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Abstract Class-incremental semantic segmentation methods for remote sensing images primarily rely on knowledge distil-

lation to mitigate catastrophic forgetting. These methods overlook (1) the representation bias stemming from the conflict

between cross-entropy loss and distillation loss, and (2) issues of interstep imbalance and interstep similarity that become

particularly pronounced after multiple incremental learning steps, thus limiting their performance. To address these chal-

lenges, we propose MiR (mitigating representation bias), a novel framework that alleviates forgetting and facilitates learning

new classes effectively. MiR replaces the traditional feature-classifier mode with the feature-SegToken interaction, leveraging

implicit coarse-to-fine segmentation to mitigate representation bias. Furthermore, a weighting strategy is introduced to adap-

tively adjust cross-entropy and distillation losses, effectively tackling issues of interstep imbalance and interstep similarity.

Extensive experiments conducted on the DeepGlobe, Potsdam, and Vaihingen datasets demonstrate the effectiveness of MiR

in learning new knowledge while retaining old knowledge.
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1 Introduction

Semantic segmentation of remote sensing images, which aims to categorize each pixel into a specific class
or object, plays an important role in many applications such as natural resources survey [1] and urban
planning [2]. With the remarkable advancements in deep learning, significant progress has been achieved
in this field [3]. Nonetheless, a notable limitation persists in most semantic segmentation models: their
inability to continually receive and learn new knowledge while retaining previously learned knowledge.
This seriously hinders the widespread application of the remote-sensing segmentation model. As new
images are acquired from diverse geographical locations, the need arises to identify new categories of land
cover in addition to the preset classes. Therefore, segmentation models should be capable of continuously
learning knowledge about new categories while preserving existing knowledge of previous classes.

A naive solution to achieve the goal is to fine-tune segmentation models using both previously and
newly collected images. However, factors such as data privacy and the high cost of data storage, often
result in the unavailability of previous remote sensing images. Fine-tuning segmentation models only
on new images would overwrite model weights associated with previous classes, leading to significant
performance degradation. This phenomenon is known as catastrophic forgetting [4]. To address the issue
of forgetting, recent efforts have been dedicated to class-incremental semantic segmentation of remote
sensing images [5–11].

Inspired by class-incremental image classification [12], knowledge distillation [13] is employed as a
fundamental technique to maintain the predictions of the segmentation model on previous classes when
updating its parameters with new images of novel categories. Building on this foundation, existing
methods further enhance the protection of old-class knowledge by implementing designs such as adopting
contrastive distillation [5], utilizing cross-image relationship distillation [9], trying multi-scale feature
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Figure 1 (Color online) Illustration for representation bias. (a) Results (mIoU in %) on the DeepGlobe dataset (1-1s).

(b) Visualization of class activation maps (CAM) and segmentation results extracted from MiB [15], applying different hyper-

parameter settings on the DeepGlobe dataset (1-1s). Old, new, and all refer to mIoU computed on old, new, and all classes,

respectively. * indicates models trained with λkd = 10, while others are trained with λkd = 5. Adjusting the hyperparameter

λkd from 10 to 5 leads to a 10% performance improvement on new classes, suggesting that MiB, using the default parameter

(λkd = 10), tends to maintain old classes. Furthermore, MiB (λkd = 10) can produce high responses in old-class regions but

struggles in new-class regions. By reducing λkd, MiB’s tendency to retain old classes is alleviated, allowing it to generate sufficient

responses in new-class regions. Hence, we conclude that the competition between cross-entropy and distillation losses leads to the

issue of representation bias.

distillation [10] or combining with old-class feature memory replay [11, 14]. Despite the remarkable
progress achieved by these methods, they overlook several challenges, resulting in limited performance.

Specifically, current methods typically employ cross-entropy loss and knowledge distillation loss to
jointly optimize semantic segmentation models. Handpicked hyperparameters λce and λkd are used to
balance these loss terms, hoping that models can make a trade-off between learning new classes and not
forgetting old classes. However, due to the lack of theoretical guarantees or standards, achieving this
trade-off is challenging. Consequently, the model faces a dilemma in representation learning: it tends
to bias towards either new or old classes. If biased towards new classes, there is a risk of forgetting
old classes. Conversely, bias towards old classes hinders the model’s ability to learn new ones. This
phenomenon is termed representation bias in this paper. Figure 1(a) presents quantitative results (mIoU
in %) of MiB [15] method applying different hyperparameter settings on the DeepGlobe dataset (1-
1s) [16]. Adjusting the hyperparameter λkd from 10 to 5 leads to a 10% performance improvement on
new classes, suggesting that MiB, using the default parameter (λkd = 10), tends to maintain old classes.
Additionally, comparing the ground truth with class activation maps in Figure 1(b), it is evident that MiB
(λkd = 10) can produce high responses in old-class regions but struggles in new-class regions, resulting in
misclassification of new classes as old ones. By reducing λkd, the model’s tendency to retain old classes is
alleviated, enabling it to generate sufficient responses in new-class regions. Therefore, we conclude that
the competition between cross-entropy and distillation losses leads to representation bias.

In addition to representation bias, interstep imbalance and interstep similarity present challenges for
class-incremental semantic segmentation of remote sensing images using knowledge distillation. After
performing multiple incremental learning steps, the data volume and pixel proportion of new classes
are typically lower than those of old classes, resulting in data imbalance and foreground-background
imbalance. Interstep imbalance can make the model focus on old classes while overlooking new ones.
Moreover, as the number of learned classes increases, visually similar classes (e.g., meadow and forest)
may exist across different incremental steps. When new and old classes exhibit high similarity, the model
faces challenges in assigning accurate labels. The cross-entropy loss guides the model to assign labels of
new classes, while the distillation loss forces it to predict old ones. This confusion not only hinders the
learning of new classes but also decreases the performance of old classes.

To tackle these challenges, we propose a novel class-incremental semantic segmentation framework for
remote sensing images, named MiR (mitigating representation bias). Drawing inspiration from recent
work on supervised semantic segmentation [17], MiR incorporates tokens to model category-wise infor-
mation of both old and new classes, termed SegToken. Subsequently, it performs multiple interactions
between image features and SegToken. These interactions progressively update category-wise information
according to pixel features while leveraging the updated category-wise information to mine more feature
regions corresponding to each semantic category. The SegToken derived from the final interaction serves
as the segmentation results. Through such a design, MiR effectively mitigates representation bias. In
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Figure 2 (Color online) Framework comparison between prior methods based on knowledge distillation (a), and our proposed

MiR (b) for class-incremental semantic segmentation of remote sensing images. Lce, Lkd are cross-entropy loss and distillation loss,

respectively. The SegToken is a learnable tensor to model category-wise information. MiR replaces the typical feature-classifier

mode with the feature-SegToken interaction mode, aiming to utilize implicit coarse-to-fine segmentation to mitigate representation

bias stemming from the competition between cross-entropy and distillation losses.

cases where the model is biased towards new classes, image features may have weak associations with old
classes. The interactions between image features and SegToken are similar to achieve coarse segmentation
using general information, and subsequently refine the segmentation using customized information, thus
alleviating the forgetting issue induced by representation bias. Conversely, the features may have weak
associations with new classes. The coarse-to-fine segmentation can also facilitate the learning of new
classes. Figure 2 compares the class-incremental semantic segmentation framework between our work
and prior methods.

Furthermore, MiR introduces a simple yet effective weighting strategy to address the issues of interstep
imbalance and interstep similarity. It adaptively increases the cross-entropy loss according to the current
loss of new class pixels at each training iteration. This ensures that the model pays attention to the
smaller number of new classes. Since the negative effect of interstep similarity becomes prominent after
multiple learning steps, MiR weights the knowledge distillation loss depending on the confidence in old
knowledge, at the last learning step. This weighting strategy improves both stability (not forgetting old
classes) and plasticity (effectively learning new classes).

The proposed MiR has been evaluated on three commonly used datasets for class-incremental semantic
segmentation of remote sensing images. Compared to state-of-the-art methods, such as MiSSNet [11] and
CoMFormer [18], MiR improves over the best baseline by 10.3% in the most challenging setting of the
DeepGlobe dataset (1-1s) [16], in terms of mIoU computed on all classes. On the Potsdam dataset (2-3)1)

and the Vaihingen dataset (2-2-1)2), MiR approaches the upper bounds set by joint training, with gaps
of −0.1% and 1.1%, respectively. To summarize, the contributions of this paper are as follows.

(1) We present a novel class-incremental semantic segmentation framework for remote sensing images,
dubbed MiR, which provides strong performance baselines on three widely used datasets: DeepGlobe,
Potsdam, and Vaihingen.

(2) We propose a feature-SegToken interaction mode to replace the traditional feature-classifier mode.
This design leverages implicit coarse-to-fine segmentation to mitigate representation bias stemming from
the competition between cross-entropy and distillation losses.

(3) We introduce a simple yet effective weighting strategy for class-incremental semantic segmentation
based on knowledge distillation. This strategy adaptively adjusts cross-entropy and distillation losses,
thereby alleviating issues of interstep imbalance and interstep similarity that arise after multiple incre-
mental steps.

2 Related work

2.1 Deep learning-based semantic segmentation of remote sensing images

Deep learning-based semantic segmentation of remote sensing images has been a research hotspot in the
field of remote sensing information mining. Due to their distinctive imaging perspectives and large field
of view, remote sensing images present characteristics such as complex backgrounds, rich content, and

1) https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx.

2) https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-vaihingen.aspx.

https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx.
https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-vaihingen.aspx.
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varied object sizes. These attributes pose challenges to popular semantic segmentation networks (e.g.,
FCN [19] and Deeplab-v3 [20]) in computer vision. Consequently, numerous studies have emerged aiming
at developing accurate semantic segmentation models tailored for remote sensing images. Recognizing
these unique characteristics, many studies explore innovative feature extraction strategies, or network
architectures to obtain more discriminative feature representations.

For instance, addressing the challenge of varied object sizes inspires research into multi-scale feature
extraction methods. These include dense connections [21], pyramid structures [22–24], attention mecha-
nisms [25,26], and size-aware sub-segmentation networks [27]. Global contextual information is beneficial
to object recognition within complex scenes. Transformers, known for their proficiency in modeling long-
range dependencies, have inspired a series of segmentation models utilizing transformer architectures,
such as GlOTS [28], STDSNet [29], and MMT [30]. Traditional transformers, however, typically model
long-range dependencies at a single scale, potentially struggling with varied object sizes. To address
this, some studies explore hierarchical transformer designs to extract multi-scale representations effec-
tively [31]. Furthermore, efforts have been made to integrate the strengths of both convolutional neural
networks (CNNs) and transformers, with studies combining global and local features to enhance the
performance of semantic segmentation for remote sensing images [32–34].

Despite significant advancements in semantic segmentation of remote sensing images, existing models
exhibit limited capabilities for continual learning, which makes them inadequate for effectively meeting
the dynamic demands in diverse environments [35].

2.2 Class-incremental semantic segmentation for remote sensing images

Class-incremental semantic segmentation aims to enable segmentation models to identify a growing num-
ber of semantic classes. The intuitive solution to achieve this is storing a small portion of old images
and updating the model together with new images [36,37]. However, such methods incur additional costs
for data storage and repeatedly replay sparse old data, which easily leads to overfitting old knowledge.
Since images used to learn new classes typically contain objects belonging to old classes (labeled as back-
ground), a consequence of the large field of view in remote sensing images, alternative strategies to replay
old knowledge for the model are employing old models to generate pseudo labels [8, 10] for old classes.
Nevertheless, due to the distribution shift between old and new data, predictions by old models on new
images may be inaccurate. To alleviate this issue, probability difference [8] or information entropy [10]
are used to quantify the confidence of old models’ predictions, selectively utilizing only highly confident
predictions to preserve old knowledge.

The filtering mechanism of old models’ prediction may exclude a large number of pixels, resulting in
inadequate information for preserving old knowledge. Consequently, more efforts transfer knowledge from
old models to new models by adding regularization terms on logits [7] or features [5, 9, 10]. Building on
this foundation, specific designs are developed to consider the traits of semantic segmentation and remote
sensing images, thus improving the model’s ability to mitigate forgetting. For instance, techniques such as
contrastive distillation [5], old-class feature perception [8], and multi-scale feature distillation [10] aim to
mitigate conflicts between new and old classes at the feature level. To tackle forgetting of edges and small
objects, diversity distillation [7] and cross-image relationship distillation [9] are developed. Additionally,
some methods integrate knowledge distillation with memory replay, including old-class feature storage [11]
and old-class feature generation [14].

Although these knowledge distillation-based methods report impressive results in class-incremental
semantic segmentation of remote sensing images, they overlook the representation bias stemming from
the competition between cross-entropy and distillation losses, thus resulting in limited performance.

3 Method

3.1 Problem definition

Class-incremental semantic segmentation involves training the model over multiple learning steps t ∈
{1, 2, . . . , T }, with a set of new classes introduced at each step. In step t, the model Φt is trained on

the dataset St = {xt
n, y

t
n}

Nt

n=1, where xt
n ∈ R

H×W×3 is a remote sensing image of height H , width W ,
and ytn is the corresponding ground truth. ytn only has labels for new classes Ct. If objects belonging to
old classes C1:t−1 or future classes Ct+1:T exist in the image xt

n, they are classified as the background
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Figure 3 (Color online) Overall framework of our proposed MiR at learning step t. The old model Φt−1 shares a similar

architecture with the new model Φt, except for the absence of the new SegToken τ t and a new ConvBlock. Thus, Φt−1 is omitted

for clarity. At step t, an image is processed by both Φt−1 and Φt, mapping it to their respective output spaces. The cross-entropy

loss Lce and distillation loss Lkd from [15] are employed to train Φt. To mitigate representation bias arising from the conflict

between Lce and Lkd, SegToken, which is a learnable tensor, is introduced to model category-wise information, with each category

represented by distinct colors within the SegToken. Multiple interactions between SegToken τ1:t and multi-scale image feature

ft

ms
are then conducted, achieving an implicit coarse-to-fine segmentation. The detailed structure of the interaction module is

shown in Figure 4. The ConvBlocks [39], composed of two 3×3 convolutions and a skip connection, are used for mask refinement.

Additionally, we propose adaptively increasing Lce to alleviate interstep imbalance, while weighting Lkd based on the confidence

in old knowledge, thereby mitigating interstep similarity.

cb in the ground truth ytn (i.e., C1 ∩ C2 · · · ∩ CT = ∅). The goal of learning step t is to enable the
model to segment all seen classes C1:t. However, since there is no supervised information related to old
classes, the model is easily biased toward new classes and forgets previously learned classes. To alleviate
the forgetting issue, we develop a novel class-incremental semantic segmentation framework for remote
sensing images, dubbed MiR.

3.2 MiR framework

For semantic segmentation of remote sensing images, the model generally consists of two key components:
a backbone for feature extraction and a classifier to generate the segmentation map. Since objects in
the remote sensing images vary greatly in size, we adopt Swin Transformer [38] as the backbone to
extract multi-scale features and model long-range dependencies. As depicted in Figure 3 [15, 39], given
an input image x ∈ R

H×W×3, four Swin-Transformer blocks are applied for hierarchical feature extraction.

Denote the feature maps as fi ∈ R
H

ri
×W

ri
×Di with downsampling rates from r = [4, 8, 16, 32] and channel

dimensions from D = [96, 192, 384, 768]. Following [38], hierarchical feature maps after downsampling
or upsampling are concatenated along the channel dimension, to extract multi-scale context, i.e., fms ∈
R

H

16×
W

16 ×1440.
After feature extraction, existing methods mostly feed fms to the classifier to perform pixel-wise

classification. To address the forgetting issue, knowledge distillation is generally implemented by feeding
new images xt

n into the old model Φt−1 to predict old-class segmentation maps, and then using them
as pseudo labels to encourage the model Φt to produce similar predictions. Meanwhile, for learning
new classes, the cross-entropy loss with the ground truth ytn is used to train the model Φt. The overall
objective L of Φt can be defined as

L = λce · Lce + λkd · Lkd, (1)

where Lce, Lkd are cross-entropy loss and knowledge distillation loss, respectively. λce and λkd are tunable
hyperparameters to balance the loss terms, thereby making the trade-off between learning new classes
and not forgetting old ones. However, due to the lack of theoretical guarantees or standards, the trade-off
is still difficult to achieve. The trained model Φt is inevitably biased toward either new or old classes,
consequently limiting the model’s performance.

To mitigate representation bias, we design SegTokens with interaction modules, replacing the tra-
ditional classifier. The SegToken is a learnable tensor to model category-wise information, i.e., τ ∈
R

H

16×
W

16 ×d, where d = 7 is the channel dimension. We feed the SegToken τ and the multi-scale fea-
ture fms into an interaction module to generate the low-resolution segmentation mask M ′ ∈ R

H

16×
W

16×7.
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Figure 4 (Color online) Illustration about the architecture of interaction module. FFN refers to feed-forward networks [17],

while the circular element represents the concatenation operation. Different colors within the SegToken represent information

corresponding to various categories. This module tailors category-wise information based on the image feature, and leverages this

customized information to mine more feature regions corresponding to semantic categories.

Then, a ConvBlock [39], composed of two 3× 3 convolutions and a skip connection, is used to refine the

mask, resulting in M ′ ∈ R
H

16×
W

16×(|C|+1). |C| indicates the number of foreground classes. We upsample
M ′ to the size of the input image and use the softmax function to get the final segmentation result
M ∈ R

H×W×(|C|+1).
Figure 4 illustrates the interaction module’s architecture. This module customizes category-wise in-

formation according to the image feature, and utilizes this customized information to mine more feature
regions corresponding to semantic classes. To achieve this, SegToken τ and image feature fms are concate-
nated along the channel dimension, with the feature channels pre-adjusted to 512. Subsequently, a 1× 1
convolution is employed for interaction, resulting in F ∈ R

H

16×
W

16×519. F is then split along the channel
dimension to yield updated SegToken τ ′ and image feature f ′

ms. Two feed-forward networks (FFN) [17]
are applied to further refine τ ′ and f ′

ms, respectively. This process of concatenation, interaction, split,
and refinement is repeated four times. Finally, the image feature is discarded, and the corresponding
SegToken is considered the low-resolution segmentation mask M ′ for the subsequent process.

3.3 Class-incremental learning

In accordance with the proposed framework, we add a new SegToken to model information about new
classes, thereby enabling the model to incrementally learn them. Specifically, at learning step t, we
add a new SegToken τ t while keeping the previous ones τ1:t−1. Given an image xt where the subscript
n is ignored for simplicity, the backbone processes it into the multi-scale feature f t

ms. Subsequently,
the forward pass of the interaction module is executed t times, with each forward pass involving f t

ms

and a distinct SegToken τ i (i ∈ {1, . . . , t}), producing t low-resolution segmentation masks. These
masks undergo refinement through specialized ConvBlocks and are then concatenated along the channel
dimension. Finally, an upsampling operation followed by a softmax function is applied to obtain the
segmentation prediction for all learned classes C1:t.

3.4 Loss weighting strategy

We adopt the formulations of Lce and Lkd proposed by [15] to address the background shift problem
unique to semantic segmentation, as follows:

Lce = −
∑

xt∈St

∑

i∈xt

log pt(i, c), (2)

Lkd = −
∑

xt∈St

∑

i∈xt

qt−1(i, c) log p̂t(i, c), (3)

where

pt(i, c) =

{

qt(i, c), if yt(i) 6= cb,
∑

k∈C1:t−1 q
t(i, k), if yt(i) = cb,

(4)

p̂t(i, c) =

{

qt(i, c), if c 6= cb,
∑

k∈Ct q
t(i, k), if c = cb,

(5)
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and qt(i, c), qt−1(i, c) are the probabilities of class c for the i-th pixel of the image xt. The superscript
indicates the probability predicted by Φt or Φt−1. Forgetting is effectively mitigated through knowledge
distillation and the proposed framework. However, after multiple incremental steps, issues of interstep
imbalance and interstep similarity emerge, posing challenges for the current model to generate discrimi-
native feature representations for new classes. Consequently, the model’s plasticity is limited. To address
these issues, we propose a weighting strategy that adaptively amplifies the cross-entropy loss and decreases
the knowledge distillation loss. This enables the model to learn new classes effectively.

Specifically, during a training iteration withNB images in the mini-batch, the model performs a forward
pass and calculates the cross-entropy loss for all pixels. Then, we sort the new-class pixels based on their
loss and select the top-K pixels with the highest loss. The average loss of these top-K pixels is combined
with the cross-entropy loss of the mini-batch to perform a backward pass. In case any new-class pixels
were overlooked, their loss would increase until they are likely to be included in the top-K selection.
Consequently, the cross-entropy loss would increase, thereby prompting the model to focus on learning
new classes.

Additionally, to alleviate the problem of interstep similarity, we propose to decrease knowledge distil-
lation loss according to the confidence in old knowledge. Note that our focus is on the similarity across
different incremental steps rather than within a learning step. When Ct has similar classes to C1:t−1, the
model Φt−1 may struggle with distinguishing old classes and the background class, resulting in similar
prediction scores. Motivated by this observation, we utilize the variance of pixel-wise classification prob-
ability to estimate the confidence of the old model in old knowledge, and then adjust the weighting of the
knowledge distillation loss accordingly. Importantly, the negative impact of interstep similarity becomes
pronounced after multiple incremental steps. Therefore, we propose to weight knowledge distillation loss
only in the last learning step.

4 Experiments

4.1 Datasets

We conduct experiments on three publicly available datasets for class-incremental semantic segmentation
of remote sensing images: DeepGlobe [16], Potsdam, and Vaihingen.

DeepGlobe is a large-scale satellite image dataset for land cover segmentation, which contains 803
high-resolution images with size 2448× 2448. As done by [14], we split the DeepGlobe dataset into 455
images for training and 348 images for testing. 20% of the training images are used as the validation
set for adjusting hyperparameters. This dataset focuses on 7 classes of land cover, including urban,
agriculture, rangeland, forest, water, barren, and unknown/background.

Potsdam consists of 38 high-resolution aerial images with a size of 6000×6000 pixels. Following [7], we
use 17 images as the training set, 7 images for the validation set, and 14 images as the testing set. The
Postdam dataset contains 6 classes, namely impervious surfaces, buildings, low vegetation, trees, cars,
and clutter/background.

Vaihingen contains 33 high-resolution aerial images with an average size of 2494 × 2064 pixels. We
follow the data split in [7] to select 11 images for training, 5 images for validation, and 17 images for
testing. Like the Potsdam dataset, the Vaihingen dataset also has 6 classes.

4.2 Incremental settings and comparative methods

In computer vision [15, 40], there are two incremental settings: disjoint and overlapped. In the disjoint
setting, each learning step comprises images where pixels belong to classes seen either in the current or
previous steps. In contrast, the overlapped setting includes all images containing at least one pixel of
new classes in each learning step. In both setups, new-class pixels are labeled and old-class pixels are
considered background. The key distinction is that in the overlapped setting, the background class may
encompass future classes as well. Unlike natural images, which typically have a narrow field of view,
remote sensing images, captured from aerial vehicles or satellites, often contain pixels from previous,
current, or future classes. Thus, we adopt the overlapped setting for our experiments. Following [14],
we conduct experiments on the settings of DeepGlobe (3-3, 2-2-2, 1-1s), Potsdam (4-1, 3-2, 2-3) and
Vaihingen (4-1, 3-2, 2-3, 2-2-1). We report the mean intersection-over-union (mIoU) as a quantitative
measure to evaluate model performance.
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Since more limited studies can be found for class-incremental semantic segmentation of remote sensing
images, we compare MiR with popular class-incremental semantic segmentation methods in computer
vision [12, 15, 18, 41–45], and methods tailored for remote sensing images [7, 10, 11, 14, 36]. For fairness,
the results are re-implemented by us using the code from the authors’ GitHub repository and models are
trained using the hyperparameters listed in their studies. As done by [14], we also report the result of
simple fine-tuning (FT) on each St and joint optimization (Joint) on all classes at once. The latter can
be regarded as an upper bound.

4.3 Implementation details

Network parameters. Most methods for class-incremental semantic segmentation of remote sensing
images are built upon Deeplab-v3 (with 58 million parameters) [20]. For fairness, we employ the Swin-S
backbone (with 50 million parameters) [38] as the feature extractor due to the comparable amount of
model parameters. We empirically set λce = 0.5, λkd = 10, and keep them unchanged in all experi-
ments. To address the interstep imbalance issue, each training iteration by default selects top-131072
(i.e., K = 131072) pixels that have high cross-entropy loss. Additionally, if the loss of the Kth pixel is
still greater than a given threshold, we would select all pixels with a loss greater than a given threshold.
We experimentally use the threshold of 0.9 for the first step and 0.5 for the subsequent steps.

Training parameter. For all datasets, original images are cropped into size 512× 512. In particular,
we choose sequential cropping (with no overlap)/random cropping for the DeepGlobe dataset, and se-
quential cropping (with overlap) for the Potsdam and Vaihingen datasets. Standard data augmentation
methods, such as random flip and random rotation, are used to enrich the training sets. During training,
model parameters pretrained on ImageNet [46] are used to initialize the backbone at the first learning
step. The SegToken added at each step is randomly initialized with a mean of 0 and a variance of 0.02.
We adopt the AdamW optimizer with an initial learning rate of 0.00006, β1 = 0.9, β2 = 0.999, and
weight decay of 0.01. The batch size is set to 4. We train the model for 10 epochs on the DeepGlobe
dataset, 30 epochs on the Potsdam dataset, and 100 epochs on the Vaihingen dataset. Swin-S backbone
with Uper-Head [47] is used for joint training as the upper bound. All experiments are conducted on 4
NVIDIA TITAN RTX GPUs with Pytorch implementation and MMSegmentation3) toolbox.

4.4 Comparison on the DeepGlobe dataset

Table 1 [10–12,14–16,18,41–45] reports the comparison with state-of-the-art methods on the DeepGlobe
dataset with different incremental settings.

3-3 (2 steps). 3-3 indicates training the model initially on 3 classes, followed by training on 3 classes.
Without employing any constraints, FT completely forgets old classes. PI, EWC, and RW employ different
strategies to evaluate the importance of model parameters for old classes and then limit parameter
updates, which do not provide benefits. Their performance on old classes is inferior to 4%. Based on
knowledge distillation, LwF, LwF-MC, ILT, and MiB significantly improve the performance on old classes,
with LwF-MC achieving the highest performance at 57.2%. This confirms the effectiveness of knowledge
distillation on preventing catastrophic forgetting. Methods like DisALL, PFG-TKD, and MiSSNet target
remote sensing images, outperforming generic methods on old classes. Particularly, DisALL gains 3.5%
mIoU, PFG-TKD 8.4%, and MiSSNet 6.4%. It is interesting to compare the above methods with FT
on learning new classes. These methods (excluding MiSSNet) avoid forgetting old classes at the cost of
giving worse results on new classes (inferior to 59%). In contrast, CoMFormer and MiR can learn new
classes well while maintaining good performance on old classes. MiR stands out, exceeding CoMFormer
(sub-optimal performance) on both old (4.7%) and new (6.5%) classes. Overall, it obtains 71.5% mIoU,
which is inferior to the upper bound of 1.2%. This demonstrates the superiority of our method to handle
the forgetting issue.

2-2-2 (3 steps). 2-2-2 signifies three learning steps, each involving the sequential learning of 2 classes.
As expected, FT, PI, EWC, and RW obtain good results on new classes (nearly 66%) but perform poorly
on maintaining old knowledge (close to 0%). LwF, ILT, LwF-MC, and MiB improve the results in old
classes: LwF obtains 39.1% mIoU, LwF-MC 48.0%, ILT 45.1%, and MiB 53.0%. Regarding methods
customized for remote sensing images, MiSSNet is the best one, achieving mIoU of 61.0% on old classes,
62.8% on new ones, and 61.6% on all ones. While MiSSNet surpasses other models, CoMFormer obtains

3) https://github.com/open-mmlab/mmsegmentation.

https://github.com/open-mmlab/mmsegmentation.
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Table 1 Results (mIoU in %) on the DeepGlobe [16] dataset with different incremental settings. † indicates results re-implemented

by us, while results of other methods are directly taken from [14]. Old, new, and all refer to mIoU computed on old, new, and all

classes, respectively. The best results are in bold.

Method
3-3 2-2-2 1-1s

Old New All Old New All Old New All

FT 0.0 61.3 30.6 0.0 65.5 21.8 0.0 86.7 14.4

PI [41] 3.2 61.0 30.5 2.7 67.4 24.3 0.4 71.7 12.4

EWC [42] 3.0 59.0 32.1 2.2 65.9 23.5 0.4 73.0 12.5

RW [43] 3.2 60.0 31.0 3.3 63.6 23.4 0.7 74.9 13.0

LwF [12] 42.9 40.7 41.7 39.1 38.5 38.9 32.3 28.5 31.7

LwF-MC [44] 57.2 46.1 51.6 48.0 43.8 46.6 42.5 44.4 42.8

ILT [45] 49.9 45.0 47.4 45.1 46.7 45.6 42.2 49.0 43.3

MiB† [15] 56.5 57.5 57.0 53.0 53.2 53.0 47.8 31.8 45.1

DisALL [10] 60.7 50.1 55.4 54.1 51.6 53.2 51.9 55.1 52.4

PFG-TKD [14] 65.6 54.7 60.1 56.3 65.6 59.4 55.1 66.4 57.0

MiSSNet† [11] 63.6 62.0 62.6 61.0 62.8 61.6 56.6 43.3 54.4

CoMFormer† [18] 64.1 67.6 65.8 63.6 64.7 63.9 61.0 40.3 57.6

MiR 68.8 74.1 71.5 70.8 72.4 71.3 70.3 55.7 67.9

Joint† 69.7 75.6 72.7 71.7 74.5 72.7 73.9 66.4 72.7

a further boost. Compared to CoMFormer, MiR achieves an average improvement of about 7.4% on old,
new, and all classes.

1-1s (6 steps). This setting is the most challenging, as the model sequentially learns each new class
one by one. PFG-TKD and CoMFormer significantly outperform other models in terms of mIoU on all
classes. Notably, PFG-TKD’s high performance is primarily attributed to its effective learning of new
knowledge, while CoMFormer excels in maintaining old knowledge. MiR performs inferiorly compared to
PFG-TKD on learning the last new class (55.7% vs. 66.4%), but it surpasses PFG-TKD by a significant
margin, with a gap of 15.2% on five old classes. Moreover, MiR maintains a constant performance (around
70%) on preserving old classes from single-step to multi-step scenarios, while PFG-TKD’s score decreases
by more than 10%. Compared to CoMFormer, MiR exceeds it on all classes, with a particularly notable
improvement of 15.4% mIoU on new classes. This confirms MiR’s capability to effectively balance the
stability and plasticity of the model.

Visualization. We present qualitative results from the most challenging 1-1s setting on the DeepGlobe
dataset, to visually illustrate the superiority of our method. Different colors are used to indicate urban
(cyan), agriculture (yellow), rangeland (purple), forest (green), water (blue), barren land (white), and
background (black). Among the six foreground classes, only barran is a new class. As shown in Figure 5,
MiSSNet and CoMFormer are biased toward the new class (see the 1st and 2nd rows). MiB is easily
confused by similar old classes, such as rangeland, agriculture, and forest. Compared to these methods,
MiR achieves a good trade-off between learning new classes and preserving old knowledge. This ultimately
leads to segmentation results that closely match the ground truth, demonstrating the superiority of our
method.

4.5 Comparison on the Potsdam and Vaihingen datasets

Table 2 [7, 10, 11, 14, 15, 18, 36, 42, 45] reports the comparisons on the Potsdam and Vaihingen datasets.
Results on Potsdam dataset. All models perform better on the Potsdam dataset compared to the

DeepGlobe dataset. Even FT and EWC show performance improvements of over 40% from DeepGlobe
(3-3) to Potsdam (2-3). One possible explanation is that while the DeepGlobe dataset comprises images
from diverse geographic regions, the Potsdam dataset focuses solely on a specific geographic area. The
varied features of old classes in the DeepGlobe dataset pose challenges in preserving old knowledge. MiB,
ILT, and MiSSNet outperform EWC in the 4-1 setting but lag behind EWC in other settings. Essentially,
these methods excel in preserving old knowledge but struggle with learning new classes. TANet, DisALL,
PFG-TKD, and CoMFormer surpass the above methods in every setting, achieving average performances
of 75.9%, 77.2%, 77.6%, and 84.0%, respectively. However, the best method is MiR, which surpasses the
joint training upper bound. This is because the Potsdam dataset focuses on a specific geographical area,
where the features of old-class objects in St−1 and St exhibit significant similarities. Multi-step training
of models actually reinforces old knowledge. Meanwhile, MiR addresses representation bias, interstep
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Figure 5 (Color online) Qualitative results on the DeepGlobe dataset with the setting of multi-step addition of five classes (1-1s).

Different colors, i.e., cyan, yellow, purple, green, blue, white, and black, indicate urban, agriculture, rangeland, forest, water,

barren, and background.

Table 2 Results (mIoU in %) on the Potsdam and Vaihingen datasets with different incremental settings. † indicates results

re-implemented by us, while results of other methods are directly taken from [14]. Results refer to mIoU computed on all classes.

The best results are in bold.

Method
Potsdam dataset Vaihingen dataset

4-1 3-2 2-3 4-1 3-2 2-3 2-2-1

FT 59.3 70.6 72.1 17.6 57.0 55.2 10.5

EWC [42] 65.5 75.2 72.2 21.1 59.8 65.0 53.9

ILSS [36] 65.5 65.8 63.2 55.3 56.5 65.3 54.3

MiB [15] 69.1 70.6 72.2 74.0 73.2 73.7 72.8

ILT [45] 68.4 69.2 70.4 72.7 72.3 73.5 72.4

TANet [7] 76.7 76.0 75.1 75.7 74.8 74.4 74.0

DisALL [10] 77.6 77.2 76.7 74.9 74.6 74.5 74.1

PFG-TKD [14] 77.5 77.5 77.7 75.0 74.9 74.7 74.6

MiSSNet† [11] 75.1 71.8 72.1 64.8 58.3 56.9 53.1

CoMFormer† [18] 84.7 84.2 83.1 77.0 76.3 77.4 77.0

MiR 85.5 85.6 85.4 79.2 78.7 78.6 78.4

Joint† 85.3 85.3 85.3 79.5 79.5 79.5 79.5

imbalance, and interstep similarity, facilitating learning for new classes, ultimately achieving the highest
mIoU of 85.5%.

Results on Vaihingen dataset. From Table 2, we can see that FT and EWC suffer a large per-
formance drop, especially in the 4-1 and 2-2-1 settings. Comparative methods (except for ILSS and
MiSSNet) outperform them by far in all settings. In particular, MiB achieves 73.4% mIoU averaged
on four settings, ILT 72.7%, TANet 74.7%, DisALL 74.5%, PFG-TKD 74.8%, and CoMFormer 76.9%.
Despite that, MiR provides a further boost in all settings, obtaining the average results of 78.7%.

Visualization. Figure 6 shows qualitative results from the 3-2 setting on Potsdam and Vaihingen
datasets. We use different colors to represent various classes: impervious surfaces (white), buildings
(blue), low vegetation (cyan), tree (green), and car (yellow). Notably, tree and car are new classes. On
the Potsdam dataset, MiR demonstrates superior segmentation results in terms of detail compared to
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Figure 6 (Color online) Qualitative results on the Potsdam (left) and Vaihingen (right) datasets with the setting of single-step

addition of two classes (3-2). Different colors, i.e., white, blue, cyan, green, yellow, and black, indicate impervious surfaces,

buildings, low vegetation, trees, cars, and clutter/background.

Table 3 Ablation study (mIoU in %) on the DeepGlobe [16] dataset with the setting of multi-step addition of five classes (1-1s).

The subscripts, i.e., D and S, indicate MiB [15] method applying Deeplab-v3 and Swin-Transformer with Uper-Head, respectively.

Old and all refer to mIoU computed on old and all classes. wce and wkd denote the weighting strategy for cross-entropy loss and

knowledge distillation loss. The best results are in bold. The improvements are shown in brackets.

Method
Step 1 Step 2 Step 3 Step 4 Step 5

Old
Step 6

All
urban agriculture rangeland forest water barren

MiBD 61.7 67.0 15.6 48.7 45.8 47.8 31.8 45.1

MiBS 78.3 83.3 34.0 64.3 75.3 67.0 (+19.2) 33.3 (+1.5) 61.4 (+16.3)

+SegToken 78.3 83.2 31.8 67.5 77.7 67.7 (+0.7) 53.0 (+19.7) 65.3 (+3.9)

+wce 78.5 85.3 33.6 72.8 80.3 70.1 (+2.4) 55.2 (+2.2) 67.6 (+2.3)

+wkd 78.5 85.7 34.4 72.6 80.5 70.3 (+0.2) 55.7 (+0.5) 67.9 (+0.3)

MiBS 78.3 83.3 34.0 64.3 75.3 67.0 33.3 61.4

+wce-wkd 77.8 85.2 27.9 71.2 76.2 67.7 (+0.7) 55.4 (+22.1) 65.6 (+4.2)

MiSSNet and CoMFormer. On the Vaihingen dataset, it is apparent that MiSSNet fails to learn the new
class car. Moreover, the similarity between the new class tree and the old class low vegetation poses a
challenge for model learning. CoMFormer faces difficulties in accurately distinguishing between tree and
low vegetation (see the 2nd row). In contrast, MiR is not influenced by the interstep similarity, producing
satisfactory results.

4.6 Ablation studies

We conduct ablation experiments to verify the effect of the details of our method in the most challenging
setting on the DeepGlobe dataset (1-1s). Specifically,

Effectiveness of SegToken and weighting strategy. As depicted in Table 3, we start from the
baseline MiBD, which is built upon Deeplab-v3 and employs cross-entropy and distillation losses with
modeling the background. We first use Swin-S with Uper-Head to replace Deeplab-v3 (MiBS): the
transformer architecture provides a remarkable improvement of 19.2% on old classes, but it still struggles
to learn new classes. This demonstrates that transformer architecture may excel in handling the forgetting
issue. Second, we utilize the interaction module with SegToken in place of Uper-Head (+SegToken): this
addresses the representation bias caused by competition between cross-entropy and distillation losses,
providing benefits on both old and new classes. Remarkably, the improvement for new classes achieves
19.7% mIoU. Third, we modified the standard cross-entropy loss to handle the interstep imbalance issue
(+wce). +wce outperforms +SegToken by 2.4% on old classes, 2.2% on new classes, and 2.3% on all
classes. Finally, we account for the interstep similarity at the last learning step (+wkd). +wkd provides
a slight improvement, where we gain 0.2% on old classes, 0.5% on new classes, and 0.3% on all classes.
Though the improvement from the weighting strategy is small, it is not dispensable. We additionally
train MiBS with the strategy. It can be observed that wce and wkd provide an overall improvement of
22.1% on new classes, confirming their effectiveness. Overall, MiR obtains the best results of 70.3% on
old classes, of 55.7% on new ones, and of 67.9% on all classes.
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Table 4 Evaluation results (mIoU in %) of λce and λkd on the DeepGlobe [16] dataset with the setting of multi-step addition of

five classes (1-1s). (a) MiR. (b) MiB. λce , λkd are tunable hyperparameters to balance cross-entropy loss and knowledge distillation

loss. For all experiments in this paper, λce , λkd of our method are 0.5 and 10, respectively. MiB sets λce = 1 and λkd = 10

by default. Thus, in this experiment, we adjust hyperparameters at the same ratio, for example, doubling or halving λce, and

increasing or decreasing λkd by 5.

(a)

Weight setting
Step 1

urban

Step 2

agriculture

Step 3

rangeland

Step 4

forest

Step 5

water
Old

Step 6

barren
All

λce = 1

λkd = 10

78.6 85.0 28.9 69.2 78.7 68.1 59.6 66.7

λce = 0.5 78.5 85.7 34.4 72.6 80.5 70.3 55.7 67.9

λce = 0.25 79.0 86.4 30.8 70.3 77.0 68.7 58.8 67.1

λce = 0.5

λkd = 15 78.5 82.6 25.4 73.7 78.9 67.8 51.2 65.1

λkd = 10 78.5 85.7 34.4 72.6 80.5 70.3 55.7 67.9

λkd = 5 78.3 84.2 31.4 71.1 78.0 68.6 54.0 66.2

(b)

Weight setting
Step 1

urban

Step 2

agriculture

Step 3

rangeland

Step 4

forest

Step 5

water
Old

Step 6

barren
All

λce = 2

λkd = 10

23.0 73.4 2.0 49.0 62.6 42.0 40.6 41.8

λce = 1 61.7 67.0 15.6 48.7 45.8 47.8 31.8 45.1

λce = 0.5 36.7 68.5 16.9 30.3 40.6 38.6 23.0 36.0

λce = 1

λkd = 15 44.6 58.8 8.3 31.4 37.2 36.1 33.0 35.6

λkd = 10 61.7 67.0 15.6 48.7 45.8 47.8 31.8 45.1

λkd = 5 27.6 70.3 2.2 50.4 57.3 41.6 41.8 41.6

Table 5 Results (mIoU in %) of different learning orders on the DeepGlobe [16] dataset with the setting of multi-step of five

classes (1-1s). Old and all refer to mIoU computed on old and all classes. In this experiment, we use the same hyperparameters

setting for MiR.

Method Step 1 Step 2 Step 3 Step 4 Step 5 Old Step 6 All

MiR

urban agriculture rangeland forest water barren

78.5 85.7 34.4 72.6 80.5 70.3 55.7 67.9

agriculture barren water forest rangeland urban

77.9 53.4 81.7 72.9 33.9 64.0 79.2 66.5

barren water forest rangeland agriculture urban

48.6 83.5 73.0 35.3 82.4 64.6 79.0 67.0

forest urban barren agriculture water rangeland

74.3 78.9 47.3 87.2 78.4 73.2 40.1 67.7

Joint
urban agriculture rangeland forest water barren

78.9 88.4 41.9 77.6 82.7 73.9 66.4 72.7

Effectiveness of mitigating representation bias. As mentioned previously, the competition be-
tween cross-entropy and distillation losses easily leads to the issue of representation bias, and empirical
hyperparameter settings (e.g., λce = 0.5 and λkd = 10) are difficult to solve this issue. To demonstrate
the effectiveness of our method in mitigating representation bias, we test MiR with different loss weight
settings. As shown in Table 4, our method outperforms the best comparative method across five weight
settings, achieving an average improvement of 9% considering all classes. For λce ∈ {0.25, 0.5, 1} and
λkd ∈ {5, 10, 15}, MiR achieves standard deviations of mIoU on old and new classes of 0.86 and 3.09,
respectively, while MiB stands at 3.9 and 6.8. This shows that our method is more robust to the change
in loss weights compared to the popular MiB method. In other words, MiR can effectively mitigate
representation bias, leading to relatively consistent performance.

To intuitively illustrate the effect of our method, Figure 7(a) presents SegTokens extracted from MiR
with different weight settings. We can observe that MiR (λce = 1, λkd = 10) is biased toward new
classes. The first interaction between image features and the new SegToken produces high responses
in the regions of new classes. On the contrary, MiR (λce = 0.5, λkd = 15) fails to produce sufficient
responses in new-class regions after the first interaction. Through multiple interactions, MiR identifies
more regions associated with old or new classes, thereby improving the final segmentation. In Figure 7(b),
we present visualized examples of other old classes. These results highlight the importance of accounting
for representation bias and demonstrate the effectiveness of our method.

Evaluation with different learning orders. We experiment with different learning orders to explore
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Figure 7 (Color online) Visualization of SegTokens extracted from MiR, applying different loss weight settings on the DeepGlobe

dataset with the setting of multi-step addition of five classes (1-1s). (a) SegTokens after four interactions; (b) SegTokens after the

1st and 4th interactions. In (a) and (b), odd rows represent old-class SegTokens, while even rows represent new-class SegTokens.

The SegTokens of a model are visualized by accumulating pixel values along the channel dimension, resizing to match the image

size, and then normalizing to the range [0, 1].

the stability of our method. Results are shown in Table 5. The mean and standard deviation of mIoU
computed on all classes across the four learning orders are 67.3 and 0.6, respectively. This clearly
demonstrates that our method is robust to the change of learning orders, and has significant stability.
Additionally, when comparing the IoUs of the same semantic category as the new and old categories, we
notice that the IoU gap for the urban class (79.1% vs. 78.7%) is only 0.4%, whereas for the rangeland
(40.1% vs. 34.5%) and barren (55.7% vs. 49.8%) classes, the gaps exceed 5%. We argue that this
is because the visual characteristics of these categories are complex and diverse, posing challenges for
models to learn them effectively. See Table 5, even Joint achieves an IoU of only 41.9% on the rangeland
class. Consequently, uncertain predictions from old models on these classes may be excluded during the
subsequent knowledge distillation, leading to forgetting.

Analysis of computational cost. We compare the model size (number of parameters), computa-
tional complexity (in FLOPs), and inference time (in seconds per image) between MiR and the compar-
ative methods with available code to assess its computational cost. All models are tested under identical
settings: an image size of 512×512, a batch size of 1, and a single NVIDIA TITAN RTX GPU. As shown
in Table 6 [11,15,18,38,48], the model size of MiR is comparable to that of other models, but the multiple
interactions between image features and SegTokens significantly increase the FLOPs in MiR. However, as
the interaction module only consists of a 1×1 convolution and two FFNs, it does not introduce substantial
inference overhead. Consequently, MiR achieves the shortest inference time while delivering significant
performance improvement on both old and new classes.

Evaluation on method scalability. Given that existing studies [7,14] have explored Deeplab-v3 and
PSPNet [49] for class-incremental semantic segmentation of remote sensing images, we incorporate MiR
with these two segmentation models, to evaluate its scalability. Specifically, following [7, 14], we select
PSPNet with the ResNet-50 backbone and Deeplab-v3 with the ResNet-101 backbone. The original
classifiers are replaced by the interaction module with SegToken. For PSPNet, the final pyramid pooling
global feature is downsampled to a size of [H16 ×

W
16 ], and concatenated with SegToken before being input

into the interaction module. For Deeplab-v3, feature maps from atrous spatial pyramid pooling are fused
via 1×1 convolution, with size fixed to [H16×

W
16 ], and then fed into the interaction module with SegTokens.
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Table 6 Evaluation results (mIoU in %) of computational costs across different methods. The comparative methods are imple-

mented using code from the authors’ GitHub. All models are tested under identical settings: an image size of 512×512, a batch

size of 1, and a single NVIDIA TITAN RTX GPU.

Method Backbone
#Parameters

(M)
GFLOPs

Inference time

(s/image)

DeepGlobe (1-1s) (%)

Old New All

MiB [15] ResNet-101 [48] 57.9 67.7 0.079 47.8 31.8 45.1

MiSSNet [11] ResNet-101 [48] 57.9 67.2 0.081 56.6 43.3 54.4

CoMFormer [18] ResNet-101 [48] 63.0 81.6 0.102 61.0 40.3 57.6

MiR Swin-S [38] 64.1 137.3 0.068 70.3 55.7 67.9

Table 7 Results (mIoU in %) of MiR with different segmentation models on the DeepGlobe [16] dataset with the setting of

multi-step of five classes (1-1s). Old and all refer to mIoU computed on old and all classes. The improvements from CoMFormer to

MiR are shown in brackets. The version of MiR implemented in this paper can be regarded as an integration with the segmentation

model built on the Swin-S backbone and Uper-Head.

Method Segmentation model
Step 1 Step 2 Step 3 Step 4 Step 5

Old
Step 6

All
urban agriculture rangeland forest water barren

CoMFormer [18] Mask2Former [50] 75.0 76.8 19.5 57.4 76.3 61.0 40.3 57.6

MiR PSPNet [49] 76.1 80.5 24.0 64.3 57.7 60.5 (−0.5) 44.1 (+3.8) 57.8 (+0.2)

MiR Deeplab-v3 [20] 65.0 77.1 23.7 61.0 74.8 60.3 (−0.7) 51.8 (+11.5) 58.9 (+1.3)

MiR Swin-S [38]+Uper-Head [47] 78.5 85.7 34.4 72.6 80.5 70.3 (+9.3) 55.7 (+15.4) 67.9 (+10.3)

The hyperparameters for training PSPNet and Deeplab-v3, including the epoch and the learning rate,
are kept consistent with those described in Subsection 4.3. The results are presented in Table 7 [16,
18, 20, 38, 47, 49, 50]. Compared to the current state-of-the-art method CoMFormer, which is specifically
designed for Mask2Former [50], MiR achieves superior performance across various segmentation models.
The highest gap reaches 10.3% when MiR is incorporated with the segmentation model composed of
the Swin-S backbone and Uper-Head. Although MiR exhibits a degree of scalability, it is currently
incompatible with architectures like Mask2Former, which can be studied in the future.

5 Conclusion

This paper focuses on the representation bias in class-incremental semantic segmentation of remote sensing
images using knowledge distillation. We propose a novel framework, MiR to alleviate forgetting and
enhance learning of new classes effectively. By replacing the feature-classifier mode with feature-SegToken
interaction, MiR performs implicit coarse-to-fine segmentation to mitigate representation bias caused
by the conflict between cross-entropy and distillation losses. On this basis, a weighting strategy is
introduced to handle interstep imbalance and interstep similarity issues, thereby facilitating learning
after multiple incremental steps. Extensive experiments on commonly used datasets demonstrate the
superior performance of MiR over recent state-of-the-art methods such as CoMFormer and MiSSNet in
various incremental settings. Besides, we conduct ablation experiments to further validate the efficacy
of MiR’s design details. Future studies may explore class-incremental semantic segmentation with long-
tailed distributions [51], a common scenario in remote sensing images [52].
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