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Appendix A Theoretical results and proofs

First of all, some notations are defined in order to simplify the expressions. Hereafter we denote by [n] the set {1, . . . , n},
denote by 1(E) the indicator function of event E, denote by len(s) the number of bits of string s, denote by s(1 : l) the

first l elements of string s, and denote by U(A) the uniform distribution on set A.

Our theoretical work is based on the notion that the natural language distribution can be viewed as consisting of numerous

subpopulations [3]. Suppose there are N subpopulations in total, each of which is independent to the others, then the entire

distribution can be represented by a mixture of distributions of subpopulations, as follows.

M(x) =
∑

i∈[N ]

αiMi(x),
∑

i∈[N ]

αi = 1. (A1)

Specifically, for the causal language models, whose objective is to predict the distribution of the next symbol given a

prefix of symbols, we adopt an assumption similar to that used in some previous work [1, 2]. Namely, the next symbol

prediction objective is simplified to predicting the next bit 0 or 1 given a prefix consisting of only 0s and 1s. Furthermore,

we assume that the distribution of each subpopulation is as follows.

Definition 1 (Binary symmetric channel [4]). The result of flipping each bit of a string s independently with probability

δ is denoted by BSCδ(s), with each bit of it defined as follows.

BSCδ(s)(k) =

{
s(k), rk > δ

1− s(k), rk ⩽ δ
(A2)

where k ∈ [len(s)] and r1, . . . , rl
iid∼ U([0, 1]). For the sake of brevity, we will use the notation z ∼ BSCδ(s) to indicate that

z follows the same distribution as BSCδ(s).

Assumption 1 ( [1, 2]). The ith subpopulation is featured by a reference string ci ∼ U({0, 1}d). A sample z from the

ith subpopulation is drawn by first selecting l ∼ U([n]), and then flipping each bit of ci(1 : l) independently and randomly

with the same probability δ < 1
2
.

z = BSCδ(ci(1 : l)), l ∼ U([n]). (A3)

The only difference between our problem setting and that presented in [1,2] is that each sample z is treated as a string,

rather than a pair of prefix and label. The algorithm A will perform the next symbol prediction task on every pair of prefix

z(1 : s− 1) and label z(s) for all s ⩽ len(z). This setting is a natural generalization of the original problem setting in [1,2]

and is more suitable for simulating the pre-training process of causal language models.

Let us consider a dataset Z consisting of n samples drawn independently and identically from the entire population,

Z = {z1, . . . , zn}. An algorithm A takes dataset Z as input and outputs a predictor h = A(Z). The predictor h can then

be applied to any prefix z to predict the next bit y = h(z). To evaluate the accuracy of an algorithm, the error rate of

algorithm A on the jth subpopulation is defined as follows.

Definition 2 (Error rate on subpopulation j given dataset Z). Given dataset Z, the averaged error rate of algorithm A

on the jth subpopulation is defined as

errj(cj , A | Z) = E
h∼A(Z)

E
z∼Mj

1(h(z) ̸= cj(len(z) + 1)). (A4)

In more general cases, the dataset Z is unknown. The following definition generalizes Definition 2 to the situation where

only the occurrences and similarities are known.
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Definition 3 (Averaged error rate on subpopulation j). Denote α = (α1, . . . , αN ) the probabilities of occurrence of all

the tasks, and C = (r(i, j))1⩽i,j⩽N the matrix of similarity between tasks. Denote by D(α,C) the distribution of one

sample from dataset given α and C. Then the distribution of Z is Dn(α,C). The expected error rate of any algorithm A

on the jth subpopulation with respect to the dataset distribution is defined as

errj(α,C,A) = E
Z∼Dn(α,C)

errj(cj , A | Z). (A5)

The purpose of the following discussion is to address the question of the impact of a single sample if the algorithm

erroneously classifies it as belonging to a different subpopulation. The theoretical results presented here indicate that this

will have a negative impact on the lower bound of the algorithm’s error rate on the subpopulation to which the sample

appears to belong.

In theoretical analysis, the algorithm in question must satisfy certain constraints to prevent it from having unlimited

capacity. First, it is assumed that the algorithm would mistake a sample for belonging to another subpopulation only when

this sample is sufficiently similar to that subpopulation. Therefore, it is necessary to define similarity in our settings.

Definition 4. The similarity of two subpopulations i and j is defined by comparing the corresponding reference strings

ci and cj .

r(i, j) =
1

d

d∑
k=1

1(ci(k) = cj(k)). (A6)

Similarly, for a sample z0 drawn from Mi and another subpopulation j, similarity can be defined as

rj(z0) =
1

len(z0)

len(z0)∑
k=1

1(z0(k) = cj(k)). (A7)

It is not hard to see that Ez0∼Mi
rj(z0) = (1− 2δ)r(i, j) + δ.

In order to answer the question of to what extent the algorithm A will incorrectly identify a sample z0 as belonging to

a different subpopulation j, we must make the following assumption about the behavior of the algorithm A.

Assumption 2. An algorithm A will incorrectly identify a sample z0 from subpopulation i as belonging to subpopulation

j with a probability proportional to the similarity rj(z0).

pmis = kmisrj(z0). (A8)

In addition, it is necessary for the performance of algorithm A to be affected after an erroneous identification of the

subpopulation of a sample. The following assumption is an intuitive quantification of the extent to which the algorithm is

affected.

Assumption 3. Given a specific dataset Z = {z1, . . . , zl} ∪ {z0}, where z1, . . . , zl ∼ Mj and z0 ∼ Mi, i ̸= j, for every

prefix z that len(z) ⩾ len(z0)− 1, it is assumed that z0 have no impact on the distribution of h(z). For any prefix z such

that len(z) = k < len(z0)− 1, denoting Z∗ = Z \ {z0}, A∗ the optimal algorithm for Z∗, the following inequalities hold.

E
h∼A(Z)

z∼BSCδ(cj(1:k))

1(h(z) ̸= cj(k + 1) | z0(k + 1) ̸= cj(k + 1)) ⩾ E
h∼A∗(Z∗)

z∼BSCδ(cj(1:k))

1(h(z) ̸= cj(k + 1)) + λl, (A9)

E
h∼A(Z)

z∼BSCδ(cj(1:k))

1(h(z) = cj(k + 1) | z0(k + 1) = cj(k + 1)) ⩽ E
h∼A∗(Z∗)

z∼BSCδ(cj(1:k))

1(h(z) = cj(k + 1)) + µl, (A10)

where λl and µl depends only on the number l. Furthermore, it is assumed that λl ≫ µl when l ⩾ n0 and n0 = o(d).

It is then possible to deduce the lower bound of the excess risk introduced by an out-of-subpopulation sample.

Theorem A1. Given a specific dataset Z = {z1, . . . , zl} ∪ {z0}, where z1, . . . , zl ∼ Mj and z0 ∼ Mi, i ̸= j, the excess

risk of any algorithm A compared to Z∗ = Z \ {z0} and the optimal algorithm A∗ for Z∗ can be bounded as follows.

errj(cj , A | Z) ⩾ E
h∼A∗(Z∗)

z∼Mj

1(h(z) ̸= cj(len(z) + 1)) +
kmislen(z0)(λl − (λl + µl)rj(z0))rj(z0)

d
. (A11)

Proof. First write down errj(cj , A | Z) in terms of probability.

errj(cj , A | Z) = E
h∼A(Z)

E
z∼Mj

1(h(z) ̸= cj(len(z) + 1)) = E
h∼A(Z)

1

d

d−1∑
k=0

E
z∼BSCδ(cj(1:k))

1(h(z) ̸= cj(k + 1)). (A12)

Note that (A10) in Assumption 3 is equivalent to

E
h∼A(Z)

z∼BSCδ(cj(1:k))

1(h(z) ̸= cj(k + 1) | z0(k + 1) = cj(k + 1)) ⩾ E
h∼A∗(Z∗)

z∼BSCδ(cj(1:k))

1(h(z) ̸= cj(k + 1))− µl. (A13)
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Then for any 0 ⩽ k ⩽ len(z0)− 1 such that z0(k + 1) ̸= cj(k + 1), we have

E
h∼A(Z)

z∼BSCδ(cj(1:k))

1(h(z) ̸= cj(k + 1)) ⩾kmisrj(z0)
(

E
h∼A∗(Z∗)

z∼BSCδ(cj(1:k)

1(h(z) ̸= cj(k + 1)) + λl

)
(A14)

+ (1− kmisrj(z0)) E
h∼A∗(Z∗)

z∼BSCδ(cj(1:k)

1(h(z) ̸= cj(k + 1)) (A15)

= E
h∼A∗(Z∗)

z∼BSCδ(cj(1:k)

1(h(z) ̸= cj(k + 1)) + kmisrj(z0)λl. (A16)

Similar inequality can be derived for 0 ⩽ k ⩽ len(z0)− 1 such that z0(k + 1) = cj(k + 1).

E
h∼A(Z)

z∼BSCδ(cj(1:k))

1(h(z) ̸= cj(k + 1)) ⩾ E
h∼A∗(Z∗)

z∼BSCδ(cj(1:k)

1(h(z) ̸= cj(k + 1))− kmisrj(z0)µl. (A17)

Combine (A16) and (A17), we have the inequality stated in this theorem. The proof is complete.

Theorem A1 provides a lower bound. Obviously, λl
λl+µl

is close to 1 when l is large.

Theorem A1 demonstrates the impact of a single sample drawn from a different subpopulation. In a more general

context, the dataset Z is generated by the distribution Dn(α,C). Consequently, it is overly simplistic to assume that a

subpopulation can be represented by a single sample.

The following assumption posits that if the algorithm A is provided with multiple inputs from subpopulation i, there

exists a reduction to the situation of Theorem A1.

Assumption 4. Given a specific dataset Z = {z1, . . . , zl}∪{z′1, . . . , z′m}, where z1, . . . , zl ∼ Mj and z′1, . . . , z
′
m ∼ Mi, i ̸=

j, denote Z∗ = {z1, . . . , zl} and A∗ the optimal algorithm. Without loss of generality, suppose z′m is the longest string in

{z′1, . . . , z′m}. Then

E
h∼A(Z)
z∼Mj

1(h(z) ̸= cj(len(z) + 1)) ⩾ E
h∼A∗(Z∗∪{z′m})

z∼Mj

1(h(z) ̸= cj(len(z) + 1)). (A18)

With Assumption 4, it is now possible to deduce the lower bound of the excess risk of the algorithm in a more general

case.

Theorem A2. Suppose the dataset Z follows the distribution Dn(α,C). Denote by A∗ the optimal algorithm and denote

by OPT (A∗) the error rate of A∗ with input dataset {z ∈ Z | z is from subpopulation j}. Then the averaged error rate of

any algorithm A that satisfies all the assumptions above can be lower bounded as

errj(α,C,A) ⩾ OPT (A∗) + fn,d,α,C(r(i, j)), (A19)

where fn,d,α,C has positive maximum in [0, 1] and takes its maximum near but lower than 1
2
.

Proof. First write down errj(α,C,A) in terms of probability.

errj(α,C,A) =
∑

1⩽l⩽n−1
1⩽m⩽n−1
l+m⩽n

(n
l

)(n− l

m

)
αl
jα

m
i (1− αj − αi)

n−l−m
d∑

l0=1

pm(l0)errj(cj , A, Z | l,m, l0) (A20)

+ Pr[l = 0 ∨m = 0]OPT (A∗), (A21)

where l is the number of samples from subpopulation j, m is the number of samples from subpopulation i, l0 is the length of

the longest string from subpopulation i, pm(l0) is the probability that the longest string from subpopulation i has a length

of l0, and errj(cj , A, Z | l,m, l0) is the averaged error rate of algorithm A conditioned on l,m, l0 fixed. It is not hard to see

that

pm(l0) = (
l0

d
)m − (

l0 − 1

d
)m. (A22)

By Theorem A1 and Assumption 4, we have

errj(cj , A, Z | l,m, l0) ⩾ OPT (A∗) +
kml0

d
(λl E[rj | r(i, j), l0]− (λl + µl)E[r2j | r(i, j), l0]). (A23)

Here in (A23), E[rj | r(i, j), l0] means the expectation of rj(z
′) given len(z′) = l0 and r(i, j). The same is for E[r2j | r(i, j), l0].

It is clear that E[rj | r(i, j), l0] = (1− 2δ)r(i, j) + δ. To calculate E[r2j | r(i, j), l0], we define the following notations.

α = d · r(i, j), β =

l0∑
k=1

1(ci(k) = cj(k)). (A24)
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Then β is a random variable depedent only on r(i, j) and l0. Actually, it is not hard to see that β follows a hypergeometric

distribution with mean r(i, j) and variance
αl0(d−α)(d−l0)

d2(d−1)
. The relation between β and E[r2j | r(i, j), l0] is

E[r2j | r(i, j), l0] =
min(l0,α)∑

β′=max(0,α+l0−d)

Pr[β = β′](
(1− δ)β′ + (l0 − β′)δ

l0
)2, (A25)

=
(1− 2δ)2

l20
Eβ2 +

2δ(1− δ)

l0
Eβ + δ2. (A26)

Substitute the mean and variance of β, we have

E[r2j | r(i, j), l0] =
(1− 2δ)2(d− l0)

l0(d− 1)
r(i, j)(1− r(i, j)) + (1− 2δ)2r2(i, j) + 2δ(1− 2δ)r(i, j) + δ2. (A27)

Now to simplify (A20), denote

hl,m =
(n
l

)(n− l

m

)
αl
jα

m
i (1− αj − αi)

n−l−m, gm =

d∑
l0=1

pm(l0)
l0km

d

(1− 2δ)2(d− l0)

l0(d− 1)
. (A28)

Combine (A20), (A23) and (A27), we have

errj(α,C,A) ⩾OPT (A∗)−
n−1∑
l=1

n−l∑
m=1

hl,mgm(λl + µl)r(i, j)(1− r(i, j)) (A29)

−
n−1∑
l=1

n−l∑
m=1

hl,m

d∑
l0=1

pm(l0)l0
km

d

(
(λl + µl)δ

2 − λlδ (A30)

+ (λl + µl)(1− 2δ)2r2(i, j)− λl(1− 2δ)r(i, j) + 2(λl + µl)δ(1− 2δ)r(i, j)
)
. (A31)

Note that the part (A29) always takes its maximum value at r(i, j) = 1
2
, and the part (A30) is a constant. For part (A31),

it will takes its maximum value at

r(i, j) =
λ

2(1− 2δ)(λ+ µ)
−

δ

1− 2δ
, (A32)

where

λ =

n−1∑
l=1

n−l∑
m=1

hl,m

d∑
l0=1

pm(l0)l0
km

d
λl, µ =

n−1∑
l=1

n−l∑
m=1

hl,m

d∑
l0=1

pm(l0)l0
km

d
µl. (A33)

By the fact that λ < λ+ µ, (A32) is always lower than 1
2
. And by Assumption 3, λ is close to λ+ µ, then (A32) is close to

1
2
. Now the proof is complete.

Theorem A2 states that any arbitrary algorithm that satisfies the assumptions would have difficulty in achieving the

optimal error rate by a factor related to task similarity, regardless of the type of the algorithm and the training process.

However, this theorem does not imply that an algorithm cannot avoid performance degradation when trained on a mixture

of data. Looking back at Assumption 2 and Assumption 3, the coefficients in these assumptions are what constrains the

algorithm’s capabilities. For instance, an algorithm that has no difficulty in distinguishing the subpopulation to which each

sample belongs will not be subject to such limitations. This understanding also provides insights into potential avenues for

mitigating such degradation of the model. These include strategies to enhance the model’s ability to distinguish different

subpopulations and to expand its capacity to memorize multiple subpopulations without mutual influence.

Appendix B Details of experiments on synthetic data

The following set of experiments is conducted to validate Theorem A2 on synthetic data consisting of binary strings.

A transformer model is trained on a training set consisting of data from a base distribution and from another different

distribution. Thereafter, this model is evaluated on a test set from the base distribution. According to Theorem A2, when

the similarity between the two distributions is close to and less than 1
2
, the model’s loss on the test set should be the worst.

Generating data from distributions (subpopulations). Each distribution is featured by a reference string of length

L. To draw a sample from a distribution with reference string c, we first select an integer l ∈ [1, L] at random and truncate

c to the length l. Then, each bit of the truncated string is flipped with probability δ < 1/2 independently. The resulting

string is a sample from the distribution. When multiple samples are drawn from the same distribution, each sample is

drawn independently.

How is every distributions generated. To determine a distribution is equivalent to determining a reference string c.

First, the reference string of the base distribution c0 is constructed by randomly assigning each bit of c0 to either the value

0 or 1. Subsequently, the distribution of similarity r to the base distribution is constructed through the following process.

Randomly selecting ⌊rL⌋ bits of c0 without overlap and flipping them, the resulting string of length L is designated as the

reference string of this distribution.
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Figure B1 Results of the GPT-2 model.

Figure B2 Results of the Llama 3.1 model.

Training set and test set. The training set consists of n0 samples drawn from the base distribution and n1 samples

drawn from the another distribution of similarity r. The training set is fully shuffled before being batched and fed to the

learning algorithm. The test set consists solely of the reference string of the base distribution c0, which means the model

is evaluated only on the prediction of each bit of c0.

Model and training process. In this experiment, a GPT-2 model [5] with a vocabulary size of 3, 768 dimensions of

word embeddings, 12 layers and 12 heads is selected. The model is loaded in mixed precision throughout the training and

evaluation process. The model’s context length is set to L, which is the same as the maximum length of samples. Samples

with a length smaller than L are padded to the maximum length before training. During training, a batch size of 1024 is

applied. The optimizer is an AdamW optimizer with β1 = 0.9, β2 = 0.98, ε = 1e−8 and a weight decay of 0.01. For the

learning rate schedule, we employ a linear warmup followed by cosine decay schedule. Empirical tuning shows that setting

the learning rate’s initial value as 3e−5, peak value as 3e−4, end value as 0 and warmup steps as 1/10 of the full steps

can guarantee the model’s test loss converges. Note that we require the convergence of test loss to facilitate comparison,

although Theorem A1 and Theorem A2 do not necessarily require the algorithm to be convergent.

Parameters. In the experiments of the GPT-2 model, we let L to be 64, δ to be 0.2, n0 to be 100000 and n1 to be

16384. Additionally, we vary the similarity r from 0 to 7/8 by 1/8. In the experiments of the Llama 3.1 model, we choose

different parameters because the increased model scale causes fewer samples in a batch. These papameters are selected for

convenience, and we believe our results still hold true for other sets of reasonable parameters.

We conduct the above experiments for 5 times to nullify the effect of randomness, as the generation of reference strings

is random. For example, if the reference string of the distribution of similarity 1/2 is different from c0 in the second half,

the test loss should be significantly larger than the case that it is different from c0 in the first half, where the model can

distinguish two distributions easily.

Results and discussion The results of this set of experiments are shown in Figure B1 and Figure B2. Each bar

represents the averaged loss of the model trained on a specific training set. And the error bars represent the maximun and

minimum losses of the models during every repeatitions.

As illustrated by Figure B1, the model’s test loss increases from 0 to 3/8 and then decrease from 3/8 to 7/8. As 3/8 is
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Table C1 The Mistral 7B model’s HumanEval score after fine-tuning on different datasets.

fine-tuning dataset PIQA Social IQA Boolq HellaSwag GSM 8K MATH MBPP

HumanEval score (%) 26.83 25 28.05 27.44 26.22 28.66 29.27

Table C2 The Mistral 7B model’s HumanEval score after fine-tuning on the MATH dataset with different prompt styles.

Index Dataset format HumanEval score (%) MATH score (%)

(a)
Question: Solve 24 = 1601*c - 1605*c for c.

Solution: -6
31.70 29.85

(b)
Question: Solve 24 = 1601*c - 1605*c for c.

Answer: -6
29.88 23.88

(c)
Solve 24 = 1601*c - 1605*c for c.

Solution: -6
27.44 9.70

(d)
Solve 24 = 1601*c - 1605*c for c.

Answer: -6
25.61 21.64

(e)
Question: ‘Solve 24 = 1601*c - 1605*c for c.’

Solution: “-6”
27.44 2.98

(f)
Question: ‘Solve 24 = 1601*c - 1605*c for c.’

Answer: “-6”
29.27 13.43

(g)
‘Solve 24 = 1601*c - 1605*c for c.’

Solution: ‘-6’
10.98 0

(h)
‘Solve 24 = 1601*c - 1605*c for c.’

Answer: ‘-6’
12.20 0

(i)

def solve linear equation():

”””

Solve 24 = 1601*c - 1605*c for c.

”””

return (-6)

14.63 9.70

close to but lower than 1/2, this result is in line with Theorem A2.

Another noteworthy observation from these experiments is that the losses exhibit considerable variability across multiple

repetitions. Further investigation indicates that this phenomenon is due to the fact that the positions where a reference

string ci differs from c0 exert a great influence on the trained model’s loss, despite the similarity between ci and c0 remaining

constant. In particular, whether the first few bits are different matters too much. This observation does not contradict

Theorem A2, since Theorem A2 is valid in terms of expectation. However, this observation reveals the shortcoming of this

type of simplification, namely that the definition of similarity may be good in terms of expectation, but it is not suitable

for specific strings.

Appendix C Details of experiments on real-world data

Appendix C.1 Observing the performance drift phenomenon

To observe the performance drift phenomenon in real-world settings, in this section, we fine-tune one of the most recent

transformer models, the Mistral 7B model [6], on different commonly-used datasets and observe its performance on the base

task, namely the Python code generation task. More specifically, the base task is to complete a Python code test formatted

in the same format as the HumanEval dataset [7]. This choice is made because this base task is relatively objective and easy

to evaluate compared to other semantic tasks. For evaluation, the model is evaluated on the HumanEval dataset, which

has 164 problems. A score commonly refered to as “pass@1” is used as the metric of the model’s performance on the base

task. This score represents the proportion of the 164 problems on which the model’s generated code completion can pass

the test.

In the fine-tuning process, the model is fine-tuned using lora [8, 9] for 60 steps. We use a batch size of 8, which means

that the full dataset size for fine-tuning is 480, and we use an adamw 8bit optimizer. For the learning rate schedule, we

employ a linear decay schedule with 5 steps of warm up that peaks at 2e−4.

The results are presented in Table C1. For comparison, the Mistral 7B model’s “pass@1” score on the HumanEval dataset

before fine-tuning is 28.05%. It is not surprising that fine-tuning on most of the common datasets did not significantly

impact the model’s performance on the base task. Here we argue that a single task or dataset can be viewed as a mixture

of subpopulations. On average, the mixture may exhibit a small similarity to the base task. However, there is no guarantee

that such a dataset does not contain some subpopulation with an intermediate similarity to the base task. We hypothesize
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Figure C1 An example from the 0.7-similarity dataset.

that it is quite possible that a dataset may contain subpopulations with an intermediate similarity to the base task, while

their portion in the dataset may be relatively small. This explains the results presented in Table C1, that fine-tuning

on some common datasets did not result in a significant degradation. However, over time, it is possible that significant

degradation on the base task may occur.

Given the lack of significant performance drift observed in the above experiments, we further fine-tune the Mistral 7B

model on the MATH dataset with different prompt styles. The prompt styles and the corresponding results are presented

in Table C2.

By employing different prompt styles, we believe the similarity of the dataset to the base task varies. For instance, we

believe that prompt style (a) yields the most dissimilar dataset, while prompt style (i) yields the most similar dataset. This

is evidenced by the observation from Table C2 that prompt style (a) does not significantly alter the model’s score, while

prompt style (i) degrades the model’s score to a lesser extent. By modifying prompt style (a), we believe that the dataset’s

similarity increases from (a) to (g). This, in turn, leads to a corresponding decrease in the model’s score. In particular, the

prompt style (g) yields the poorest score, 10.98%, which we believe represents a significant observation of the phenomenon

of performance drift. These results support our theory.

Appendix C.2 fine-tuning models on constructed datasets of different similarities

To illustrate the idea that intermediate task similarity destroys a model’s ability most severely, in this set of experiments,

we fine-tune a base model on datasets that are deliberately constructed such that their similarities to a certain base task

can be better controlled. After fine-tuning, the model is again evaluated on that base task. In our expectation, fine-tuning

on datasets with intermediate similarity should make the model deteriorate the most.

Models and tasks. Two recent transformer models are used in this set of experiments, the Mistral 7B model [6] and

the Llama3 8B model1). We choose the same base task and evaluation score as in Section Appendix C.1, i.e., the base task

is a Python code generation task and the evaluation score is the “pass@1” score on the HumanEval dataset.

How the datasets are constructed. We would like to construct datasets of any similarity r. However, due to the

difficulty in defining task and task similarity in LLMs, we only employ an approximate method, which controls similarity in

a rough manner. For the 1-similarity dataset, we reformat the MBPP dataset [10] in HumanEval’s format and use it as the

dataset of 1 similarity. We believe that since the MBPP dataset is also a Python code generation dataset, the distribution

of the reformatted MBPP dataset should be very close to that of the base task. To generate the r-similarity dataset for

r < 1, first we generate 8 strings of 2048 tokens randomly from commonly used tokens, which is all the tokens that appear

in the MBPP dataset in this case. Subsequently, we modify the 1-similarity dataset using these 8 strings to generate the

r-similarity dataset. For each sample s1 in the 1-similarity dataset, a string is randomly selected from the 8 strings, denoted

s2. Then, each token in s1 is substituted by the token of the same position in s2 with a probability of 1− r. For instance,

the ith token in s1 could be substituted by the ith token in s2. The result of substituting is then added to the r-similarity

dataset. An example of samples in the 0.7-similarity dataset is shown in Figure C1. The pseudo code of this procedure is

shown in Algorithm C1

Algorithm C1 Pseudo code for modifying a sample from the original dataset

Input: similarity r, original string s1, artificial string s2
Output: Modified string s

Initialize s to be an empty string
for l = 1 to len(s1) do
Choose a random number uniformly from [0, 1], denoted by rnd
if rnd < r then

Append s by s1(l)
else
Append s by s2(l)

end if
end for

1) https://llama.meta.com/llama3
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Figure C2 Results of the two models after fine-tuning.

fine-tuning. The fine-tuning parameters are the same as in Section Appendix C.1. For the learning rate schedule, we

found that the Llama3 8B model (loaded in 4 bits) is much more vulnerable to learning rate. Only very small learning rate

can improve the model’s score after fine-tuning on the 1-similarity dataset, which in turn makes the results not significant.

Consequently, we choose the same learning rate schedule across the fine-tuning process of the two models, which is a linear

decay schedule with 5 steps of warm up that peaks at 2e−4.

Results and discussion After fine-tuning, the models’ “pass@1” score is recorded as the metric of the models’ ability

on code generation task. The results are presented in Figure C2.

First we would like to note that fine-tuning on the 0-similarity dataset does not significantly impact the model’s code

generation ability, and fine-tuning on the 1-similarity dataset results in the highest score. The most detrimental impact on

the model’s ability occurs when similarity is lower than 0.5 but larger than 0. On the one hand, this result is consistent

with the hypothesis that intermediate similarity impairs the model’s ability to the worst. On the other hand, this result

is in agreement with Theorem A2, which argues that an algorithm’s averaged error rate is maximized when the input’s

similarity is lower than 1/2.

Another noteworthy observation is that the similarity when the model deteriorate the most is not near 1/2. For Mistral

7B, it is 0.3, and for Llama3 8B, it is 0.2. We argue that our definition of task similarity may be flawed and does not

accurately reflect the true value. It can be stated with certainty that the 0-similarity dataset exhibits a similarity close

to 0, and the 1-similarity dataset exhibits a similarity close to 1. With regard to the remaining datasets with similarities

values between 0 and 1, our definition of similarity can only be regarded as an approximation. The ideal methodology

for defining similarity and constructing datasets would be to mix the data distribution of the 0-similarity task and the

1-similarity task, i.e., a sample in the dataset is constructed by predicting the next token from an empty string using a

mixture of distribution, until the string finishes. However, such a methodology is impratical and impossible, given that the

data distribution itself is unknown to us.

Appendix C.3 Repeating the experiments with another base task, BoolQ

To enhance the persuasiveness of our findings, we also change the base task from the Python generation task to a reading

comprehension task, evaluated by the BoolQ dataset [11], and repeat the above experiments. This base task is selected

because the BoolQ dataset is also a relatively objective and easy to evaluate dataset. We evaluate the models’ performance

on this base task by calculating the proportion of the validation split of the BoolQ dataset on which the models can provide

the correct response.

The dataset constructions is similar to that described in Section Appendix C.2. The 1-similarity dataset is the train

split of the BoolQ dataset. Additionally, the 8 strings of 2048 tokens utilized in Section Appendix C.2 are reused. The

r-similarity dataset for any 0 ⩽ r < 1 is constructed by the 1-similarity dataset and these strings in the identical manner

as in Section Appendix C.2.

Following the same fine-tuning process as outlined in Section Appendix C.1, the results of the models’ evaluation scores

are presented in Figure C3. It can be observed from this figure that the behavior of the two models is consistent with that

observed in Section Appendix C.2, despite the change of the base task. The Mistral 7B model suffers the greatest decline in

performance when the similarity is set to 0.3, while the Llama3 8B model suffers the greatest decline in performance when

the similarity is set to 0.2.

As discussed Appendix A, the model’s inherent ability to distinguish and separate different subpopulations is crucial

for mitigating performance drift. The fact that the similarities leading to the worst performance for the two models are

different, as shown in Figure C2 and Figure C3, can be viewed as an aspect of the models’ ability in a sense. In the view of

subpopulations, there are several possible explanations for this observation. One potential explanation is that the Mistral
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Figure C3 Results of the two models’ scores after fine-tuning. The base task is changed to BoolQ.

(a) (b)

Figure C4 (a) Results of fine-tuning Mistral 7B with datasets of another prompt style; (b) Results of inferrence with 3-shot

prompt after fine-tuning the Mistral 7B model.

7B model has a higher threshold for distinguishing different subpopulations. Another possibility is that the Mistral 7B

model’s prediction is less affected by outliers within the same subpopulation. It is also possible that both of these factors

are at play.

Appendix C.4 Mitigating the performance drift phenomenon

As previously demonstrated in Section Appendix C.1, prompt style plays a significant role in performance drift. In this

section, we attempt to investigate how the prompt can help mitigate performance drift.

Through further experiments, we found that prompt style matters in both training and inference. Here we use the base

task of Python code generation. When the training set is not formatted in HumanEval’s style but rather in another prompt

style, the impact of fine-tuning on the model’s performance on the base task is limited. For example, if the 1-similarity

dataset is constructed by samples from the MBPP dataset in a question-answering format, the models’ score on all the

datasets of intermediate similarity will not deteriorate too much, as shown in Figure C4(a). Alternatively, if the models

are prompted with in-context 3-shot prompt during inference, their scores will be more consistent and less degraded, as

illustrated in Figure C4(b).

These two points provide us with insights into methods of mitigating performance drift during fine-tuning and inference.

First, it is recommended to format the training set with a specific format to facilitate the model’s ability to distinguish

different tasks. Second, the use of in-context prompts during inference helps the model to recall the corresponding data

distribution.
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