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Appendix A Distinctions from DS-NeRF
In the paper, we mentioned: “Different from DS-NeRF [1], our method ensures a sufficient number of feature points, making it more

suitable for high-resolution images without the need for resolution reduction during training. Moreover, our approach to depth

estimation is more concise and efficient compared to DS-NeRF. Additionally, our NeRF model significantly reduces both training

and inference times.” In this section, we will provide a detailed explanation of the differences between our method

and DS-NeRF.

Figure A1 Qualitative Comparison between DS-NeRF and PD-NeRF. We visualize the rendering results of DS-NeRF

and PD-NeRF on the LLFF dataset. PD-NeRF demonstrates noticeably superior performance compared to DS-NeRF, both in

terms of fine details and overall quality.

DS-NeRF [1] proposes a method to provide depth supervision for NeRF by using point clouds obtained from COLMAP or RGB-

D cameras. It employs the KL divergence to align the weight distribution along a ray, obtained from the Gaussian distribution

of the depth, with the weight distribution derived from the NeRF volumetric rendering process. The key differences between

DS-NeRF and PD-NeRF are as follows:

• The motivations behind the two methods differ. DS-NeRF proposes a scheme for depth supervision using point clouds,

regardless of their source, while PD-NeRF aims to leverage point clouds generated during the COLMAP process for faster and

more effective reconstruction and addresses the weak supervision issue associated with sparse point clouds.

• Although both DS-NeRF and PD-NeRF utilize Gaussian distributions, the purposes differ significantly. In DS-NeRF, the

Gaussian distribution is used to model the weight distribution along a ray, whereas in PD-NeRF, it is used to estimate pseudo-

depth for pixels without corresponding point clouds.
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• The source and processing of the point clouds differ. Since the point clouds obtained through COLMAP are sparse, especially

for high-resolution images where the supervision is weak, DS-NeRF reduces the image resolution or leverages dense point clouds

provided by RGB-D cameras for depth supervision. PD-NeRF addresses the issue of weak supervision from sparse point clouds by

proposing a method to construct pseudo-depth, eliminating the need to downsample the original image resolution or use additional

equipment to capture dense point clouds.

• The supervision strategies are different. DS-NeRF essentially supervises the weight distribution along a ray. The depth

supervision used in DS-NeRF is based on KL divergence. It defaults the depth on each ray to satisfy theimpulse function (single-

peaked normal distribution). As a result, DS-NeRF struggles with objects in 360-degree scenes that have ’double surfaces’ (where

a ray enters and exits the surface), limiting it to forward-facing datasets. In contrast, the supervision strategy in PD-NeRF can be

applied to arbitrary scenes.

Table A1 Quantitative Comparison of DS-NeRF and PD-NeRF.PD-NeRF outperforms DS-NeRF across all evaluation

metrics.

Methods PSNR↑ SSIM↑ LPIPS↓ Training Time FPS

DS-NeRF 24.9 0.72 0.34 ∼5h -

PD-NeRF 26.5 0.90 0.21 ∼10mins ∼15

In Figure A1, we present a qualitative comparison of the rendering results of DS-NeRF and PD-NeRF on the LLFF dataset [2].

Since DS-NeRF is only compatible with forward-facing scenes, we trained PD-NeRF in forward-facing scenes, controlling for the

same number of iterations (50,000). Compared to DS-NeRF, PD-NeRF achieves higher rendering quality, effectively capturing

details such as the leaves in the Fern scene. In the Fortress scene, DS-NeRF’s rendered results exhibit noticeable blurriness, while

PD-NeRF demonstrates high fidelity compared to the Ground Truth. Table A1 presents a quantitative comparison between DS-

NeRF and PD-NeRF. PD-NeRF outperforms DS-NeRF across all metrics. Notably, PD-NeRF converges significantly faster than

DS-NeRF in terms of training time. Furthermore, DS-NeRF does not support real-time rendering, while PD-NeRF achieves a

real-time rendering speed of 15 FPS.

Appendix B Ablation Study
We will compare the impact of feature points across different pixel coverage ranges on the results. In the paper, we mentioned:

“Where f is the scaling factor, ensuring that the pixels in the area covered by all feature points occupy about 6% of the entire

image. It has been verified that the sampling points occupying 6% of the entire picture can achieve a good supervision effect and

the overhead is very small. When the image pixels are 1600 ∗ 1600, f = 1.” We will now further elaborate and adjust the sampling

point ratio for validation.

Figure B1 Rendering Results under Different Sampling Ranges. We alter the sampling factor to change the sampling

radius and visualize the rendering results at different radii. Compared to the ground truth, the highest fidelity is achieved when

the sampling factor is set to 0.005.

Table B1 Quantitative Comparison under Different Sampling Ranges. When the sampling factor p = 0.005, PD-

NeRF outperform all evaluation metrics and do not consume excessive training time compared to scenarios without pseudo-depth

supervision.

Factor p PSNR↑ SSIM↑ LPIPS↓ times

0.00005 20.224 0.664 0.813 2.0mins

0.00050 19.026 0.634 0.835 2.5mins

0.00500 21.623 0.711 0.802 2.7mins

0.05000 19.052 0.634 0.843 3.5mins

0.50000 18.446 0.620 0.863 5.0mins

In fact, we do not directly use f to control the sampling rate. Instead, we control the sampling range by applying a sampling

radius r to the feature points, where r = p × image width and p is the sampling factor. f is merely a scaling factor that changes
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with the image width. For a 1600x1600 pixel image, COLMAP typically detects around 533 feature points per image, resulting in

approximately 533 pixels with true depth. Given that we set ωri ⩽ 0.01, ωri = 0, and for ωri = 0.01, with f = 1 the Gaussian

distribution’s sampling radius r is approximately 3.03, meaning each feature point covers around 28.84 pixels. After Gaussian

sampling, the total sampled pixels account for 0.6% of the image’s pixel count (28.84 × 533/(1600 × 1600) ≈ 0.0006 and 6%

mentioned in the paper is incorrect). The radius of 3.03 corresponds to approximately 0.002 times the image width of 1600. In our

experiments, we used a slightly larger value of 0.005. As the image resolution changes, the number of feature points will increase

proportionally, and the sampling radius r = 0.005 × image width, with the scaling factor f adjusting to 1
1600 × image width.

Therefore, the actual sampling coverage of 0.6% is determined by the sampling radius r. We will compare the effect of different

sampling radii, i.e., varying p, on the rendering results.

We conducted ablation experiments with five different levels of sampling factors. In Figure B1, we report the rendering results

after 10,000 iterations under varying sampling ranges. When the sampling factor is set to 0.005, PD-NeRF achieves the highest

fidelity. If the sampling factor is too large, the confidence of the pseudo-depth becomes too low, resulting in degraded rendering

quality. Conversely, if the sampling range is too small, the depth supervision becomes insufficient, yielding results similar to the

original Instant-NGP [3]. In Table B1, we present qualitative results. A larger sampling range also increases the computational

load; for instance, when the sampling factor is set to 0.5, the training time for 10,000 iterations more than doubles. With a sampling

factor of 0.005, we achieve the best rendering quality while incurring minimal additional time costs.
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