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Abstract Graph partitioning is the basis of many graph computations. A good graph partitioning algorithm is related to

the partition balance and the communication overhead between nodes after partitioning. This paper measures the former

by the relative standard deviation (RSD). At the same time, the latter is often related to the number of replicated vertices

or edge cuts. In order to balance the above two goals, the greedy strategy is adopted to improve, which is a graph edge

partitioning algorithm that transforms the graph so that the vertex partitioning methods can be applied to the transformed

graph. A novel graph edge partitioning algorithm named G-SPAC is proposed. Firstly, to reduce the number of duplicated

vertices, the method of degree-and-spatial-locality priority is designed so that adjacent vertices are more accessible to divide

into the same subgraph. Secondly, to improve the division balance, the judgment-aware folding method is designed to carry

out the graph division from a more granular perspective. Experiments are conducted on eighteen graph data sets. The results

show that for most of the graphs, the RSD for the number of edges of each subgraph partitioned by the G-SPAC algorithm

is below 3%. In terms of the number of vertex copies, G-SPAC’s performance is not inferior to the SPAC algorithm, and it

can even reduce the number of copies by an order of magnitude on some graphs.
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1 Introduction

The graph is a significant model showing how two or more sets of members are related. Compared
with other models, the graph is much more expressive, playing an active role in many fields nowadays,
such as social networks, recommended systems, and traffic networks. Take the core data of Facebook
as an example here; its users could be represented as vertices, and relationships among users could be
represented as edges so that a graph is constructed.

Being a flexible and expressive data model, graphs can be found in a wide range of applications,
such as social networks [1–3], transportation networks [4, 5], computer vision [6–8], and even knowledge
graphs [9–11] — the basis of the semantic web. Graph computing is an important research direction in
academia and industry, and graph partitioning is one of the essential contents. In the era of big data, the
growing graph scales impose higher requirements for graph computing capabilities and motivate various
distributed parallel graph computing applications. As an essential prerequisite for realizing parallel and
distributed computing systems, graph partitioning has attracted extensive research [12, 13].

Graph partitioning is to divide the graph into several modules. According to the number of divided
modules, also known as k-way graph division. According to the ways of division, graph partitions can be
categorized by vertex partition [14–21] and edge partition [22–31].
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Vertex partitioning uses vertex separators in the execution of graph partitioning. McCrabb et al. [18]
studied different vertex-pressure repartitioning schemes, which move vertices so as to co-locate them near
their most relevant neighbors. Soudani et al. [19] proposed a graph partitioning approach based on the
vertex-centric model that applies the personalized PageRank vectors of vertices and partitions to decide
how vertices are joined partitions. Jiang et al. [20] introduced a new upper bound for the maximum k-
plex problem, which is a partitioning of the candidate vertex set with respect to the constructing partial
solution.

Compared with edge partitioning, vertex partitioning is more likely to cause load imbalance, especially
for power-law graphs. In a power-law graph, most vertices have small degrees, and a few vertices have large
degrees. When dividing by vertex, once a high-degree vertex is assigned to a partition, that partition’s
size will increase sharply, leading to an unsatisfactory division balance. Besides, edge partitioning saves
more storage space than vertex partitioning due to the redundancy of edges [32].

An ideal graph partitioning strategy should minimize the partitioning overhead while maintaining a
balanced partition. Partitioning overhead is twofold: time and space. Time overhead is the time cost to
derive the partitions, where parallel methods are commonly used to improve time performance [33, 34].
Space overhead refers specifically to the additional overhead required in addition to storing a graph
itself. For vertex partitioning, the extra overhead in space is the storage of redundant edges; for edge
partitioning, the overhead is the storage of redundant vertices. The redundant structure also represents
the connection between the partitions. Less redundancy means fewer inter-partition connections and
less communication. However, obtaining the optimal solution for partitioning has been shown to be an
NP-hard problem [22] because achieving minimum cut ratios and maximum load balancing is non-trivial.

Meanwhile, it may be challenging to make this ideal strategy when dealing with power-law graphs.
In the real world, most of the graphs are power-law graphs [35], which means that most of the vertices
have a few neighbor vertices while a few vertices are connected to a large number of vertices. The power-
law feature of natural graphs brings many challenges. Usually, it will lead to the workload imbalance,
the “curse of the last reducer”, where 99% of the computation can be done quickly, while the others
take much longer time to finish [36]. Besides, it is challenging for communication since it may cause
communication asymmetry [37]. Furthermore, the skewed degree distribution makes splitting the graph
much more difficult [27, 38].

At present, there are two kinds of graph partition models: one is based on stream, and the other is
based on subgraph. Gonzalez et al. [37] proposed two simple edge partitioning methods. These two
methods both distribute edges by scanning every edge in a linear way. One of the methods, referred to
as random methods, assigns edges to each partition at random. The other method, the greedy method,
prefers partitions where an end vertex of the edge to be allocated belongs. If no such partition exists, the
partition with the least number of edges is selected. A balanced edge partitioning method is proposed
by Bourse et al. [32] based on weighted vertex partitioning (WVP). In this method, weights are assigned
to each vertex whose degree is exactly the value of its weight. The weighted graph is divided in balance
according to the total weight of the vertices. Next, if the endpoint of an uncut edge falls into the ith
vertex partition, it is assigned to the corresponding i-th edge partition. For edges that are cut, they are
distributed randomly or greedily to reach a partitioning balance. However, both of the above methods
are stream-based with poor partitioning quality, which is far inferior to the SPAC model [39].

Subgraph-based partitioning is such as hypergraph partitioning models [40]. A hypergraph is a gen-
eralized graph whose edges are hyperedges, meaning that one edge may connect not only two vertices.
In [40], vertices are interpreted as tasks, while hyperedges are interpreted as data objects, covering all
tasks working with the data object. When the task is divided into k parts, minimizing the copies of
data in memory corresponds to minimizing hyperedge cutting. This method can obtain better partition
quality, and less data replication. On the other hand, the SPAC model [39] provides similar partitioning
quality while being more scalable.

The SPAC [39] is a graph edge partitioning algorithm that transforms the graph so that the vertex
partitioning methods can be applied to the transformed graph to obtain the division scheme from which
the edge division of the original graph can be derived. However, SPAC’s performance can be unsatisfactory
due to the following constraints.

• Division balance is essential when evaluating graph partitioning methods. SPAC uses the vertex
partition method, e.g., METIS [41], on the converted graph. The partition balance in METIS is defined
as km/n, where k is the target number of partitions, m is the size of the largest subgraph, and n represents
the vertex number of the original graph. So, there is no evidence to indicate that this definition is also
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applicable to SPAC.
• SPAC does not make full use of the distribution law of graphs and may lead to unnecessary vertex

splitting. Experimental results show that cutting such vertices is highly efficient since large-scale edges are
partitioned by cutting a few vertices. This inspires us to use a greedy strategy to improve the algorithm.

In this study, we propose the G-SPAC algorithm and compare the performance of the algorithm in
terms of partition balance and partition cost. Since the critical challenge to graph edge partition is seeking
balanced partition output while minimizing the copies of vertexes, comprehensive measures are applied
in our solution. G-SPAC performs spatial locality priority division at a more fine-grained perspective
and uses the edge folding process with judgment conditions to approach this challenge. To summarize,
the main contributions of this work are as follows.

• To reduce the vertex cuts, we adopt a greedy strategy to improve the SPAC algorithm that leads to
cutting vertices with large degrees.

• To reduce the cost of division, we design the degree-and-spatial-locality-prior method introduced in
Subsection 6.2 so that subgraphs close to each other are more likely to be divided together.

• To alleviate the imbalance of division, we propose judgment-aware folding where graph partitioning
is conducted while folding edges, allowing graph partitioning in a finer granular perspective.

• We used 18 datasets from real-world sparse graphs, DIMACS1), and BHOSLIB2). As shown in the
experimental results, the division balance is less than 3% for most datasets. G-SPAC demonstrates
excellent performance for mesh-like graphs in reducing the cost of vertex-cut by an order of magnitude
compared with the SPAC algorithm.

The rest of our article is organized as follows. We present the background knowledge in Section 2.
The related work is reviewed in Section 3. Section 4 describes the problem definition. Section 5 gives an
overview of the algorithm. Section 6 explains each part of the proposed algorithm in detail. Performance
evaluations are carried out in Section 7. Finally, Section 8 concludes this paper and outlines future
directions.

2 Background

In the age of data explosion, with the explosive growth of data, the size of the graph increases dramatically,
bringing complexity when analyzing such a graph. Therefore, a distributed system was born to address
such a problem, and a graph partition technique is required to split the graph into several partitions
and deliver them to a cluster of computing nodes. Load balance and minimal communication cost are
important indicators when dividing a graph. Regarding load balance, the amounts of graph data in each
computer node must have little difference, so the “curse of the last reducer” could be broken. As for
communication cost, it is derived from the edges/vertices across different compute nodes, ensuring the
synchronization among all nodes. Unfortunately, it has been proven an NP-hard problem to divide a
graph evenly and minimize the number of vertex copies at the same time [22]. In our paper, both of the
targets will be examined.

There are mainly two ways to partition graphs: vertex partition and edge partition, as shown in
Figure 1.

2.1 Vertex partition

In vertex partition, vertices are assigned to the computing nodes without replication, so each vertex exists
only in one node. The edges across nodes will be cut and stored by the nodes the two end vertices belong
to. In this method, the cost of storage and communication is derived from the cut edges. When splitting
a natural graph, vertex partition may lead to severe workload imbalance because of the power-law degree
distribution.

2.2 Edge partition

Oppositely, edge partition is designed to assign edges to the computing nodes, and each edge is forbidden
to cross nodes. Therefore, the split vertices connect subgraphs, and the cost depends on the total number
of vertices among all the computing nodes. Compared with the vertex partition, the edge partition is

1) DIMACS. Dimacs challenge. http://dimacs.rutgers.edu/Challenges/.

2) BHOSLIB. Benchmarks with hidden optimum solutions for graph problems, 2004.
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Figure 1 (Color online) Edge partition and vertex partition.

more efficient, providing a good quality of workload balance. This is because the overhead of computing
the graph is substantially up to the edge count instead of vertex count [42].

3 Related work

On the one hand, graph division needs to reduce the division overhead; on the other hand, it needs to
achieve load balancing. But achieving both at the same time proved to be NP-hard [22]. In an attempt
to enhance the graph partitioning algorithms’ performance, some researchers have proposed different
methods from various aspects [22–26].

3.1 Partition cost

Regarding the edge partition model, the partition cost refers to the number of replicated vertices, which
not only affects the memory cost but also the communication cost between partitions. Therefore, minimiz-
ing the number of vertex-cuts is an important research content of the graph edge partitioning algorithm.

A real-time edge re-partitioning algorithm was proposed by Mayer et al. [26] to deal with dynamic
graphs, reducing the number of duplicate vertices by reducing unnecessary migrations in the re-partitioning
process. For dynamic graphs, it is necessary to deal with the migration of edges; sometimes, edges are
migrated as soon as they are assigned. That is unnecessary migrations. In this method, according to
the distribution of the neighbors of the new edge, it is distributed to the most likely partition after re-
partitioning. Consequently, the migration overhead is reduced, and the graph partitioning performance
is improved.

Li et al. [25] proposed a new hybrid edge partitioner (HEP). HEP divides the edge set into two subsets:
one is divided by the efficient memory algorithm NE++, and the other is divided by the flow method.
The HEP method reduces the memory overhead by flexibly using these two subsets. Zhang et al. [22]
proposed an edge partition heuristic algorithm, neighbor expansion (NE), which is a partition model
based on a greedy strategy to maximize edge locality.

Unlike the above methods, we propose the G-SPAC algorithm to reduce the number of replicated
vertices in this work. This is an edge partitioning model that utilizes graph transformations and greedy
methods. At the same time, the character of spatial locality of graphs is under consideration, and the
degree-and-spatial-locality-prior method is used to reduce the graph partitioning overhead.

3.2 Load balancing

Load balancing is also an important goal of graph partitioning algorithms. If the load is unbalanced, the
calculation of the heavily loaded partition often becomes the bottleneck, limiting the calculation of the
entire graph.



Chen Y D, et al. Sci China Inf Sci August 2025, Vol. 68, Iss. 8, 182101:5

Sheng et al. [30] proposed GraBi — a partitioning framework for bipartite graph with communication
efficiency and workload balance, comprehensively utilizing the bipartite graph structure to improve the
overall performance. The degrees of vertices within each subset of bipartite graphs tend to be highly
skewed. To address the imbalance problem of workload which results from the deviation of vertex degrees
in each vertex subset, each large-degree vertex block is horizontally decomposed into several sub-blocks
under an upper bound on the number of edges, and they are distributed across nodes in balance by a set
of hash functions.

Bourse et al. [32] proposed an approximation algorithm for the problem of balanced edge partitioning
with and without message aggregation. They describe the expected costs of vertex and edge partition-
ing with and without message aggregation and utilize them in common strategies for uniformly random
placement of vertices or edges into one of the partitions. The algorithm matches the best-known approx-
imation ratio for the balanced vertex partitioning problem without aggregation and shows that this still
holds true for cases where the aggregation factor is equal to the maximum degree of the vertex. The
implementation of load balancing is also considered in our method, and a judgment-aware folding method
is proposed for this purpose.

3.3 SPAC algorithm

SPAC algorithm [39], known as split-and-connect algorithm, is an edge partition algorithm via expanding
the graph and conducting vertex partition method, for example, METIS [41], on the expanded graph.
Eventually, the original graph is split according to the plan of the last step. It is a simple yet efficient
algorithm. In [39], experiments were conducted to find that the number of vertex copies of WVP [32]
model is far more than the SPAC algorithm, and its average degree of the split-vertices is much less
than the latter. It is inferred that the WVP model tends to avoid cutting vertices with large degrees.
However, cutting such vertices has high efficiency since large scale of edges are partitioned via cutting a
few vertices.

Inspired by the experimental results, we devise a greedy method on top of the SPAC model, intending
to avoid cutting the small-degree vertices. The result is compared with the opposite version.

4 Problem definition

This paper focuses on finding a partition model to balance subgraph partition and reduce communication
overhead. As mentioned above, for the edge partition model, the former needs to keep the number of
edges in each subgraph the same, while the latter needs to reduce the number of vertex segments as
much as possible. However, it is an NP-hard problem to balance the subgraph partition and reduce
communication overhead simultaneously.

It is noted that the SPAC model has a good performance in reducing the partitioning overhead, and its
experimental results indicate the direction of model optimization — partitioning the vertices with great
degrees can improve the partitioning efficiency. In order to reduce the number of vertex segments and
the communication overhead of the subgraph, an improved model of SPAC is proposed to cut vertices
with great degrees using a greedy strategy. In this paper, the cost of vertex copies among subgraphs is a
vital index to value the communication overhead of an edge partition algorithm. Carefully, the first copy
of each vertex is not contained in this cost since it is essential to the graph.

Definition 1 (Vertex copies). A graph is defined as G = (V ,E), in which V is the vertex set, and E

is the edge set. Let n represent the number of vertices in V , and m represent the number of edges in E.
Then, G′ = (V ′,E′) refers to the graph transformed from G. In the new graph G

′, n′, the size of the
vertex set V , equals double the size of the edge set of G, that is n′ = 2m.

Let C represent the vertex copies we have mentioned above; then it can be calculated by

C =

k∑

i=1

ni − n, (1)

where ni represents the amount of vertex in the ith partition. Therefore, the cost of vertex copies is the
sum of the unessential copies for each vertex, as (1).
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Figure 2 (Color online) Overview of the G-SPAC algorithm.

Generally speaking, the input to a graph is locally ordered. Using this spatial locality, it is possible to
draw adjacent edges into the same subgraph as much as possible, thus further reducing the number of
vertex copies produced by partitioning.

In addition to the communication overhead, the implementation of partition balance is also important.
Unbalanced partitioning results in overburdened individual machine nodes, where data processing is
heavily congested while other lightly loaded machine nodes sit idle. It wastes resources and seriously
reduces the efficiency of data processing. In order to solve the partition balance problem, the judgment-
awarded folding method is proposed. That is, the scale of the subgraph is judged while folding an edge
to provide a fine-grained partitioning response. In this paper, the relative standard deviation (RSD) of
the scales of subgraphs is used to measure the balance of the partition results.

Definition 2 (RSD). RSD is the relative standard deviation of a set of numbers, where each number
represents the number of edges of a subgraph (also named the scale of the subgraph). To be precise, RSD
is the ratio of the standard deviation of scales and their average. So it can be expressed as

RSD =
SD

x̄
, (2)

where x is the ideal scale of each subgraph.

5 Algorithm overview

The general overview of the algorithm is shown in Figure 2. The graph, as input to the algorithm, is
divided into several subgraphs through a series of processes. To begin with, there is an encoding step to
encode the graph and build the relevant indexes. After the preparations are done, the core part of the
algorithm begins.

Broadly speaking, when splitting a graph with the G-SPAC algorithm, there are three steps, as shown
in algorithm pseudocode given by Algorithm 1. First, graph G is converted to graph G

′. Second, edges of
G
′ are folded until it is up to the limit, and relevant edges are split from graph G. Third, the remaining

pieces are regrouped to form other partitions.
Step 1: transformation. The first step is to transform the graph. Specifically, it shows the internal

structure of the vertex, where any edge connected to the vertex corresponds to one of the internal vertices,
and these internal vertices are also connected. Detailed instructions are placed in Subsection 6.2. When
transforming the graph, a priority queue is established to store the edges, and all the edges of the
transformed graph are inserted into the queue so that these edges are sorted by weight in the queue. This
step will be described in detail in Subsection 6.2.

Step 2: judgment-aware splitting. The second step is to fold the edges in loop. It folds one edge at
a time from the priority queue. The specific meaning of folding will also be introduced in Subsection 6.3.
After folding, the subgraph formed by the regions connected by the edge is obtained. Determine whether
the size of the new subgraph exceeds the limit. If not, take another edge from the priority queue and
repeat the above operation.

If the size of the new subgraph meets the requirements, it means that dividing the subgraph can be
carried out. The logic is to split this subgraph from the original image, but in practice, you only need to
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Algorithm 1 G-SPAC.

Require: G, k;

Ensure: g1, . . . , gk.

1: // This is the overview of G-SPAC.

2: // 1. Transform graph.

3: upload(G);

4: G′ ← TransformGraph(G);

5: h← buildHeap(G′);

6: L← G.m/k;

7: // 2. Judgment-aware splitting.

8: while i 6 k do

9: e← h.top();

10: h.pop();

11: g ← folding(e);

12: if g.cnt > L then

13: gi ← split(g);

14: end if

15: end while

16: // 3. regroup.

17: regroup(h);

18: return g1, . . . , gk.

Tom
1

−1

−1

−1

Alice

Amy

4 Tom
2

4 4

Tom
4

4 Tom
3

Mike
1

Mike
22

2

John
2

John
12

2

Jane
1

Jane
2

2

2

John

Tom

Alice

Jane Mike Amy

father

wife

mother

friend

brother

wife

John

Tom

Jane

father

wife

mother

Tom

Alice

Mike Amy

friend

brother

wife

Tom
1

Alice

Amy

−1

−1

−1

−1

4 Tom
2

4 4

Tom
4

4 Tom
3

Mike
1

Mike
22

2

John
2

John
12

2

Jane
1

Jane
2

2

2
−1

-1

−1 −1

−1

−1

(a) (b)

(c) (d)

Figure 3 (Color online) Example of graph partition using G-SPAC. (a) Original graph; (b) transformed graph; (c) splitting;

(d) result.

make it invisible to the entire graph. The subgraph division here extracts the corresponding results and
converts them into the form of the original graph at the same time. This step will be described in detail
in Subsection 6.3.

Step 3: regroup. Loop the above operations until the priority queue is empty. At this time,
the remaining subgraphs that do not meet the limit are combined according to their size to form new
subgraphs. So far, we have completed a general overview of the algorithm.

For example, there is a graph shown in Figure 3(a). We are going to split it into two parts with
the G-SPAC algorithm. To begin with, the graph is transformed by copying the vertices for each edge.
After copying the vertices, each of internal vertices from the same vertex is connected to its neighbors.
Finally, every copy from the same vertex is joined together by sequence. Then, Figure 3(a) is successfully
converted to Figure 3(b), on which we will conduct the graph split algorithm. The detail information
will be described in Subsection 6.3. Figure 3(c) represents the splitting result, and it is restored to its
original graph shown in Figure 3(d).

6 Detailed design

Our algorithm is designed to improve the SPAC algorithm with a greedy method according to the conclu-
sion that cutting large-degree vertices is much more beneficial than cutting the small ones. In our paper,
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Algorithm 2 Greedy method.

Require: E
′;

Ensure: g: top vertex of the folded graph;

1: while E
′ do

2: // Select the edge with minimum weight;

3: minEdge← min(E′);

4: pop(E′,minEdge);

5: // Fold this edge and get its top vertex;

6: g← fold(minEdge);

7: end while

8: return g.

we gather the small-degree vertices to avoid letting them cut and thus reduce the number of vertices
copies.

In the following, we will use the graph shown in Figure 4 as an example to explain the partition process.
The graph shown in Figure 4 is a simple character relationship diagram showing Tom and his parents
and friends. The right side of the graph is the edges that the graph contains, and they are exactly the
input to the algorithm. After the algorithm obtains the graph, it first encodes the graph, encoding it
sequentially into numbers. In order to show the division process intuitively, when using this example
below, it will be explained in the form of characters. In this section, we will partition this graph into two
parts.

6.1 Greedy method

The greedy strategy is an intuitive and simple but effective classical strategy. It does not pursue the
global optimal solution but focuses on the current local optimal choice. It is hoped that a globally
optimal solution or an approximate solution can be generated through step-by-step optimal selection.
This paper embodies the greedy strategy in graph folding and shrinking. The edge with the smallest
weight in the current edge set is selected for folding in each contraction. In this way, the edge of the
vertex with the most minor degree is preferentially folded to gather the vertices with small degree into a
group.

Algorithm 2 describes the above process. E′ is the edge set to be folded, and the algorithm can return
the top vertex of the folded group. The main part of the algorithm is a loop, which selects the minimum-
weight edge minEdge of the current edge set each time and deletes it from the edge set. Then, fold the
edge, get the top vertex of the folded group, and assign it to topVertex, which may be returned lately.

6.2 Transform

The transform stage mainly transforms the graph G to G
′ and adds it to the priority queue.

On the one hand, we are going to convert the graph G, which is shown in Algorithm 3. To begin with,
di copies of each vertex vi are copied, where di is the degree of vi. For edge e = (vi, vj) in G, there is
edge e′ = (vim, vjn) in G

′, where vim represents the mth copy for vertex vi, and vjn represents the nth
copy for vertex vj . The edge e′ is named the dominant edge, and its weight is −1. After connecting
dominant edges, every copy from the same vertex vi is joined together by sequence, which means that
vik is connected to vi(k+1), and vd is connected to v0, where d is the degree of vertex vi. We call the edge
eik,k+1 additional edge for vi.

Taking Figure 4 as an example, according to the description, its converted image is shown in Fig-
ure 3(b). Its dominant edges are black, while additional edges are red for the convenience of distin-
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Algorithm 3 TransformGraph.

Require: G;

Ensure: G
′.

1: for vi ∈ V do

2: // Copy d copies of v.

3: for d−− do

4: v′

ij ← vi;

5: end for

6: // Join each vertices in V
′

i
.

7: for v′

ij ∈ V
′

i do

8: e′i(j,(j+1)%d) ← (v′

ij , v
′

i((j+1)%d));

9: end for

10: // Join dominant edges.

11: for e ∈ E do

12: e′im,jk ← ei,j ;

13: end for

14: end for

15: return G
′ ← (V ′,E′).

guishing. Compared to the graph shown in Figure 4, there are some subtle differences towards dominant
edges. For instance, the origin edge 〈Tom, friend,Alice〉 is changed to 〈Tom2, friend,Alice〉 in the graph
of Figure 3(b).

On the other hand, the degree-and-spatial-locality-prior method is performed with a priority queue.
The priority queue is used to accomplish the design of greedy strategy, where the edges with small weights
are before being processed. Besides, it allows more tightly folding since spatial locality is taken under
consideration by the usage of the priority queue.

The priority queue is a kind of data structure that enables to sort data by priority. It is essentially a
heap, whose physical implementation is an array while logical structure is a tree. The tree of a heap is a
complete binary tree. Therefore, data could be stored in an array by level, and the position of data in the
array could imply its logical position in the complete binary tree. In the tree, the parent node is always
greater or smaller than its child nodes. That is, the greatest or the smallest node can be acquired at the
root of a tree. As a result, we can get the data with the highest priority at the top of the priority queue.
Meanwhile, the FIFO (first-in-first-out) feature of a queue is shown in the situation when manipulating
data with the same priority. Specifically speaking, once there are two edges at the same rank, the first
edge put into the queue will be the first one to dequeue. All in all, it could supply a stable method to
sort data by priority.

In our paper, a priority queue is used to sort the additional edges. We select the essential messages
of an edge to construct a light structure to make up the priority queue by the edges’ weights. As we
mentioned before, a priority queue is a heap in essence. Thus, it could provide an efficient sort for the
additional edges. Besides, its FIFO feature contributes to sorting stability, and graphs are stored by
region to a certain extent so that subgraphs will be folded more tightly. This is because the edge folding
operation is always firstly performed on additional edges connecting to vertices copied from the same
vertex in G, and on its neighbor vertices in the second. That is to say, subgraphs tend to collapse locally
and regionally.

Example 1. Take the graph shown in Figure 4 as an example, if we have a priority queue Q, it may
contain edges flowing such order:

〈Tom1,−1, John1〉, 〈Tom4,−1, Jane2〉,

〈Tom2,−1,Alice〉, 〈Tom3,−1,Mike1〉,

〈John2,−1, Jane1〉, 〈Mike2,−1,Amy〉,

〈John1, 2, John2〉, 〈John2, 2, John1〉,

〈Jane1, 2, Jane2〉, 〈Jane2, 2, Jane1〉,

〈Mike1, 2,Mike2〉, 〈Mike2, 2,Mike1〉,

〈Tom1, 4,Tom2〉, 〈Tom2, 4,Tom3〉,

〈Tom3, 4,Tom4〉, 〈Tom4, 4,Tom1〉.

6.3 Judgment-aware folding

In this subsection, judgment-aware folding is proposed to alleviate the division imbalance, allowing par-
titioning graphs in a more granular perspective.
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Algorithm 4 Folding.

Require: e, arr;

Ensure: u: the top vertex of the current subgraph the edge e belongs to.

1: u← GetTopVertex(e.u);

2: v ← GetTopVertex(e.v);

3: arr[v][0]← u;

4: arr[v].push(u);

5: Update relevant parameters;

6: return u.

Algorithm 5 GetTopVertex.

Require: v, arr;

Ensure: The top vertex that contains v.

1: while arr[v][0] 6= v do

2: v ← arr[v];

3: end while

4: return v.

6.3.1 Edge folding

When it comes to the concept of folding edges, METIS [41] must be mentioned, which was used as the
vertex partition method on the converted graph in [39]. Indeed, METIS [41] is a classical algorithm with
excellent performance. In our paper, we provide another usage of edge folding with a finer perspective,
which is easier to implement yet satisfactory.

Conceptually, folding edges means one vertex overwrites the other vertex connected to it. Therefore,
the two vertices are combined together, and the edge they connect becomes the inside edge. To provide a
practical method, the folding edge has three meanings in our paper. Let e = (u, v) represent the edge to
be folded. Firstly, one vertex overwrites the other vertex, which means they share one vertex together.
For simplicity, we do not generate a new vertex to represent the combination of the vertices but hide one
vertex under the other. For example, vertex v is covered under vertex u, so that v is invisible to the rest
of the graph. Furthermore, this implies that the top vertex actually contains a subgraph. Nevertheless,
vertex v could contain a subgraph, and the covering operation joins the subgraph to the one u contains.
Secondly, the folded edge becomes the inside edge, which means it is invisible to the rest of the graph.
Thirdly, the rest of edges connected to v will be virtually connected to u, since v is invisible and u is the
representation of v.

Just to be clear, not every edge will get folded, such as an edge connected to a subgraph that has
already been split away or the edge between two subgraphs which are contained in the same vertex. In a
word, only the edge that joins two disconnected existing subgraphs will be folded. If a subgraph is split
away, it is regarded as nonexistence.

The process of folding an edge is given by the pseudocode shown in Algorithm 4. The algorithm
requires the edge e = (u, v) which is to be folded and an array arr which records the messages needed for
folding. The algorithm returns the top vertex representing the collapsed subgraph. First, GetTopVertex
function is called to get the top vertices of the two endpoints of this edge, as shown in Algorithm 5.
Second, update the values of the two top vertices in arr and other relevant information. Finally, the top
vertex representing the collapsed subgraph is returned.

We are going to fold the graph of Figure 3(b) as an example. The graph shown in Figure 5 is what it
looks like after all the dominant edges are folded. The number in parentheses in the figure is the number of
dominant edges actually contained in the subgraph represented by the vertex. According to the sequence
in the priority queue Q, the next edge to be folded is 〈John1, 2, John2〉, which could be virtually presented
as 〈Tom1, 2, John2〉 in Figure 6. As for the next edge 〈John2, 2, John1〉, its two ends are contained within
subgraph Tom1, so there is no need to fold it. Then come to the edge 〈Jane1, 2, Jane2〉, which connects
vertices John2 and Tom4. After combining these two subgraphs, shown in Figure 7, we have the subgraph
that meets the limit L and can split it away. At last, we have the subgraphs needed shown in Figure 3(d).

6.3.2 Limit judgment

After folding an edge, the new subgraph may be split away. The process of division is shown in the
pseudocode given by Algorithm 6. The function needs the top vertex v representing the subgraph to be
divided and an array arr recording the folding information. It mainly loops through the following steps.
Step 1, the edge at the row of v in arr is obtained. Step 2, determine whether the edge is dominant, and
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Algorithm 6 Split.

Require: v, arr;

Ensure: file of subgraph.

1: for i← 1 to arr[v].size do

2: e← (v, arr[v][i]);

3: if e.weight == −1 then

4: res.push(e);

5: end if

6: end for

7: return file ← res.

if so, add it to the result set. Having handled all the edges related to v, the result set is stored in a file
and returned.

Limit is set to judge if the subgraph should be split away once the edge is folded. To achieve a
balanced partition, we hope that a total number of edges can be partitioned evenly. For example, there
are k machines storing the graph G together. Then, each machine is expected to contain exactly m/k
edges, where m is the number of edges in G. That is, the limit can be represented as m/k.

Practically, since we perform vertex partition on the converted graph G
′, the sum of vertices collected

is intuitive to achieve. According to the algorithm, after folding domain edges, every domain edge equals
two vertices. Thus, during the following steps, the sum of folded domain edges is half of the one of
vertices. Therefore, the number of vertices could be used to match the limit. Let g′i be the ith subgraph
of g′, and it contains n′i vertices in total.

As mentioned in Subsection 6.3.1, we split the subgraph while folding edges. It inspires us to reset the
limit for the rest of the subgraphs. In other words, the limitation value will be recalculated according
to the remaining edges and machines. This helps to keep balance when the previous split subgraph is
excessive. In this case, once the limit is not adjusted, it would further lead to unbalanced division since
there are not enough edges for the rest to divide according to the old limit. On the contrary, resetting
the limit while splitting provides a finer control of subgraph size.

6.4 Time complexity

Assume that a graph is defined as G = (V ,E), in which V is the vertex set, and E is the edge set. Let
m represent the number of edges in E. Then, G′ = (V ′,E′) refers to the graph transformed from G. In
the new graph G

′, let m′ represent the size of the edge set E′.
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Table 1 Summary of datasets, where most of the information is quoted from [43].

Data set Edges Vertices Density Maximum degree Minimum degree Average degree

in-2004 16.9M 1.4M 1.73× 10−5 2.19× 104 0 23

soc-FourSquare 3.2M 639.0K 1.57× 10−5 1.06× 105 1 10

scircuit 958.9K 171.0K 5.39× 10−5 704 0 9

cant 2.0M 62.5K 1.02× 10−3 77 18 63

mc2depi 2.1M 525.8K 1.14× 10−5 6 2 5

C2000-5 999.8K 2K 5.00× 10−1 1.1× 103 919 999

C1000-9 450.1K 1K 9.01× 10−1 925 868 900

frb45-21-4 387.5K 945 8.69× 10−1 875 732 820

brock200-1 14.8K 200 7.45× 10−1 165 130 148

c-fat200-2 3.2K 200 1.62× 10−1 34 32 32

DSJC500-5 62.6K 500 5.02× 10−1 286 220 250

hamming6-4 704 64 3.49× 10−1 22 22 22

johnson8-4-4 1.9K 70 7.68× 10−1 53 53 53

keller4 9.4K 171 6.49× 10−1 124 102 110

MANN-a27 70.6K 378 9.90× 10−1 374 364 373

p-hat700-1 61K 700 2.49× 10−1 286 75 174

san200-0-7-2 13.9K 200 7.00× 10−1 164 103 139

gen400-p0-9-65 71.8K 400 9.00× 10−1 378 333 359

In this subsection, the time complexity of the G-SPAC algorithm will be analyzed. For briefness,
it is assumed that when graph G is partitioned in balance, graph G

′ is also partitioned in balance.
During the analysis process, the folding operation is selected as a basic operation. Each folding operation
needs to find the outermost vertex of the current vertex. In the worst case, for each subgraph, the
number of operations required for this process increases from 1 to m′/k− 1, that is, the total number of
operations is to be m′(m′/k − 1)/(2k). Then, for k subgraphs, it needs to perform the folding operation
in m′2/(2k)−m′/2 times. Therefore, for a fixed k, the time complexity of the algorithm is m′2.

7 Experiment evaluation

In this section, experiments will be conducted to evaluate the performance of the G-SPAC algorithm from
different perspectives. In these experiments, the number of partitions to be divided is set to 3, which
is the least amount of computing nodes in a distributed system. Performance with different partition
numbers is also examined.

7.1 Data sets

As shown in Table 1 [43], our experiments are carried out on 18 data sets, where in-2004, scircuit, cant,
and mc2depi are in the category of real-world sparse graphs [44] and soc-FourSquare social networks [43],
frb45-21-4 is in the category of BHOSLIB, and the remaining data sets are from DIMACS. The sizes
of the tested datasets vary from hundreds of thousands to tens of millions, and there are four kinds of
graphs among them, including power-law graph, inverse power-law graph, mesh-like graph, and normal
distribution graph.

As mentioned earlier, the power-law graph is a kind of graph in which most vertices have a few
neighbor vertices while very few vertices have a great degree. This paper presents power-law graphs,
such as data sets in-2004, soc-FourSquare, and scircuit, whose probability cumulative curves have been
given in Figure 8(a). We can see that the curve of in-2004 is the flattest one in relative terms. And its
average degree is about twice that of the other two graphs. The curve next to it belongs to the scircuit,
whose difference between the minimum degree and maximum degree is the least one. But the density of
the scircuit is about twice that of the others. As for soc-FourSquare, according to Table 1, it has the
largest gap of vertex degrees among the data sets varying from 1 to more than 100 thousand. However,
its average degree is only 10, which confirms the power law feature.

Compared with the power-law graph, the other graphs seem much more even. For example, unlike
the graphs above, cant, represented in Figure 8(b), shows exact opposite characteristics — most vertices
have large degrees while a few have small degrees. In addition, looking over Figure 8(c), we can find
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Figure 8 (Color online) Degree distributions of adopted graphs. (a) Scircuit and soc-FourSquare; (b) cant; (c) C2000-5;

(d) mc2depi.

Table 2 Comparison of the vertex copies of G-SPAC and SPAC.

Graph SPAC G-SPAC Graph SPAC G-SPAC

mc2depi 36124 4569 c-fat200-2 – 238

cant 49708 57034 DSJC500-5 – 813

scircuit 5607 73202 hamming6-4 – 94

in-2004 199881 14806 johnson8-4-4 – 107

soc-FourSquare – 105332 keller4 – 281

C2000-5 – 3296 MANN-a27 – 652

C1000-9 – 1633 p-hat700-1 – 1009

frb45-21-4 – 1539 san200-0-7-2 – 303

brock200-1 – 329 gen400-p0-9-65 – 406

that C2000-5 takes on another kind of degree distribution — the degree of medium size accounts for
the majority. Meanwhile, its density is relatively high. Referring to the mesh-like graph — mc2depi,
represented in Figure 8(d), contributes to the least gap of degree and the highest balance.

The following experiments are performed on the g++ 7.5.0 with Ubuntu 18.04.4 operating system.
The efficiency and balance of division are respectively measured by using the number of copied vertices
and relative standard deviations.

7.2 Vertex copies

In this subsection, we compare the cost of vertex copies defined in (1) to SPAC algorithm [39], listing
data at (Table 2). Four original data sets were tested to contrast with data from [39], and other data
sets were added to validate G-SPAC’s performance further. Figure 9(a) is the percentage accumulative
histogram, showing the difference in experiment results between two algorithms on the original data sets.
Broadly speaking, our G-SPAC algorithm provides an alternative to the SPAC algorithm on some graphs
and performs much better on other graphs.

Figure 9(a) describes the difference of vertex copies when compared with the SPAC algorithm. It is
clear that on cant datasets, the boundary of two algorithms is around 50%, meaning that they copy about
the same amount of vertex when partitioning this graph. Moreover, the comparison bars of data sets
mc2depi and in-2004 fall into the distinct shape, where our G-SPAC algorithm only takes one-tenth of
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Figure 9 (Color online) (a) Cost of vertex copies; (b) small degree prior and great degree prior.

vertex copies needed for the SPAC algorithm to partition the graphs, which is totally reduced by order of
magnitude. However, G-SPAC does not perform well in the data set scircuit when compared with SPAC.

scircuit and in-2004 are both power-law graphs, but their results vary considerably. We assume that this
is because of the proportion of small-degree vertices. From Figure 8(a) we can know that the probability
cumulative curve of scircuit is abrupter than that of in-2004, which means the proportion of small-degree
vertices in scircuit is greater. It leads to a lower probability of splitting the large-degree vertices, which
is against the design intention of our algorithm – splitting the large-degree vertices is more efficient. So
compared with scircuit, in-2004 creates better quality.

We also noticed that, for data set mc2depi, the cost of copying vertex of the G-SPAC algorithm
is much less than that of SPAC, accounting for only one-tenth. Its degree proportion distribution,
given in Figure 8(d), demonstrates mc2depi is a simple and balanced mesh-like graph. The key point
to partitioning such graphs is accumulating subgraphs locally. Generally, graphs are stored by spatial
sequence to some extent, whereas neighbor vertices are usually coded closely. The priority queue could
employ this feature to ensure the vertex sequence of subgraphs.

We noticed the high density of C2000-5 and subsequent data sets in accordance with Table 1. And
the high-density means vertices are very closely connected. In the algorithm, the edges connected by
the smaller vertices are folded under the remaining major vertices before cutting the larger vertices. For
a graph with distinct sizes and vertices, such as a power-law graph, cutting a large vertex graph can
effectively separate the connected small vertex sets. However, cutting any large vertex is ineffective for a
dense graph. So, the cost of copying the number of vertices is also large.

The cant graph has a similar problem. It is gathered in small units, and each small group has a regular
degree distribution, similar to 20, 20, 50, and 50. For such graphs, the best partitioning would be in small
groups, but our algorithm does not handle it that way. The additional edges of vertices with smaller
degrees are preferentially folded, resulting in different degrees of fusion between different small groups,
blurring their regularity. Therefore, the number of replicated vertices consumed by partitioning the cant
graph is not significantly reduced by using the greedy strategy.

Furthermore, we compare the difference between the G-SPAC algorithms with priority to fold small
weighted edges and that with priority to fold great weighted edges, showing results in Figure 9(b).
Especially, results from power-law graphs are particularly picked out to have a comparative analysis with
percentage accumulative histogram at Figure 9(b). We can see that sorting edges with small-weighted
priority costs less than that with great-weighted priority. The latter method tends to gather vertices
with great degrees and split vertices with small degrees, verifying the efficiency improvement by splitting
large-degree vertices.

7.3 Partition balance

In this subsection, partition balance is examined by looking over the relative standard deviation (RSD)
of partitions. Results for each dataset are given in Figure 10. For comparison, the partition unbalance
is less than 1% and 3% using different strategies in METIS [41], which is used as a case in SPAC. It is
necessary to point out that there is no evidence to indicate that the definition of partition balance in
METIS also applies to SPAC.
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Figure 10 (Color online) Partition balance (RSD) of G-SPAC.

In accordance with Figure 10, it is apparent that there are two entirely different outcomes. Firstly,
to most of the data sets, the RSD is less than 1%. Particularly, some of the graphs could be exactly
divided into k partitions equally. Due to the previous results, our algorithm has excellent performance
dealing with evenly distributed graphs, such as mc2depi, both in terms of algorithm cost and partition
balance. This is because we use the priority queue data structure, combined with the characteristics of
local aggregation on the data set, so as to achieve continuous segmentation of subgraphs.

Another kind of graphs whose degree distribution tends to be balanced, such as C2000-5, C1000-9, and
frb45-21-4. It can be seen from Figure 8(c) that, unlike the grid-like balance graph shown by mc2depi, the
difference between the maximum vertex degree and the minimum vertex degree of each of the three graphs
is about 100, which is relatively small compared to the overall vertex degrees, so it can be considered
that this data set is relatively balanced. The partition balance of smoothly distributed graphs, as stated
above, can be supported in our algorithm.

The power-law graphs used in the experiment can be divided into two types. One has an extremely
unbalanced distribution, which is represented by in-2004 and soc-FourSquare. They are characterized by
distinct clusters, outside of which the vertices are scattered. This kind of power-law graph has excellent
partition balance. The other is distributed in small units, as shown by scircuit. When this kind of graph
is divided, it is easy to merge adjacent small unit groups, which leads to the rapid growth of the size of
the subgraph, and thus the division is relatively unbalanced. But still, its RSD is under 3%.

Similar problems are also reflected in the division of cant and hamming6-4. They are clustered in
small units, and each small group has a regular degree distribution. The result of this small collective
distribution is that they are more inclined to merge into collective units, which is not conducive to
achieving the purpose of a balanced graph division.

7.4 Spatial locality

Next, the experiment is conducted on whether or not the priority queue is used to test the performance
of spatial locality. In other words, it tests the performance if the additional edges from the same vertex
could be partitioned together as far as possible. In the experiment, the control group uses the vector data
structure and uses the sort function to sort them from small to large. Since the sort function is unstable,
it would disorder the edges with the same rank regardless of whether they are from the same vertex. In
this way, the folding phase may be much more disorganized. We compare the data set partition balance,
RSD, of the two methods. The comparison results are shown in Figure 11, which is a percentage-stacked
column chart that visually shows the degree of difference.

From Figure 11, we can see that using a priority queue is not inferior or even superior to using the sort
function on the vector data structure. Except for the data sets mc2depi, scircuit, and hamming6-4, the
priority queue has an overwhelming advantage. Although, from Figure 11, it appears that there are huge
differences in the results of dividing data sets soc-FourSquare, C2000-5, C1000-9, frb45-21-4, DSJC500-5,
hamming6-4, p-hat700-1, san200-0-7-2, and gen400-p0-9-65 between the two methods, actually the values
of RSD are far below 1% (expect for hamming6-4, which performs the RSD of around 9%, which is also
small). In particular, for the data sets mc2depi, keller4, and MANN-a27, the RSD of the division by
the priority queue method is 0, while another method performs relatively large values of RSD (around
50% for mc2depi, 4% for keller, and 17% for MANN-a27). These data sets are similar to the mesh-like
map in scientific research, where the distribution is simple and relatively uniform, and it only needs to
be divided by regions to obtain good division results. One of the characteristics of priority queues is that
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Figure 11 (Color online) Comparison of partition balance (RSD) between G-SPAC without priority queue and G-SPAC.

data is stored in spatial order, so the priority queue can be very suitable for the grid division of scientific
research.

Furthermore, we found that both methods have poor partition balance when splitting graph scircuit.
As has been analyzed before, the data set scircuit is cluster-based, and the scales between different clusters
are similar. For such distributed graphs, greedy strategies tend to break their regularity, resulting in the
mixing of clusters. Combining connected subgraphs makes it easy to perform subgraph segmentation
operations without fully including the cluster, that is, splitting small groups, which is not conducive to
balanced division.

7.5 Limit judgment

The difference between using dynamic/static limits is compared in this subsection. As explained in the
previous Subsubsection 6.3.2, the limit can be obtained by dividing the number of edges in the original
graph by the number of partitions. If this limit remains constant during the partitioning process, it is
called a static decision. Conversely, if the limit is adjusted after each division, it is called a dynamic
decision. These two judgment methods are compared in the above 18 data sets. The results shown in
Figures 12(a) and (b) reflect that in most cases, the dynamic approach is superior to the static one on
both costs of vertex copies and partition balance, except for the case of dealing with data set in-2004.

It is distinct that these two judgment methods have totally different performance for partitioning
balance and vertex copies. Especially for in-2004, the static judgment method contributes to a perfect
balance of partitioning while a large number of vertex copies are required. In addition, as shown in
Figure 12(b), though it seems the inferior balance of the dynamic method for in-2004, brock200-1, and
hamming6-4, actually the RSD values of the dynamic method for in-2004 and brock200-1 are far below
1%, and the RSD value of the dynamic method is only slightly higher than that of the static method for
hamming6-4. All in all, it can be seen from the results that the dynamic method has a better division
balance than the static method, and the number of vertices copied by the dynamic method is less than
that of the static method.

The advantage of the dynamic approach is that the division limits can be readjusted to make the
remainder more balanced under most conditions. This determination method is especially advantageous
for situations where there is a division imbalance.

7.6 Partition numbers

This subsection will discuss the impact of different numbers of partition nodes on partition performance.
The experiment will make a comprehensive comparison from the number of replicated vertices and par-
tition balance. Experiments show that for most datasets, the number of vertices required to replicate
increases with the number of partition nodes. And the partition balance is almost the same for most of
them.

As shown in Figures 13(a) and (b), overall, the number of replicated vertices increases with the number
of partition nodes. This is because more partition nodes usually mean more connection points are needed
to connect the individual subgraphs into a complete graph. That is, more vertices are copied. On the
contrary, for the graph scircuit, when the number of partition nodes increases, the number of vertices
required to be copied is greatly reduced. However, it comes at the expense of a decrease in partition
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Figure 12 (Color online) (a) Cost of vertex copies by two decisions; (b) partition balance by two decisions.
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Figure 13 (Color online) (a) Cost of vertex copies with different numbers of partitions; (b) RSD with different numbers of

partitions.

balance. In comparison, datasets such as mc2depi, soc-FourSqure, and in-2004 have better stability,
performing well under different numbers of partition nodes.

8 Conclusion

In this paper, we use the greedy strategy to improve the SPAC algorithm and compare the partition
balance and partition efficiency on six data sets. The results of experiments show that, in general, the
G-SPAC algorithm is not inferior to the SPAC algorithm in terms of the number of replicated vertices.
In addition, we also tested the partition balance of the algorithm. For the vast majority of data sets, the
division balance is less than 3%, while the cant data set has poor division balance, which is related to its
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distribution. In particular, for mesh-like graphs such as mc2depi, the G-SPAC algorithm has excellent
performance. It not only has a high division balance but also has far fewer replicated vertices than the
SPAC algorithm.

At present, the processing of graphs tends to be parallelized, which can greatly reduce the division
time. Therefore, the next step in improving our algorithm is to parallelize it. And the difficulty lies in
realizing a greedy approach in parallelization with a priority queue.

Acknowledgements This work was partially supported by National Natural Science Foundation of China (Grant Nos. 62172157,

62202149), Key R&D Program of Hunan Province (Grant No. 2023GK2002), and Programs of Shenzhen and Guangdong Province

(Grant Nos. 2023A1515012915, JCYJ20210324135409026). The authors would like to thank the reviewers for their invaluable and

helpful comments and revision suggestions on improving the manuscript.

References

1 Myers S A, Sharma A, Gupta P, et al. Information network or social network?: the structure of the Twitter follow graph.
In: Proceedings of the 23rd International World Wide Web Conference, Seoul, 2014. 493–498

2 Wang T Y, Chen Y, Zhang Z B, et al. Understanding graph sampling algorithms for social network analysis. In: Proceed-
ings of the 31st IEEE International Conference on Distributed Computing Systems Workshops (ICDCS 2011 Workshops),
Minneapolis, 2011. 123–128

3 Shuang K, Su S. PAIDD: a hybrid P2P-based architecture for improving data distribution in social networks. Sci China Inf
Sci, 2014, 57: 042309

4 Shin Y Y, Yoon Y. Incorporating dynamicity of transportation network with multi-weight traffic graph convolutional network
for traffic forecasting. IEEE Trans Intell Transp Syst, 2022, 23: 2082–2092

5 Wehmuth K, Costa B, Bechara J V, et al. A multilayer and time-varying structural analysis of the Brazilian air transportation
network. In: Proceedings of the Latin America Data Science Workshop co-located with 44th International Conference on
Very Large Data Bases (VLDB 2018), Rio de Janeiro, 2018. 57–64

6 Yu Y F, Xu G X, Jiang M, et al. Joint transformation learning via the L2,1-norm metric for robust graph matching. IEEE
Trans Cybern, 2021, 51: 521–533

7 Peng X, Yu Z D, Yi Z, et al. Constructing the L2-graph for robust subspace learning and subspace clustering. IEEE Trans
Cybern, 2017, 47: 1053–1066

8 Wu X M, Du M N, Chen W H, et al. Salient object detection via region contrast and graph regularization. Sci China Inf
Sci, 2016, 59: 032104

9 Xiao H, Chen Y D, Shi X D. Knowledge graph embedding based on multi-view clustering framework. IEEE Trans Knowl
Data Eng, 2021, 33: 585–596

10 Shen Y, Ding N, Zheng H T, et al. Modeling relation paths for knowledge graph completion. IEEE Trans Knowl Data Eng,
2021, 33: 3607–3617

11 Zhang L L, Li D W, Xi Y G, et al. Reinforcement learning with actor-critic for knowledge graph reasoning. Sci China Inf
Sci, 2020, 63: 169101

12 Mayer C, Tariq M A, Mayer R, et al. GrapH: traffic-aware graph processing. IEEE Trans Parallel Distrib Syst, 2018, 29:
1289–1302

13 Meyerhenke H, Sanders P, Schulz C. Parallel graph partitioning for complex networks. IEEE Trans Parallel Distrib Syst,
2017, 28: 2625–2638

14 Zhang Y, Liao X F, Jin H, et al. HotGraph: efficient asynchronous processing for real-world graphs. IEEE Trans Comput,
2017, 66: 799–809

15 Zhang W D, Zhang M Y. Graph partitioning algorithm with LSH: poster extended abstract. In: Proceedings of the IEEE
International Conference on Cluster Computing, Belfast, 2018. 166–167

16 Delling D, Goldberg A V, Razenshteyn I P, et al. Graph partitioning with natural cuts. In: Proceedings of the 25th IEEE
International Symposium on Parallel and Distributed Processing, Anchorage, 2011. 1135–1146

17 Vikas N. Computational complexity of graph partition under vertex-compaction to an irreflexive hexagon. In: Proceedings
of the 42nd International Symposium on Mathematical Foundations of Computer Science, Aalborg, 2017

18 McCrabb A, Bertacco V. Optimizing vertex pressure dynamic graph partitioning in many-core systems. IEEE Trans Comput,
2021, 70: 936–949

19 Soudani N M, Fatemi A, Nematbakhsh M. PPR-partitioning: a distributed graph partitioning algorithm based on the
personalized PageRank vectors in vertex-centric systems. Knowl Inf Syst, 2019, 61: 847–871

20 Jiang H, Zhu D M, Xie Z C, et al. A new upper bound based on vertex partitioning for the maximum k-plex problem. In:
Proceedings of the 30th International Joint Conference on Artificial Intelligence, 2021. 1689–1696

21 Kwok T C, Lau L C, Lee Y T. Improved Cheeger’s inequality and analysis of local graph partitioning using vertex expansion
and expansion profile. SIAM J Comput, 2017, 46: 890–910

22 Zhang C Z, Wei F, Liu Q, et al. Graph edge partitioning via neighborhood heuristic. In: Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, 2017. 605–614

23 Ayall T, Duan H C, Liu C H, et al. Taking heuristic based graph edge partitioning one step ahead via offstream partitioning
approach. In: Proceedings of the 37th IEEE International Conference on Data Engineering, Chania, 2021. 2081–2086

24 Ji S W, Bu C Y, Li L, et al. Local graph edge partitioning with a two-stage heuristic method. In: Proceedings of the 39th
IEEE International Conference on Distributed Computing Systems, Dallas, 2019. 228–237

25 Li H, Yuan H, Huang J. Real-time edge repartitioning for dynamic graph. In: Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, Beijing, 2019. 2125–2128

26 Mayer R, Jacobsen H. Hybrid edge partitioner: partitioning large power-law graphs under memory constraints. In: Proceed-
ings of the International Conference on Management of Data, 2021. 1289–1302

27 Zhang S, Jiang Z T, Hou X Z, et al. An efficient and balanced graph partition algorithm for the subgraph-centric programming
model on large-scale power-law graphs. In: Proceedings of the 41st IEEE International Conference on Distributed Computing
Systems, Washington DC, 2021. 68–78

28 Wang J Y, Zhang C F. Analysis and evaluation of the GAS model for distributed graph computation. In: Proceedings of
the 37th IEEE International Conference on Distributed Computing Systems Workshops, Atlanta, 2017. 283–285

29 Zhou A C, Ibrahim S, He B S. On achieving efficient data transfer for graph processing in geo-distributed datacenters.
In: Proceedings of the 37th IEEE International Conference on Distributed Computing Systems, Atlanta, 2017. 1397–1407

30 Sheng F, Cao Q, Jiang H, et al. GraBi: communication-efficient and workload-balanced partitioning for bipartite graphs.
In: Proceedings of the 49th International Conference on Parallel Processing, Edmonton, 2020

31 Miao H, Liu X Y, Huang B, et al. A hypergraph-partitioned vertex programming approach for large-scale consensus op-
timization. In: Proceedings of the IEEE International Conference on Big Data (IEEE BigData 2013), Santa Clara, 2013.
563–568

https://doi.org/10.1007/s11432-014-5084-x
https://doi.org/10.1109/TITS.2020.3031331
https://doi.org/10.1109/TCYB.2019.2912718
https://doi.org/10.1109/TCYB.2016.2536752
https://doi.org/10.1007/s11432-015-5420-9
https://doi.org/10.1109/TKDE.2019.2931548
https://doi.org/10.1109/TKDE.2020.2970044
https://doi.org/10.1007/s11432-018-9820-3
https://doi.org/10.1109/TPDS.2018.2794989
https://doi.org/10.1109/TPDS.2017.2671868
https://doi.org/10.1109/TC.2016.2624289
https://doi.org/10.1109/TC.2021.3059386
https://doi.org/10.1007/s10115-019-01328-3
https://doi.org/10.1137/16M1079816


Chen Y D, et al. Sci China Inf Sci August 2025, Vol. 68, Iss. 8, 182101:19

32 Bourse F, Lelarge M, Vojnovic M. Balanced graph edge partition. In: Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, New York, 2014. 1456–1465

33 Mayer C, Mayer R, Tariq M A, et al. ADWISE: adaptive window-based streaming edge partitioning for high-speed graph
processing. In: Proceedings of the 38th IEEE International Conference on Distributed Computing Systems, Vienna, 2018.
685–695

34 Meyerhenke H, Sanders P, Schulz C. Parallel graph partitioning for complex networks. In: Proceedings of the IEEE Inter-
national Parallel and Distributed Processing Symposium, Hyderabad, 2015. 1055–1064

35 Xie C, Yan L, Li W J, et al. Distributed power-law graph computing: Theoretical and empirical analysis. In: Proceedings
of the Advances in Neural Information Processing Systems 27, Montreal, 2014. 1673–1681

36 Suri S, Vassilvitskii S. Counting triangles and the curse of the last reducer. In: Proceedings of the 20th International
Conference on World Wide Web, Hyderabad, 2011. 607–614

37 Gonzalez J E, Low Y, Gu H J, et al. PowerGraph: distributed graph-parallel computation on natural graphs. In: Proceedings
of the 10th USENIX Symposium on Operating Systems Design and Implementation, Hollywood, 2012. 17–30

38 Abou-Rjeili A, Karypis G. Multilevel algorithms for partitioning power-law graphs. In: Proceedings of the 20th International
Parallel and Distributed Processing Symposium (IPDPS 2006), Rhodes Island, 2006

39 Li L D, Geda R, Hayes A B, et al. A simple yet effective balanced edge partition model for parallel computing. Proc ACM
Meas Anal Comput Syst, 2017, 1: 1–21

40 Hendrickson B, Kolda T G. Graph partitioning models for parallel computing. Parallel Computing, 2000, 26: 1519–1534
41 Karypis G, Kumar V. Metis-unstructured graph partitioning and sparse matrix ordering system, version 2.0. Appl Phys

Lett, 1995, 97: 124101
42 Fan W F, Xu J B, Wu Y H, et al. Parallelizing sequential graph computations. In: Proceedings of the ACM International

Conference on Management of Data, Chicago, 2017. 495–510
43 Rossi R A, Ahmed N K. The network data repository with interactive graph analytics and visualization. In: Proceedings of

the 29th AAAI Conference on Artificial Intelligence, Austin, 2015. 4292–4293
44 Davis T A, Hu Y F. The University of Florida sparse matrix collection. ACM Trans Math Softw, 2011, 38: 1–25

https://doi.org/10.1145/3084451
https://doi.org/10.1016/S0167-8191(00)00048-X
https://doi.org/10.1145/2049662.2049663

	Introduction
	Background
	Vertex partition
	Edge partition

	Related work
	Partition cost
	Load balancing
	SPAC algorithm

	Problem definition
	Algorithm overview
	Detailed design
	Greedy method
	Transform
	Judgment-aware folding
	Edge folding
	Limit judgment

	Time complexity

	Experiment evaluation
	Data sets
	Vertex copies
	Partition balance
	Spatial locality
	Limit judgment
	Partition numbers

	Conclusion

