and both communication and computational power [89].
The advantage of this metric is its ability to provide a standardized and shareable evaluation framework
for heterogeneous resources in the CCS system.

Existing methods for virtual network mapping typically focus on static network topology. However,
given the highly dynamics of the CCS system, these methods exhibit low resource utilization and necessi-
tate frequent adjustments during network changes, leading to significant migration costs. Consequently,
the work of [100] proposed a spatiotemporal association characterization method for SAGIN network
resources. This approach aims to capture both the graph structure features and the temporal evolution
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characteristics of dynamic networks. Additionally, it seeks to identify fine-grained spatiotemporal asso-
ciation relationships, considering both the graph structure and the time series neighborhood of dynamic
networks, thereby facilitating accurate modeling of spatiotemporal associations of network resources [101].

4.2 Metric for resource management

This part describes the main metrics for communication and computation resources management in the
CCS system.

4.2.1 Communication metrics

Communication metrics can be generally categorized into throughput and system capacity, delay, and
resource utilization rate [102].

Throughput. Communication throughput refers to the amount of data that can be successfully
transmitted by the system within a unit of time, serving as a crucial performance metric for evaluating
the efficiency of data transmission [103]. Maximization of throughput is one of the main objectives in
the resource optimization research of satellite communication networks. The work of [104] proposed a
capacity model for a multi-layer heterogeneous satellite network and analyzed the capacity performance
of this network. Another work [105] investigated a frequency resources flexible allocation method to
improve the throughput of multi-beam satellite communication system.

Delay. The main factors affecting delay are bandwidth, transmission distance and network quality.
In practical, high communication delay can lead to problems such as conversation delay, stuttering and
desynchronization, which negatively impact the quality of experience (QoE) for users. Recent studies
have primarily concentrated on reducing the long-term average delay of the system, while also addressing
the minimization of transmission and processing delay associated with tasks [106, 107].

Resource utilization rate. It typically denotes the proportion of actual resources used versus the
total available resources. This metric can be used to evaluate the efficiency of resources utilization,
including spectrum [108,109], time, and power resources [110].

4.2.2 Computation metrics

Computation metrics can be primarily categorized into: task completion time, energy consumption, and
the joint minimization of weighted total cost.

Task completion time. The work of [111] subdivided the latency into several factors, in which the
main influencing factors are the processing time of tasks and transmission time of communication [112].
The processing time depends on the allocation of computing resources and task offloading strategy, while
the transmission time depends on the allocation of communication resources and communication distance.
The work of [113] modelled the task completion time with a probability distribution function and proposed
a task completion efficiency evaluation function.

Energy consumption. This includes the power consumption of computers and cooling/heat dissi-
pation equipment. Furthermore, in edge computing, the energy-constrained MEC servers must maintain
normal operation, and this consumption is primarily related to the allocation of power and computational
resources, as well as task offloading strategies. The energy consumption of edge computing nodes can
be modeled as a single-increasing strictly convex function relative to the amount of computation, and its
properties can be inscribed with a quadratic function [114]. Many researches focus on resource allocation
with the goal of minimizing system energy consumption. The work of [115] analyzed power consumption
with different scenarios such as data downloading, updating, and preloading. In the work of [116], the
authors proposed a LEO satellite network with a three-layer offloading architecture for hybrid cloud and
edge computing. Building on this framework, they investigate the challenges of resource allocation and
task scheduling, aiming to reduce overall system energy consumption.

Weighted total cost. The cost function of a computational system can be defined as a weighted
sum of task completion time and energy consumption. A trade-off between these two metrics can be
realized. This is done by defining different weights according to application scenarios [50]. For instance,
for an MEC-enhanced SAT-IoT network consisting of multiple satellites and multiple satellite gateways,
a dynamic mixed-integer planning problem is established with the objective of minimizing delay and
energy consumption [48]. Aiming at the problem of minimizing the weighted cost of computing services
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in the large LEO constellation, the study of [117] proposed a fast convergence algorithm based on game
theory.

5 Resource management optimization problems and methods for CCS

Resource optimization methods of CCS can be mainly divided into: traditional optimization methods
and AI-based optimization methods, which are summarized and analyzed as follows.

5.1 Traditional optimization methods

For efficiently allocating resources in the CCS system, the traditional mathematical optimization methods
such as convex optimization, constrained Markov decision process (CMDP) and Lagrange dual decom-
position, which help to keep the network stable and reduce delays. Also, for mixed integer nonlinear
programming (MINLP), challenges can be solved by methods such as Lyapunov optimization and game
theory. Furthermore, heuristic algorithms, including greedy algorithms, genetic algorithms, and swarm
intelligence algorithms, along with resource allocation strategies which facilitate the decomposition of
complex problems into several subproblems for dynamic planning and allocation resources.

5.1.1 Classical mathematical optimization algorithms

These methods mainly include convex optimization algorithms, CMDP, and Lagrange dual decomposition.
The advantage of convex optimization algorithms is that the solution process is simple and reliable, which
can ensure the existence of the global optimum, and many non-convex problems can be transformed into
convex optimization problems or be approximated as convex optimization problems [116]. As the work
in [118], the problem of maximizing the sum rate of the satellite-ground network is transformed into a
convex power allocation problem by employing the minimum mean square error norm and log-linearization
method. CMDP [119] differentiates from Markov in the aspect that it is required not only to maximize
the results, but also to make the optimal decision under resource and scenario limitations. Lagrange
multiplier method and linear programming are usually applied to cope with the CMDP problem. In the
work of [119], the authors investigated the IoT task offloading problem in SAGIN by modeling the problem
as CMDP and solving it by employing linear programming methods. Lagrange dual decomposition can
simplify the solution process, which helps to split tasks and allocate resources to devices. It also provides
a globally optimal solution in specific optimization problems [46].

5.1.2 Heuristic algorithms

Heuristic algorithms represent empirical and intuition-driven approaches. Typically, instead of aiming to
discover an optimal solution within a complex problem, they endeavor to acquire a feasible approximate
solution via simple and rapid algorithms [120]. Heuristic algorithms are typically appropriate for ad-
dressing large-scale, computationally intensive optimization challenges or non-deterministic polynomial
(NP) problems that are arduous to be solved by exact algorithms. Heuristic algorithms mainly comprise
greedy algorithms, genetic algorithms and swarm intelligence algorithms.

Greedy algorithm makes the best possible choice at each stage of the decision-making process, with
the expectation that these local optimal selections will lead to a globally optimal solution [121]. The
main steps of this algorithm include sorting, selection, and iteration. For the LEO-satellite based NB-
IoT (narrowband Internet of Things) system [121], considering the high dynamics and propagation delay
of LEO, a resource allocation model is established in order to maximize the resource utilization, where the
problem falls into the 0-1 two-dimensional knapsack problem. An enhanced greedy algorithm is designed
to achieve performance that closely aligns with the optimum solution while simultaneously decreasing
the complexity of processing.

Genetic algorithm, as a search heuristic algorithm, mimics the process of biological evolution by
constructing a simulated environment and then performing operations such as selection, crossover and
mutation to continuously generate new solutions to approximate the optimal solution [122]. Through this
mechanism, the genetic algorithm can better avoid falling into the local optimum and enhance the global
search capability. Considering that a satellite network is a high complexity multi-layer heterogeneous
system, the work of [123] employed a genetic algorithm to solve the NP-hard resource allocation problem
to optimize QoE. The simulation shows that this algorithm has certain validity and stability for the
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dynamic allocation of satellite resources. For multi-beam satellite systems, considering the influences of
the propagation effect, inter-beam interference and atmospheric attenuation, the work of [124] formulated
the optimization problem of joint power and bandwidth allocation, and then combines repair functions
and genetic algorithms for its solution. This approach not only guarantees the validity of the solutions
but also enhances the convergence rate simultaneously.

Swarm intelligence algorithm represents a category of bio-inspired method that address optimiza-
tion problems by simulating the collective behaviors observed in animal groups. Ant colony optimization
(ACO) [125] and particle swarm optimization (PSO) are two typical swarm intelligence algorithms evolved
from this concept [126]. A scheduling model has been developed considering satellites switching due to
the movement of LEO, aimed at minimizing resource consumption of the satellites [127]. Building on
this framework, the author derived the linear integer programming problem and subsequently employed
the PSO algorithm for its resolution. Experimental findings also demonstrated that the performance of
this algorithm outperforms that of genetic algorithms across all evaluated scenarios.

5.1.3 Game theory

Owing to the heterogeneity and high degree of dynamics within the CCS network, its resource allocation
is confronted with significant challenges. Game theory, which treats the participants within a system
as rational users, is used to design decentralization mechanisms that can effectively solve the problem
of multiple rational participants making decisions regarding their goals [128]. And in these games, each
participant or player seeks to optimize their respective goals [129, 130]. This part aims to deliver an
examination of game-theoretic methods for resource allocation in the CCS system.

Cooperative game theory emphasizes the establishment of coalitions to collectively attain objectives
or advantages. The creation of these coalitions can enhance the overall benefits for the members involved.
A fundamental concern within this framework is the equitable allocation of the total benefits among the
coalition participants [129]. According to the previous analysis, satellite clusters are inherently unstable
due to dynamical network topology and unpredictable link failures. Therefore, by setting up a distributed
federation, satellites in the LEO constellation are able to cooperate effectively to enhance the reliability
of the CCS system and reduce the network’s operation overhead [131]. This collaborative approach is
capable of utilizing resources in a more efficient manner and improving the service quality of the CCS
system.

For non-cooperative game, the current combination of strategies is a Nash equilibrium if no par-
ticipant can unilaterally change the strategies to obtain a better outcome [129]. The work of [132]
decomposed the minimizing total computational cost problem into two stochastic game problems: one
for multiuser computing offloading and another for edge server deployment, and proves the existence of
at least one Nash equilibrium for each game. For the satellite edge computing system, the work of [47]
investigated the task offloading strategy using the response time and energy consumption as the metrics
and proposed an iterative algorithm to find the Nash equilibrium.

Matching game is a special type of game that takes into account the orderly preferences of each group
of participants over the other group members, and the participants need to be paired according to certain
rules in order to achieve some form of cooperation or competition [133]. It has been applied in CCS for
problems such as resource allocation, computational task offloading and network selection [123]. In the
work of [134], a resource allocation algorithm that takes interference into account has been developed
with the aim of optimizing the downlink capacity and data rate of the satellite-ground network. The
optimization problem is disassembled into an interference management sub-problem and a user association
sub-problem. Specifically, the interference issue is converted into a many-to-one matching game, which
focuses on how to rationally distribute satellite resources among ground stations. Meanwhile, the user
association sub-problem is transformed into a one-to-one matching game, dealing with the way in which
individual users connect to these ground stations. Simulation results demonstrate that this approach can
effectively suppress the inter-satellite interference.

5.1.4 Dynamic programming strategy

Dynamic programming strategy represents an analytical methodology that resolves intricate problems
by dissecting them into more straightforward and tractable subproblems. This approach is particularly
well-suited for grappling with issues that exhibit overlapping subproblems and optimal substructures [19].
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In the work of [118], the authors tackled the interference challenge in MIMO satellites system. They con-
sider constraints on spectrum and energy resource, and methodically decompose the intricate problem
into three distinct sub-problems: hybrid precoding with the separation of analog and digital pre-coders,
power allocation within the satellite system, and interference mitigation between the satellite and ter-
restrial links. These sub-problems are addressed sequentially to achieve an optimal solution. For the
LEO-based edge computing network system, the work of [46] processed a complex energy minimization
problem by solving two stratified subproblems respectively associated with the space and ground seg-
ments. Simulations show that an increase in the number of satellites leads to a higher offloading ratio of
computational tasks and a reduction in energy consumption for edge IoT devices, which is an insight for
future research on task offloading and resource allocation.

For space-air-ground-integrated electric power IoT, the work of [135] took into account that the joint
optimization of task offloading and computational resource allocation is confronted with incomplete in-
formation, the curse of dimensionality, and the coupling between the long-term constraints of queuing
delay and short-term decision-making. Then it puts forward a learning-based queue-aware task offload-
ing and resource allocation algorithm. This algorithm decomposes the optimization problem into three
deterministic sub-problems: task and resource allocation on the device side, resource allocation on the
server side, and task offloading. For these three sub-problems, Lagrange dual decomposition, a queue-
aware actor-critic based task offloading algorithm, and a greedy low-complexity algorithm are respectively
employed.

5.2 AI-based optimization methods

The above methods, based on traditional optimization, provide potential solutions to the resource schedul-
ing problem of the CCS system. However, with the increasing diversity of tasks and heterogeneity of
resources in the CCS system, the resource scheduling problem of the system turns out to be extremely
challenging to model. Consequently, traditional optimization methods struggle to handle it effectively.
Therefore, researchers have begun to explore AI-based optimization methods. Data-driven methods,
which build on AI, train neural networks with a large number of high-quality samples. One of its merits
is that it can use extensive offline training to save online computational time. However, it is also beset by
issues like poor interpretability and limited generalization ability [136]. Therefore, researchers consider
the amalgamation of knowledge and data-driven approaches with the help of domain knowledge and
expert knowledge to improve the interpretability of data-driven methods, which can also improve the
convergence speed in situations with limited training samples. This section categorizes and summarizes
AI-based methods and discusses the feasibility of applying some of them to the CCS system.

5.2.1 Data-driven methods

Distinct from traditional resource scheduling methods, data-driven methods will modify the original model
during the iterative process. Moreover, they necessitate the system to repeatedly provide a substantial
quantity of high-quality samples. Subsequently, the model performs self-updating by means of feedback
mechanisms, and as the number of iterations rises, the optimal model is ultimately acquired. Data-driven
methods include, but are not limited to, deep learning, reinforcement learning and federated learning.
The following introduces the data-driven resource scheduling methods for the CCS system.

(1) Deep learning. Deep learning (DL) algorithm is proficient in handling complex input-output
mapping relationships. Composed of multiple layers for feature extraction and transformation, DL is
used for in-depth analysis in complex scenarios with massive data [137]. Considering the scarcity of spec-
trum resources and intense co-channel interference between satellites and terrestrial systems, intelligent
resource allocation algorithms based on DL for high spectral efficiency and low co-channel interference
have received extensive attention. To improve spectral efficiency under varying user densities, the work
of [109] proposed a hierarchical architecture for satellite-terrestrial spectrum sharing. Based on this
architecture, the intelligent resource management scheme of the spectrum management unit (SMU) com-
posed of spectrum sensing, prediction and allocation is studied. The spectrum prediction utilizes a CNN
method and the training data of the CNN is derived from historical detection results from spectrum
sensing. Simulation results show that the proposed intelligent resource management scheme can achieve
lower error detection.

(2) Reinforcement learning. Reinforcement learning (RL) is based on the Markov decision process,
consisting of an environment and multiple agents. Agents choose from a set of actions according to the
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policy and the current state of the environment, thereby causing the environment to transition into the
next state. In this process, agents receive rewards as a measure of the quality of their policy. In general,
RL can be categorized into multi-agent reinforcement learning, deep Q-learning (deep Q-network) and
deep reinforcement learning [138].

Multi-agent reinforcement learning. CCS network is a comprehensive service system where each
specific service function is defined as a domain in [139]. However, with the rapid growth of services
and the explosion of data [139], the differentiation between domains becomes more significant and the
resources demand and supply among domains also become increasingly unbalanced. Highly busy state
satellites need to offload tasks to idle state satellites to improve the resource utilization ratio (RUR).
The cross-domain resource scheduling (CDRS) problems should be studied to improve the CCS system
performance. The work of [140] proposed a hierarchical sparse resource representation (HSRR) scheme
to accurately characterize the resource of the networks. Based on the HSRR, a cross-domain dynamic
multi-resource scheduling (CD-DMRS) algorithm is proposed using multi-agent reinforcement learning.
Simulation results prove that the algorithm achieves higher RUR.

Deep Q-learning. Multi-agent reinforcement learning relies on explicit feature extraction and com-
plete state observation, which is insufficient in high-dimensional state space problems. Deep Q-learning
(DQL) employs end-to-end reinforcement learning to directly acquire successful strategies from high-
dimensional sensory input, thereby effectively remedying this shortcoming [141].

CCS system aggregates satellite payloads from different orbits to complete various missions such as
navigation, communication, remote sensing, and earth observing [20]. To improve the efficiency of the
CCS system and avoid the transmission of worthless information, a semantic-aware method [11] is adopted
to maximize the utility of information (UoI) and the correlation of semantic information between user
devices within a limited connection window, thereby maximizing the UoI per unit energy consumption in
the dynamic CCS system. By introducing a multi-agent double and dueling deep Q-learning (MAD3QL)
algorithm, a higher average UoI per unit energy consumption is significantly realized [11]. On the other
hand, the onboard battery power resource is worth considering. In shaded areas without solar energy,
the data transmission of the satellite depends on its onboard batteries. From an economic perspective,
battery life also indirectly affects the cost of satellite manufacturing. The life of the LEO satellite battery
is influenced by the depth of discharge, which should be reduced per charging cycle. To increase the
average lifetime of the LEO satellite battery, the work of [142] proposed a method based on Q-learning
to control transmission power. In this manner, the degraded satellite will be allocated a reduced amount
of data for processing, thereby extending the lifespan of the satellite battery.

When dealing with massive data processing, CCS system often needs to implement task offloading
strategies and use distributed architectures for scheduling [143]. Although these tasks can be achieved
by cloud computing, it may lead to severe delay [144]. Therefore, researchers propose MEC, aiming to
shift the computation and storage capabilities from cloud computing to local servers. In this way, user-
perceived latency and energy consumption are greatly reduced [145]. Furthermore, MEC can provide
content caching and storage services [42]. The work of [146] considered a three-node MEC system with
partial and binary of offloading models, and a joint computing and communication scheme is proposed to
improve the energy efficiency of the nodes. Considering the constraints on system resources, rapid time-
variation of channel states, heterogeneity of user terminals and mutual interference in satellite networks,
it is impossible to solve complex collaborative tasks with a single optimization objective. Therefore, the
work of [48] decomposed the problem into computing and communication resource allocation, as well
as joint user association and offloading sub-problems. To collaboratively tackle the two sub-problems, a
Lagrange multiplier and deep Q-network (DQN) method is proposed [48].

Deep reinforcement learning. DRL aims to get the optimal strategy by a training process according
to the action feedback without prior knowledge. It is a learning framework based on DL and RL, being
capable of addressing the issue of large state and action space [147]. Compared to GEO satellites, LEO
satellites of the CCS system have limited onboard power, spectrum and channel resources. Thus, the
work of [148] proposed an energy-saving channel allocation method. In this method, the dynamic channel
allocation problem is modeled as a Markov decision process (MDP) and a DRL algorithm is used to solve
the problem. Simulation results show that this method can effectively save system energy consumption.

(3) Federated learning. The machine learning methods described above perform centralized training
mode [149–151]. Unlike these methods, the federated learning (FL) method is a distributed algorithm,
which enables users to collaborate and share models while training and maintaining data on their own
devices [152–154].



Zhang C, et al. Sci China Inf Sci September 2025, Vol. 68, Iss. 9, 190302:22

By introducing the FL method into the inter-satellite link resource scheduling problem, it is possible to
significantly reduce system energy consumption, transforming centralized training into distributed train-
ing and enhancing system efficiency. Currently, most link scheduling methods mainly focus on optimizing
channel capacity, power consumption and resource utilization, while neglecting the impact of actual traf-
fic distribution. This results in suboptimal system delay performance. To achieve the optimal solution
and simultaneously reduce the average number of hops among different satellites as well as decrease sys-
tem energy consumption, a multi-agent deep reinforcement learning (MADRL) approach is employed to
decompose the global scheduling of multiple satellites into independent scheduling for individual satel-
lites [155]. Then, the authors propose an inter-orbit plane laser inter-satellite links scheduling algorithm.
Based on inter-satellite cooperation, FL is used to implement the scheduling. Simulation results show
that the proposed algorithm can effectively reduce the updating cost of the model [155].

Different from researches on the application of FL in satellites [154, 156], which do not consider the
resource scheduling that integrates computation and communication, Ref. [157] proposed an energy-
efficient communication-computation integrated FL algorithm. This algorithm minimizes total energy
consumption by taking into packet error rate and completion time for each user. Compared with other
baselines, this method can effectively reduce energy consumption and improve the algorithm efficiency of
FL.

5.2.2 Knowledge-driven methods

Knowledge can be categorized into rather specialized and formalized scientific knowledge, everyday life’s
world knowledge, and more intuitive expert knowledge [158]. The knowledge-driven method mainly
applies expert knowledge to solve various complex resource scheduling problems. Thus, for resource allo-
cation, knowledge is defined as a summary of logical rules, theoretical algorithms and other content in the
resource scheduling process, which can be used to guide or accelerate resource scheduling processes [159].
The most important feature of knowledge-driven machine learning is the dimensionality reduction of the
input to the neural network in advance to simplify the learning network. Additionally, specific knowledge
can also directly give approximate solutions to problems, thereby improving algorithm reliability [160].
On the one hand, knowledge-driven methods enhance the robustness and interpretability of data-driven
methods by specifying logical rules in advance. For example, a protector mechanism is set to adjust
the action generated by the agent to get the better system performance. The adjustment is based on
information such as expert knowledge [161]. On the other hand, convergence speed is improved through
knowledge sharing and transfer [162]. For example, the guiding reward is set in the analytical model that
integrates expert knowledge, and transferred to combine with the observed reward collected by the agent
from the environment to generate the updating reward [161].

However, it should be noticed that, the application of knowledge-driven methods to CCS systems may
also bring the following potential problems and challenges. Firstly, the process of mining and summarizing
domain knowledge or expert knowledge is relatively difficult, which is usually not easily obtainable through
simple rules or models. Instead, sometimes it can be obtained by researchers or engineers in the relevant
field through analysis, summarization, and experience. Secondly, domain knowledge or expert knowledge
lacks universality. This means that the knowledge of the CCS system is applicable to the field of satellite
communication and may not be directly applied to ground networks or other types of communication
networks, resulting in limited knowledge reusability and universality. Conversely, the applicability of
expert knowledge from other communication systems in the CCS system will also be greatly limited.

The following introduces knowledge-driven resource scheduling methods, applications and potential
research directions in the CCS system.

(1) Knowledge-assisted neighborhood search algorithm. Neighborhood search algorithm is an
efficient meta-heuristic framework for solving a large number of combinatorial optimization problems
[163]. In the resource scheduling and management of large-scale CCS system, the support of satellite-
ground links (SGLs) is essential, making the SGL scheduling problem (SGLSP) one of the focal points of
research. To be specific, SGLSP focuses on determining which nonconflicting SGLs should be activated
to maximize the total linking time. In order to solve this problem, a knowledge-assisted adaptive large
neighborhood search algorithm (KA-ALNS) is used [164], integer programming is embedded in the ALNS
framework, followed by the application of a data mining method called frequent pattern mining to extract
the knowledge from excellent solutions to construct new solutions. Simulation results show that KA-ALNS
algorithm, which combines data mining method with integer programming modeling, can effectively solve



Zhang C, et al. Sci China Inf Sci September 2025, Vol. 68, Iss. 9, 190302:23

SGLSP.
(2) Knowledge-assisted evolutionary algorithm. As previously stated, an evolutionary algorithm

such as a genetic algorithm is a kind of global optimization algorithm inspired by biological evolution
[165, 166], which can well solve the problem of satellite resource scheduling.

In order to improve the operational efficiency of the CCS system, the relay satellite can be employed
to transmit command and data between the ground and mission satellites. However, the resources
of the relay satellite are limited, which cannot cope with heavy relay tasks. It is urgent to develop
a reasonable and effective task scheduling algorithm to improve overall system operational efficiency.
Therefore, Ref. [167] proposed a hybrid integer mathematical model for task scheduling of a relay satellite
system based on graph structure, utilizing a knowledge-based genetic algorithm (KBGA) to optimize the
sequence of relay tasks. Through KBGA, the efficiency of the relay satellite system can be improved
significantly.

Considering the optimization problem of multi-satellite resource scheduling, previous solutions assume
that each TT&C task only needs to be executed once in a given time range [168], which is unrealistic in
a practical system. Thus, considering the limited system resources, continuity of operation, and number
of TT&C tasks, a knowledge-guided evolutionary algorithm is proposed [169]. In order to depict the
distribution of terrestrial monitoring resources for TT&C operations and orbits, the algorithm adopts a
tri-layer encoding technique. In addition, the search process can be accelerated through the guidance of
conflict knowledge between tasks, thus enhancing both the quality and efficiency of the system. By using
public satellite data, the simulation results demonstrate the superiority of the algorithm.

Although resource scheduling methods that combine knowledge with traditional classical algorithms
can accelerate the convergence time and improve the algorithm performance to some extent, there are
still shortcomings, such as a complex iterative process and a large calculation amount. Based on the
AI approach, the knowledge-intergraded resource scheduling methods are divided into methods based on
local knowledge and methods based on knowledge sharing and transferring.

(3) Resource scheduling method based on local knowledge. This method utilizes knowledge
obtained from the local network training process to guide resource scheduling, reducing the action space
dimension to achieve fast convergence.

As previously mentioned, beam hopping technology establishes the foundation for flexible beam man-
agement. However, the traditional beam-hopping method does not consider long-term returns, only
seeking the optimal solution at the current moment, which leads to a significant increase in system
complexity as service demands or the number of beams increase. In order to ensure inter-beam service
fairness, minimize real-time service delay and maximize non-real-time service throughput, a model-free
multi-objective deep reinforcement learning method is proposed [170]. The multi-action selection method
based on double-loop learning is used to extract relevant knowledge and solve the problem of action
dimension disaster. Simulation results under practical conditions show that this method can achieve
multiple objectives simultaneously and intelligently allocate resources based on user demands and chan-
nel conditions.

Secondly, traditional scheduling methods such as proportional fair, round-robin, earliest-deadline-first
and maximum throughput are not designed for delay-sensitive services. Since scheduling policy is a
deterministic mapping from channel and queue states to scheduling actions, it can be optimized using the
deep deterministic policy gradient (DDPG) algorithm. However, the convergence of DDPG is very slow
and good QoS cannot be obtained. Therefore, a knowledge-assisted DDPG algorithm is proposed [171].
By leveraging expert knowledge in the design of the schedule, such as the knowledge of QoS, target
scheduling policy and the importance of each training sample, the performance of the algorithm can be
enhanced.

Finally, in order to overcome the huge losses caused by system crashes during the traditional rein-
forcement learning process, inspired by the protector mechanism in the field of electrical engineering,
an analytical model and scheduling algorithm based on domain knowledge with physical rules are pro-
posed [161]. The convergence speed and reliability of this algorithm are effectively improved by setting
execution actions, protectors, and guiding rewards, while maintaining the stability of the search direction.
It could be regarded as a prospective research avenue within the CCS system.

(4) Resource scheduling method based on knowledge sharing and transfer. Knowledge
sharing can better facilitate the update of information and strategies between different networks, while
transfer learning can utilize external expert knowledge to guide the target domain and accelerate the
learning process. For practical reinforcement learning, the environment dynamics are usually unknown
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and the agent can only take advantage of the knowledge in the environment through sufficient interaction
and iteration. However, due to partial observability, sparse feedback, and the high complexity of the
state and action space, it is generally difficult for agent to obtain sufficient interaction samples. In order
to solve this problem, transfer learning (TL), also known as knowledge transfer, has become a hot topic
of research [172]. Transfer learning means that a pre-trained model is reused in another task. By using
a model applicable to different but related tasks, the search scope of possible models is narrowed in an
advantageous way.

Traffic prediction is of great significance for resource management and scheduling of the CCS sys-
tem. An accurate traffic prediction model can improve resource utilization efficiency. As an explosion of
Internet traffic [173,174], several traffic prediction methods using machine learning in terrestrial communi-
cations have been provided. Nevertheless, these methods require large amounts of data and transmission
bandwidth to train models that are not suitable for satellite systems. Therefore, a lightweight traffic
prediction method based on machine learning is proposed to solve this problem, which uses knowledge
transfer learning to reduce the consumption of bandwidth [175].

Previous studies based on beam hopping [30,176,177] may suffer some problems such as high algorithm
complexity, large computational load and neglect of service delay sensitivity. In order to reduce the
training cost and improve the generalization of the model in the dynamic environment, the combination
of TL and DRL algorithms is proposed [178]. By leveraging the migratory characteristics of the TL
strategy, satellites can quickly obtain optimal resource allocation schemes under conditions of limited
samples. This approach is suitable for the dynamic topology of the CCS system. Through the migration of
deep reinforcement learning algorithm, the average delay is effectively reduced and the system throughput
is improved while guaranteeing QoS requirements. More importantly, simulation results prove that by
introducing TL, convergence speed and the effect of the model can be improved.

6 Conclusion and future directions

The advent of large-scale LEO satellite constellations has brought increased attention to CCS systems.
This paper aims to integrate insights from both academia and industry to provide a comprehensive anal-
ysis and recommendations for managing heterogeneous resources in CCS. It first discusses the evolution
and components of CCS systems and then introduces a native AI architecture along with a hierarchi-
cal structure for resource scheduling. It also covers the modeling and metrics of resource management
based on emerging technologies and applications brought by CCS systems, followed by a detailed review
of resource management methods in CCS. Notably, this work is the first exhaustive review focusing on
knowledge-driven resource scheduling strategies in CCS.

As CCS systems develop and task requirements increase, the interference of clustered satellites brought
by spectrum sharing should be further considered. Moreover, the synchronization error between satel-
lites, multimission planning and collaboration, and AIaaS serve as future research directions for resource
scheduling. The details are as follows:

Anti-interference orientation. Current satellite systems are mainly affected by interference caused
by complex electromagnetic environments. However, with their vast number of satellite nodes, complex
network topology, extensive service coverage, and limited spectrum resources, CCS systems are suscep-
tible to various types of interference, including interbeam, intersatellite, and even cochannel interference
between different low-orbit systems. Meanwhile, direct-to-cell has inevitably become the development
trend of CCS systems. It can improve spectrum resource utilization through spectrum sharing technol-
ogy, alleviating the scarcity of spectrum resources in integrated space-ground systems. However, this
also introduces interference between CCS and terrestrial mobile communication systems. Above all,
interference in future CCS systems is becoming increasingly severe, making interference avoidance or
anti-interference resource management and scheduling a critical research issue. Although traditional re-
source scheduling and management optimization solutions, such as power control, spectrum allocation,
and beam management, can help avoid interference, the interference situation is more complex and dy-
namic for CCS systems. Thus, multisatellite cooperative interference avoidance or suppression methods
must be implemented, including, but not limited to, the following: designing resource management ar-
chitectures focused on spectrum sensing and anti-interference to achieve refined resource management
and optimized configuration, proposing coordination mechanisms to enable effective collaboration among
nodes, and facilitating interference information sensing and sharing, collaborative decision-making, and
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resource allocation. Therefore, anti-interference-oriented resource management and scheduling in CCS
systems is emerging as a significant future research direction.

Impact of synchronization errors on resource scheduling. Compared with single-satellite sys-
tems, a distinctive feature of CCS systems is their aggregation of the service capabilities of conventional
payload-integrated single-satellite platforms to form an ultracohesive virtual satellite. Therefore, synchro-
nization has a great impact on the efficient use of resources in CCS systems. First, the synchronization
of transmissions between satellites requires the precise alignment of time, frequency, and phase across
distributed nodes [16]. Any deviation in synchronization can lead to significant communication quality
degradation, such as increased bit error rate, signal distortion, or even communication interruptions.
Moreover, these deviations can diminish the system’s overall capacity and efficiency, leading to resource
wastage, reduced transmission efficiency, and heightened multiaccess interference. From the analysis
presented in Section 3 regarding the technologies within CCS systems, synchronization emerges as the
fundamental enabler for collaborative computation, transmission, beam hopping, and observation. How-
ever, several factors, such as satellite orbit perturbations, signaling and data transmission delays, and
highly dynamic changes in network topology, pose significant challenges to synchronization in tasks.
These challenges must be considered in future research on CCS resource management. For instance, in
cooperative beam hopping, the design of beam hopping patterns for multiple satellites must consider the
beam scheduling desynchronization among satellites caused by the delay of control signaling. It must
optimize the allocation of power and spectral resources to avoid interference caused by the simultaneous
operation of beams of the same frequency in the neighboring wavelengths. In cooperative transmission,
the amplitude-phase differences of phased arrays among multiple satellites caused by orbit perturbations
must be thoroughly considered, as these differences can impact the performance of distributed MIMO
and cooperative beamforming. For cooperative computation, transmission errors of computational data
between satellites and the ground station must be addressed, and the reliability of data transmission and
high efficiency of computation must be guaranteed through the joint scheduling of communication and
computational resources. Thus, the consideration of the effects of synchronization errors in CCS resource
management and scheduling becomes an important future research direction.

Multimission planning and collaboration. Mission planning in traditional single-satellite systems
is relatively simple and uses centralized resource allocation. However, in CCS systems, mission realization
usually relies on the collaborative operation of multiple satellites distributed in the same or different or-
bits, including weather prediction, scientific experiments, collaborative transmission, and remote sensing,
which may lead to competition between multidimensional heterogeneous resources and uneven network
load. Therefore, how to multitask planning and collaboration to efficiently utilize heterogeneous resources
has become a worthwhile issue for resource management in CCS. Its research points include, but are not
limited to, the following: for ground-satellite task offloading and collaboration, a dynamic load balancing
algorithm can be designed on the basis of the state of the resource pool to address the issue of re-
source competition and uneven load distribution caused by massive tasks in the network. Meanwhile, the
distributed satellite architecture of CCS systems is utilized to efficiently handle ground task offloading.

For intersatellite task offloading, the current multitask computing node matching problem is primar-
ily categorized into centralized and distributed algorithms. Because of the dynamic nature of the edge
computing environment in the CCS system, distributed resource scheduling methods must be developed.
This approach must consider the available computational resources and the delay and power consump-
tion requirements of the tasks to be scheduled [89]. For computing task collaboration, the dynamic
changes in network topology necessitate a comprehensive consideration of computational and transmis-
sion resources, as well as the evolving service demands. Additionally, balancing resource efficiency with
service quality and designing intelligent routing algorithms are crucial. Consequently, multitask planning
and coordination have emerged as vital research directions for future CCS resource management and
scheduling.

AI as a service. With the rise of AI large-model services, future CCS systems can also be considered
to provide AI services. Satellite AIaaS represents the convergence of AI capabilities with satellite infras-
tructure, delivering on-demand AI services to users. Using application programming interfaces (APIs)
or cloud interfaces, users can access powerful AI models hosted on satellites to obtain real-time services,
such as data analysis and image processing [179]. Unlike traditional ground-based AIaaS, satellite AIaaS
can extend coverage to remote regions, including oceans and mountainous areas, providing uninterrupted,
all-weather, and full-coverage AI services. To adapt large AI models to the limited processing capabilities
of satellites, techniques such as model pruning and distillation are essential. Additionally, the collabora-
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tive computation enabled by the CCS can compensate for the limitations of individual satellites, thereby
enhancing the overall capacity for AI services. However, this also introduces new challenges to the re-
source management and scheduling of CCS systems. First, AI services demand substantial computational
power, so a unified framework for metrics and management must be implemented. Given the dynamic
characteristic of computational resource distribution in CCS, the status of available resources must be
continuously updated and monitored. Second, intelligent routing of computational tasks is crucial. This
involves a comprehensive assessment of the computational capacity and QoS of each satellite node to
ensure efficient task distribution. Consequently, a system can guarantee the QoS and optimal user expe-
rience for AI services. In summary, ensuring the seamless delivery of satellite AIaaS has elevated CCS
resource management and scheduling to a critical research direction for the future.
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Appendix A

Table A1 List of abbreviations.

Abbreviation Definition Abbreviation Definition

3GPP 3rd generation partnership project KA-ALNS
Knowledge-assisted adaptive

large neighborhood search

5G Fifth generation KBGA Knowledge-based genetic algorithm

6G Sixth generation LEO Low earth orbit

ACO Ant colony optimization MIMO Multiple-input multiple-output

AI Artificial intelligence MIPS
Microprocessor without

interlocked pipeline stages

AIaaS AI as a service MEC Mobile edge computing

ALNS Adaptive large neighborhood search MINLP Mixed integer nonlinear programming

API Application programming interface MAD3QL
Multi-agent double

and dueling deep Q-learning

ARM Advanced RISC machines MDP Markov decision process

CCS Cohesive clustered satellites MADRL Multi-agent deep reinforcement learning

CPU Central processing unit NFV Network functions virtualization

CSI Channel state information NTN Non-terrestrial networks

CMDP Constrained Markov decision process NCC Network control center

CNN Convolutional neural network NP Non-deterministic polynomial

CDRS Cross-domain resource scheduling NB-IoT Narrowband Internet of Things

CD-DMRS
Cross-domain dynamic

multi-resource scheduling
PowerPC

Performance optimization with

enhanced RISC-performance computing

DSS Distributed satellite system PSO Particle swarm optimization

DTP Digital transparent processor QoS Quality of service

DSP Digital signal process QoE Quality of experience

DPS Dynamic point selection RL Reinforcement learning

DL Deep learning RUR Resource utilization ratio

DQL Deep Q-learning S&F Store and forwarding

DQN Deep Q-network SAGIN Space-air-ground integrated network

DRL Deep reinforcement learning SAGSIN Space-air-ground-sea integrated network

DDPG Deep deterministic policy gradient SDN Software defined network

EIRP Equivalent isotropic radiated power SSO Sun-synchronous orbit

FPGA Field programmable gate array SPARC Scalable processor architecture

FL Federated learning SL Split learning

FTP File transfer protocol SAT-IoT Satellite Internet of Things

GEO Geostationary earth orbit SMU Spectrum management unit

GPU Graphics processing unit SGLs Satellite-ground links

GW Gateway station SGLSP Satellite-ground link scheduling problem

GBR Guaranteed bit rate TT&C Tracking, telemetry and command

HPSC High-performance space computing TL Transfer learning

HSRR Hierarchical sparse resource representation UE-SAT-UE User equipment–satellite–user equipment

ISL Inter-satellite links UE User equipment

IoT Internet of Things UoI Utility of information

JCC-SAGIN
Joint communication and computing-embedded

space-air-ground integrated network
VoIP Voice over Internet protocol
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