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Oracle bone inscriptions, originating in the second millen-

nium before common era (BCE), embody profound histor-

ical and cultural significance by revealing the evolution of

ancient societal structures, religious beliefs, and the origins

of modern Chinese characters [1]; however, their restoration,

a critical step in Oracle bone studies, is hindered by severe

degradation of rubbing images caused by natural erosion,

microbial damage, and anthropogenic factors [2].

Traditional restoration methods, reliant on manual in-

tervention and constrained to single-character restoration,

lack generalizability and scalability [3], while modern neu-

ral network-based approaches, particularly those utilizing U-

Net architectures with multi-head self-attention (MSA) [4],

suffer from quadratic computational complexity, rendering

them impractical for high-resolution image restoration due

to excessive time and resource consumption. Given the

trade-offs between computational efficiency and the effec-

tive receptive field in existing methods, it is imperative to

develop an end-to-end, training-free, low-cost model specifi-

cally designed for Oracle bone inpainting, capable of efficient

large-scale restoration without sacrificing restoration qual-

ity.

Therefore, we propose Orpaint, an end-to-end zero-shot

image restoration framework based on a diffusion model,

designed to efficiently restore degraded Oracle bone inscrip-

tion rubbings. Orpaint leverages the reverse generative ca-

pabilities of diffusion models, which emulate the degrada-

tion process by progressively adding noise and then revers-

ing the process to reconstruct the structural features and

texture details of the original image, achieving high-quality,

diverse, and generalizable restorations. Central to its design

is the integration of the visual state space (VSS) block [5],

enhanced by the efficient 2D scanning (ES2D) mechanism,

which replaces the traditional U-Net architecture based on

MSA. The contributions of this work are twofold. (1) Or-

paint eliminates the need for manual intervention or pre-

training, demonstrating the ability to learn feature distri-

butions directly from large Oracle datasets and repair un-

deciphered inscriptions, thereby exhibiting emergent capa-

bilities. (2) By incorporating the ES2D-based VSS block,

Orpaint achieves significant reductions in time and compu-

tational costs compared to MSA-based methods, establish-

ing itself as a highly efficient and cost-effective solution for

Oracle bone inpainting.

Method. Orpaint introduces an advanced zero-shot in-

painting framework tailored for Oracle bone inscription rub-

bings, employing a sequence of stacked Orpaint blocks. The

structure of an Orpaint block, applied to a single denoising

time step, is illustrated in Figure 1(a). The framework op-

erates within the latent space over T time steps, starting

with a noise sample xT ∼ N (0, I) and progressively denois-

ing it. The known pixels, represented as (1 −m) ⊙ xknown
t ,

and the unknown pixels, defined as m ⊙ xunknown
t , are it-

eratively processed to reconstruct the complete image. To

incorporate the resampling strategy and “jump length” j,

the output of a single Orpaint block at time step t is defined

as

xt−1 = (1 −m) ⊙ xknown
t−1 +m⊙ x̂unknown

t−1 , (1)

x̂unknown

t−1 = DDPM(xt, j), (2)

where xknown
t−1

is sampled from the observed regions m⊙ x0,

while x̂unknown
t−1

is generated from the reverse diffusion pro-

cess; in addition, DDPM(xt, j) denotes the denoising dif-

fusion probabilistic model with a configurable jump length

j, which determines the number of time steps to jump for-

ward in the diffusion process. The resampling operation

adjusts the diffusion process by forward diffusing xt−j back

to xt and then reapplying reverse diffusion, progressively

harmonizing the generated and known regions by leveraging
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Figure 1 (Color online) Overview architecture of Orpaint. (a) Design details of the Orpaint block, where a single block performs

one denoising step; (b) improved U-Net using VSS blocks with ES2D scanning mechanism, replacing traditional attention modules;

(c) illustration of the ES2D scanning mechanism.

the DDPM’s ability to naturally produce consistent struc-

tures. This forward-backward mechanism corrects semantic

inconsistencies, refines boundaries, and enhances restoration

quality through multiple iterations.

The core innovation of Orpaint lies in the ES2D mech-

anism (Figure 1(c) top) integrated into the VSS block

within a U-Net architecture, replacing traditional MSA (Fig-

ure 1(b)). ES2D optimizes spatial scanning by adopting a

sparse leap sampling strategy with a configurable stride p,

reducing the time complexity from O(N) to O(N/p2) while

preserving contextual and directional information. Given

an input feature map X ∈ R
C×H×W , ES2D partitions spa-

tial dimensions into subsets {Ωi}4i=1
and updates directional

features using learnable parameters {Θk}. This process, in-

volving scan, update, and merge steps, is defined as

y(t) =
4

∑

k=1

Ct

(

Athk(t) + (Bt +Θk,t)x(t)
)

⊙ z(t), (3)

where hk(t) denotes hidden states for direction k, At, Bt,

and Ct are state-space parameters, and z(t) is a gating

signal. Integrated into the VSS block, ES2D allows effi-

cient long-range dependency modeling with fewer processed

patches, significantly enhancing the computational efficiency

of hierarchical feature extraction in both encoder and de-

coder stages of U-Net.

Experiments and results. Three experiments were con-

ducted to evaluate the inpainting performance, compo-

nent effectiveness, and generalization capability of Orpaint.

First, a comparative experiment was performed to assess

inpainting quality and resource consumption under various

mask types. Compared to the latest state-of-the-art zero-

shot methods, Orpaint demonstrated superior fidelity and

diversity, particularly for large-area masks, while achieving

reduced computational complexity and faster inference. Sec-

ond, an ablation study validated the effectiveness of the

VSS block and ES2D scanning mechanism. For resolu-

tion expansion, Orpaint exhibited linear growth in compu-

tational complexity with increasing image size, maintaining

stable inpainting quality, and outperforming in scalability

at higher resolutions (e.g., 1024×1024). For 2D scanning

modes, ES2D significantly reduced time complexity com-

pared to other advanced methods while preserving compet-

itive inpainting quality. Lastly, a generalization experiment

demonstrated Orpaint’s adaptability to other datasets, such

as ImageNet, producing high-quality inpainting results with

sufficient pertaining. Detailed experimental configurations

and results are provided in Appendix C.

Discussion and conclusion. We present Orpaint, a zero-

shot model for inpainting Oracle bone inscription rubbing

images, built on a diffusion framework enhanced by VSS

blocks and the ES2D mechanism integrated into the U-Net

denoising network. Orpaint demonstrates exceptional fi-

delity, adaptability to complex masks, and superior param-

eter efficiency, sampling speed, and scalability compared to

alternative architectures, showcasing the potential of lever-

aging advanced architectural innovations for Oracle bone

inscription conservation, and inspiring further scholarly con-

tributions to this field.
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