
SCIENCE CHINA
Information Sciences

August 2025, Vol. 68, Iss. 8, 189402:1–189402:2

https://doi.org/10.1007/s11432-025-4382-4

c© Science China Press 2025 info.scichina.com link.springer.com

. LETTER .

Photonic reservoir computing based min-entropy
evaluation for random number generators

Jianjiang WANG1,2,3,4, Qiang CAI5, Jianguo ZHANG1, Pu LI2,3,4*,

K. Alan SHORE6, Yuwen QIN2,3,4 & Yuncai WANG2,3,4

1Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education of China,

Taiyuan University of Technology, Taiyuan 030024, China
2Institute of Advanced Photonics Technology, School of Information Engineering, Guangdong University of Technology,

Guangzhou 510006, China
3Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education of China,

Guangdong University of Technology, Guangzhou 510006, China
4Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology,

Guangzhou 510006, China
5Department of Physics, Taiyuan Normal University, Taiyuan 030619, China

6School of Computer Science and Electronic Engineering, Bangor University, Wales LL57 1UT, UK

Received 1 February 2025/Revised 31 March 2025/Accepted 14 April 2025/Published online 1 July 2025

Citation Wang J J, Cai Q, Zhang J G, et al. Photonic reservoir computing based min-entropy evaluation for random

number generators. Sci China Inf Sci, 2025, 68(8): 189402, https://doi.org/10.1007/s11432-025-4382-4

Random numbers are fundamental to cryptography and se-

cure communications. Random number generators (RNGs)

are usually classified into pseudo random number genera-

tors and true random number generators. If the outputs of

RNGs are not sufficiently secure, they become vulnerable

to unauthorized access, exposing cryptographic systems to

significant security risks [1]. Ensuring the security of RNGs

is significantly critical, requiring extensive testing and eval-

uation to validate their reliability.

There are two primary methods for evaluating the se-

curity of RNGs: white-box testing and black-box test-

ing. White-box testing involves mathematically modeling

the entropy source to calculate the entropy of the output

sequences, but this process is complex. Black-box test-

ing is further divided into statistic-based and prediction-

based methods. Statistic-based approaches use standard

test suites to evaluate the security of random numbers. How-

ever, these can sometimes fail to distinguish pseudo-random

sequences with strong statistical properties, making reliance

on statistical test suites alone insufficient.

Prediction-based methods have emerged in recent years,

leveraging neural networks to evaluate RNG security.

Among these, min-entropy is a commonly used metric in

neural networks for assessing the security of entropy sources

[2]. Defined in the National Institute of Standards and Tech-

nology Special Publication (NIST SP 800-90B), it serves as

a conservative quantification of min-entropy [3]. However,

the traditional process of training neural network models re-

mains complex, computationally expensive, and challenging

to implement in hardware owing to structural limitations.

Reservoir computing is recognized as a promising alter-

native. This novel artificial neural network framework re-

quires only the training of output layer weights using a

simple learning algorithm, which makes it highly computa-

tionally efficient [4]. Furthermore, photonic reservoir com-

puting (PRC), based on semiconductor lasers with time-

delayed feedback, features a single nonlinear physical node.

This architecture enables higher data injection rates [5] and

has proven effective in applications such as chaotic time-

series prediction, speech and image recognition, and non-

linear channel equalization. Therefore, applying PRC to

evaluate min-entropy holds great promise.

This study proposes a novel approach using single node-

based PRC to evaluate min-entropy for RNGs. PRC pre-

dicts future outputs by identifying the hidden relation-

ships within random number sequences and calculates min-

entropy based on the probability of correct predictions. Its

design, which involves a simple structure with a nonlinear

physical node, reduces overall system complexity and makes

it suitable for hardware implementation while maintaining

high computational efficiency. To the best of our knowledge,

our proposed method is the first to use PRC for evaluating

min-entropy, thus expanding its application in the field of

random numbers. Additionally, the results of this approach

outperform NIST SP 800-90B, providing a more conserva-

tive evaluation of RNG security.

Theoretical model of PRC. Figure 1 illustrates the PRC

system for min-entropy evaluation. This system is designed

using a semiconductor laser with self-delayed feedback and

consists of an input layer, a reservoir layer, and an output

layer. To effectively train the PRC model for evaluating the

min-entropy of random numbers, the input data undergoes
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preprocessing. In our scheme, the preprocessing process is

as follows. Ten consecutive samples of random numbers are

selected as inputs, with the subsequent sample designated

as the target value. The data are then shifted backward by

3 samples. The next ten shifted samples serve as the new

input sequence, while the eleventh shifted sample becomes

the target value for model training. This process is repeated

iteratively to generate input sequences and corresponding

target values. In this study, we use five types of random

number simulated datasets as input data. Four of these

datasets have known theoretical min-entropy values, indi-

cating discrete uniform distribution, discrete near-uniform

distribution, normal distribution rounded to integers, and

M-sequence. The fifth dataset represents a true random

number sequence derived from white chaos. The details of

the datasets are provided in Appendix A.

Figure 1 (Color online) Schematic diagram of PRC. D-L:

drive laser. R-L: response laser. PM: phase modulator.

In the input layer, the input sequence c(t) in Figure 1 is

derived from the preprocessing stage. Each data point in

the sequence is sampled and held for a period of T , corre-

sponding to the feedback delay time. This sequence is then

multiplied by a mask signal M (t), also with a period of T ,

to obtain S(t). Here the mask comprises random-level sig-

nal {−1, 1}. The sequence S(t) is loaded onto the output

light of the drive laser (D-L) by phase modulation and then

injected into the response laser (R-L). The feedback delay

time of the R-L, defined as τ , plays a key role in the reservoir

layer. The outputs of the R-L are sampled at equal inter-

vals with a sampling interval of θ, yielding N virtual node

states, where N = τ/θ. In our work, the feedback delay time

τ is 50 ns. A simulation model of the PRC is provided in

Appendix A.

In the output layer, the PRC output y(n) corresponding

to the n-th input data is computed as a linear combination

of the output connection weights W i and the virtual nodes

X i, defined as

y(n) = ΣW iX i. (1)

In our work, the ridge regression algorithm is used to train

the output weights.

The probability of correct prediction is calculated based

on the PRC output, yielding the global predictability Pglobal

and local predictability Plocal. Finally, the min-entropy is

calculated using

Hmin = − log2(max(Pglobal, Plocal)). (2)

Further details on the min-entropy calculation process are

provided in Appendix A.

Structure parameters optimization of PRC. The struc-

tural parameters of PRC significantly affect system perfor-

mance. We sequentially optimized four structure parame-

ters: the number of virtual nodes N, the injection strength

kinj , the feedback strength kf , and the frequency detuning

∆ν. The final optimal structure parameters are determined

as follows: the number of virtual nodes N = 5000, kinj =

0.3, kf = 0.1, and ∆ν = −5 GHz. Further details on the

optimization process are provided in Appendix B.

Evaluation results. After optimizing the PRC structure

parameters to their optimal values, we use PRC for min-

entropy evaluation. For the first three types of data sources,

the mean relative error from 40 sequences improved accu-

racy compared to NIST SP 800-90B. For the M-sequence,

the PRC provided entirely accurate results for stages below

16. For the white chaos true random number sequence, the

entropy evaluation from PRC was more conservative than

that of NIST SP 800-90B, offering a more conservative as-

sessment. Detailed results are presented in Appendix C.

Conclusion. We present a novel method for evaluating

the min-entropy of random number generators using PRC.

By investigating the effects of PRC structural parameters

on performance, we identified the optimal parameter set-

tings. To validate the accuracy of this method, evaluations

were conducted using various simulated data sources with

theoretical min-entropy values derived from their own prob-

ability distributions. The results prove that our PRC model

achieves performance on par or superior to that of the NIST

SP 800-90B standard. Furthermore, for true random num-

bers with unknown min-entropy, our PRC model produces a

lower min-entropy value than that of the NIST SP 800-90B

standard. Consequently, our proposed PRC model repre-

sents a robust and reliable tool for entropy evaluation.
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