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Performance drift refers to the phenomenon that large lan-

guage models (LLMs), after being fine-tuned for specific

tasks, may exhibit a decline in performance on other tasks.

This phenomenon has been observed in recent iterations

of state-of-the-art LLMs, notably GPT-3.5 and GPT-4 [1].

A critical question emerges from this phenomenon: can

an LLM’s capabilities be uniformly enhanced across all

tasks through the exclusive use of fine-tuning techniques?

This study addresses this question by associating the phe-

nomenon of performance drift with catastrophic forgetting

in continual learning. We note that in previous investiga-

tions of catastrophic forgetting, it has been observed and

examined that intermediate task similarity leads to the most

severe forgetting [2, 3]. While widely acknowledged within

the field of continual learning, there is a paucity of research

on the relationship between task similarity and performance

drift in the context of LLMs. To address this research gap,

this study presents both theoretical and empirical analyses

of the impact of task similarity on performance drift in the

context of LLMs. In our theoretical study, we employ a sim-

plified model of causal language models, as established by

previous studies [4, 5], which reduces the task of predicting

the next token to predicting binary labels. Additionally, we

view the distribution of natural language data as mixtures

of subpopulations. By employing these methods, our re-

sults apply to arbitrary algorithms without the necessity of

strict assumptions such as convergence or optimality. Our

results suggest that the average loss of any arbitrary algo-

rithm on a data subpopulation can be lower bounded by

an expression maximized when the similarity between this

data subpopulation and another subpopulation in the train-

ing set approaches 1/2. In our empirical study, we validated

our theoretical results on both synthetic data and real-world

data. Our experimental findings also suggest that interme-

diate task similarity has the most detrimental effect on an

LLM’s performance.

In our theoretical analysis, we regard an LLM as a distri-

bution over strings of tokens. Typically, an LLM is a model

that outputs the probability distribution of the next possi-

ble token, conditioned on a specific input string. Ignoring

the issue of computational cost, this conditional probability

distribution is equivalent to the distribution of all output

strings conditioned on the input. Consequently, it can be

posited that an LLM is equivalent to a probability distri-

bution over strings. To elaborate, given an LLM defined

by Pr(y | z) where z and y are two strings serving as in-

put and output, respectively, we have the distribution of all

strings Pr(s) = Pr(s | z = empty string). Conversely, given

the distribution of all strings Pr(s), we have the conditional

probability Pr(y | z) = Pr(z+y)/
∑

y′ Pr(z+y′). Therefore,

it is reasonable to conclude that an LLM is a distribution

over strings.

For the purposes of this study, it is still necessary to

define the concepts of task and task similarity. By re-

garding an LLM as a distribution, it can be posited that

tasks are subpopulations of the whole distribution. As-

suming a total of N tasks, we have the whole distribu-

tion M(x) =
∑

i∈[N] αiMi(x),
∑

i∈[N] αi = 1, where [N ]

denotes the set {1, 2, . . . , N}, x is an arbitrary string, and

Mi is the ith subpopulation of M . Furthermore, we adopt

a more simplified assumption made in [4, 5]. Under this

assumption, each subpopulation Mi is characterized by a

binary reference string ci of fixed length d. Each sample

from subpopulation Mi is drawn by truncating ci by a ran-

dom length l and then flipping each bit of it independently

with probability δ. A notable benefit of this assumption

is that it enables a straightforward definition of the sim-

ilarity between two subpopulations by the proportion of

identical bits in each subpopulation’s reference string, i.e.,

r(i, j) = 1
d

∑d
k=1 1(ci(k) = cj(k)). Likewise, the similarity

between a sample z0 and a subpopulation Mj can be defined

as rj(z0) =
1

len(z0)

∑len(z0)
k=1 1(z0(k) = cj(k)).

Henceforth, let D(α,C) denote the data distribution de-

termined by α = (αi)i∈[N], C = (ci)i∈[N], Z denote a

dataset of size n that follows Z ∼ Dn(α,C), and h ∼ A(Z)

denote the model h trained by algorithm A on Z. The focus

of this study is the model’s performance on each individ-

ual subpopulation. The model’s error rate on the jth sub-

population given dataset Z is defined as errj(cj , A | Z) =

Eh∼A(Z) Ez∼Mj
1(h(z) 6= cj(len(z) + 1)). And the model’s

error rate on the jth subpopulation given α, C, n, and A is
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Figure 1 (a) Loss on subpopulation M0 of the GPT-2 model; (b) HumanEval scores of the fine-tuned Mistral 7B model;

(c) evaluation scores of the fine-tuned Mistral 7B model. Please refer to Appendixes B and C for complete results.

defined as errj(α,C,A) = EZ∼Dn(α,C) errj(cj , A | Z).

In addition to the data distribution, it is also necessary to

impose constraints on the model’s capacity. We posit that a

sample z0 from Mi will only impact errj(cj , A | Z) when the

algorithm incorrectly identifies it as belonging to Mj . The

following assumptions adopt a simplified linear effect.

Assumption 1. An algorithm A will incorrectly identify

a sample z0 from subpopulation i as belonging to subpop-

ulation j with a probability proportional to the similarity

rj(z0). That is, pmis = kmisrj(z0).

Assumption 2. Given a specific dataset Z =

{z1, . . . , zl} ∪ {z0}, where z1, . . . , zl ∼ Mj and z0 ∼ Mi, i 6=

j, for every prompt z, len(z) > len(z0) − 1, it is assumed

that z0 has no impact on h. For any prompt z, len(z) =

k < len(z0) − 1, it is assumed that if the algorithm A in-

correctly identifies z0 as belonging to Mj , the model’s error

rate on prompt z will decrease by a constant factor λl if

z0(k+1) 6= cj(k+1), and will increase by a constant factor

µl if z0(k + 1) = cj(k + 1).

Utilizing the assumptions above, we are able to provide

the following theorem, which states that training data from

a subpopulation of intermediate similarity harm the model’s

performance on the original subpopulation most.

Theorem 1. Suppose the dataset Z is drawn from the dis-

tribution Dn(α,C). Let A∗ denote the optimal algorithm

and let OPTj(A∗) = errj(1, cj , A∗). Then the averaged er-

ror rate of any algorithm A can be lower bounded as

errj(α,C,A) > OPTj(A
∗) + fn,d,α,C(r(i, j)), (1)

where fn,d,α,C takes its positive maximum near 1
2
.

Proof sketch. For subpopulations of high similarity to

Mj , the model is prone to misidentification. However, since

the similarity is high, the impact on errj(α,C,A) is negligi-

ble. Conversely, for subpopulations of low similarity to Mj ,

misidentification has a significant impact on errj(α,C,A).

However, since the similarity is low, the misidentification is

minimal. Hence, the conclusion is drawn. Full theoretical

deductions are available in Appendix A.

Experiments on synthetic data. To validate Theorem 1,

we pretrained LLMs on synthetic data generated by our data

assumption. Data from two subpopulations of varying simi-

larity r, defined as M0 and M1, were used in the pretraining.

Thereafter, the model was evaluated on a test set from M0.

We selected GPT-2 and Llama 3.1 as the base models for

pretraining, and conducted the above experiments for each

model 5 times to mitigate the impact of randomness. Par-

tial results are presented in Figure 1(a). As illustrated, the

model’s test loss is averagely worst when the similarity r is

close to 1/2, which aligns with Theorem 1.

Experiments on real-world tasks. Two different experi-

ments on real-world tasks were conducted, employing mod-

els such as Llama 3.1 8B and Mistral 7B and evaluating

datasets such as HumanEval, BoolQ, and MATH. In the first

experiment, we separately fine-tuned the model on several

deliberately constructed linear equation solving datasets.

While the contents in these datasets are identical, we em-

ployed different prompt styles to control the datasets’ simi-

larity to HumanEval. After fine-tuning, the model was eval-

uated on HumanEval and MATH. Partial results are pre-

sented in Figure 1(c). The results demonstrate that neither

the most similar fine-tuning dataset nor the most dissimi-

lar fine-tuning dataset harms the model’s HumanEval score

most. In the second experiment, we constructed fine-tuning

datasets by blending the original dataset with random to-

ken patterns. By adjusting the proportion of the blend, we

controlled the similarity between the dataset and the origi-

nal task. After fine-tuning, the model was evaluated on the

original task. Partial results are presented in Figure 1(b).

The results indicate that the model’s performance is poorest

with intermediate similarity.

Conclusion and future work. This study examines the

relationship between task similarity and performance drift,

highlighting the limitations of fine-tuning in uniformly im-

proving an LLM’s performance across diverse tasks. How-

ever, the simplified setting of our theoretical analysis may

affect the persuasiveness of the results. Future work could

explore more comprehensive theoretical frameworks and de-

velop strategies to mitigate performance drift.

Supporting information Appendixes A–C. The support-
ing information is available online at info.scichina.com and link.
springer.com. The supporting materials are published as sub-
mitted, without typesetting or editing. The responsibility for
scientific accuracy and content remains entirely with the au-
thors.
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