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Quantum entanglement is a fundamental aspect of quantum

physics [1]. A key area of research in multipartite entangle-

ment focuses on subspaces composed entirely of genuinely

multipartite entangled states, known as the genuinely entan-

gled subspace (GES) [2]. A notable example of a GES is the

GHZ-W subspace, spanned by the GHZ and W states. The

GHZ-W subspace has garnered significant attention due to

its broader implications in multipartite entanglement theory.

Notably, the three-qubit GHZ-W subspace serves as a uni-

versal resource for three-qubit entangled symmetric states.

However, experimentally constructing three-qubit entangled

symmetric resources remains challenging due to the perva-

sive influence of quantum noise. Consequently, accurately

detecting the entanglement of the GHZ-W subspace has be-

come a critical task in quantum information science. Re-

cently, several approaches have been proposed to tackle this

challenge, including subspace self-testing [2] and subspace

verification [3].

We first review the framework of subspace verification.

Let D(V) be the set of density operators acting on the target

subspace V and Π be the projector onto V . For a sequence

of states σ1, . . . , σN , our task is to distinguish between the

following two cases: (i) good: for all i ∈ [N ], Tr[Πσi] = 1;

(ii) bad: for all i ∈ [N ], Tr[Πσi] 6 1 − ǫ for some fixed

ǫ. To achieve this, assume that we have a set of POVM

elements M. For each state, we select a POVM element

M ∈ M with probability µ(M) and perform the correspond-

ing POVM with two results {M, 11−M}, where the M out-

puts “pass” and the 11−M outputs “fail”. The operator M

is called a test operator and we require Tr[Mρ] = 1 for all

ρ ∈ D(V) and M ∈ M. The sequence of states passes the

verification procedure if all outcomes are “pass”. Define the

verification operator as Ω =
∑

M∈M µ(M)M . If Tr[Πσi] is

upper bounded by 1−ǫ, the probability of passing N tests is

bounded by (1−ν(Ω)ǫ)N , where ν(Ω) := 1−λmax(Ω̂) is the

spectral gap, Ω̂ := (11 − Π)Ω(11 − Π), and λmax(X) denotes

the maximum eigenvalue of X. To achieve a confidence level

of 1− δ, the minimum required number of state copies is

N(Ω) =

⌈
1

ln(1 − ν(Ω)ǫ)−1
ln

1

δ

⌉
≈

⌈
1

ν(Ω)
× 1

ǫ
ln

1

δ

⌉
. (1)

This equality provides a guide for the construction of effi-

cient verification strategies by maximizing ν(Ω). If there is

no restriction on measurements, the globally optimal strat-

egy is achieved by simply performing the projective mea-

surement {Π, 11− Π}, and we have

NG(Π) =

⌈
1

ǫ
ln

1

δ

⌉
. (2)

However, this strategy requires highly entangled measure-

ments if the target subspace is genuinely entangled, which

are experimentally challenging. In the following, we pro-

pose two efficient strategies to verify the subspace V3 :=

span{|GHZ〉, |W〉} with local measurements, where

|GHZ〉 := 1√
2
(|000〉+ |111〉), (3a)

|W〉 := 1√
3
(|001〉+ |010〉 + |100〉). (3b)

We begin by constructing multiple test operators based on

one-way adaptive measurements. Then, we propose two ef-

ficient verification strategies and analyze complexities.

Test operators. We randomly measure a qubit in the

Pauli basis P ∈ {X,Z}. Each measurement yields one of

two possible outcomes, “+” and “−”. The remaining two

qubits are projected into a two-qubit subspace spanned by

two post-measurement states, called the post-measurement

subspace. Subsequently, we apply the two-qubit subspace

test operator. Therefore, the corresponding one-way adap-

tive test operators induced by P are given by

MP = P+ ⊗M+
P + P− ⊗M−

P . (4)
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Concretely, for the post-measurement subspace induced by

the Pauli Z measurement, the test operators are

M+
Z = 11− |11〉〈11|, M−

Z = |00〉〈00|+ |11〉〈11|. (5)

The test operator induced by the Z measurement is

MZ = |0〉〈0| ⊗M+
Z + |1〉〈1| ⊗M−

Z . (6)

Actually, this test operator can be implemented non-

adaptively by performing the Z measurements on each

qubit. Likewise, for the post-measurement subspace induced

by the X measurement, the test operators are given by

M+
X = |x+x+〉〈x+x+|+ |x̄+x̄+〉〈x̄+x̄+|, (7)

M−
X = 11− |x−x′

−〉〈x−x′
−|, (8)

where the states are defined as |x+〉 = cosα|0〉 + sinα|1〉,
|x̄+〉 = sinα|0〉− cosα|1〉, |x−〉 = (|0〉+ei

π

3 |1〉)/
√
2, |x′

−〉 =
(|0〉+ e−iπ

3 |1〉)/
√
2, and α = arctan(

√
5− 1)/2. The result-

ing test operator induced by the X measurement is

MX = |+〉〈+| ⊗M+
X + |−〉〈−| ⊗M−

X . (9)

An important observation from quantum state verifica-

tion is that the local symmetry of the target can be exploited

to create more test operators from current test operators [4].

Thus, we consider the following two local symmetries of V3.

(1) Qubit permutations:

Vσ :=
∑

i1,i2,i3

|iσ−1(1)iσ−1(2)iσ−1(3)〉〈i1i2i3|, (10)

where σ ranges over all elements of the symmetric group S3.

(2) Local unitaries: U1 := R⊗3
2π/3

and U2 := R⊗3
4π/3

, where

Rφ := |0〉〈0| + eiφ|1〉〈1|.
Notice thatMZ is invariant under the above local symme-

tries, so we focus on MX . First, for the qubit permutation

symmetry, we define MX,i (i = 1, 2, 3) as a set of new test

operators, where an X measurement is performed on the i-

th qubit, followed by a two-qubit verification based on the

measurement result. Then, for the local unitary symmetry,

U†
j MX,iUj (j = 1, 2) are also valid one-way adaptive test

operators. Physically, U†
j MX,iUj corresponds to first ap-

plying the local rotation operator Uj to the quantum state,

followed by the test operator MX,i.

XZ strategy. Now, we propose a verification strategy us-

ing the 4 test operators constructed above, termed the XZ

strategy. In each round, we select P ∈ {X,Z} according

to µ(P ). If the Z measurement is chosen, we perform MZ .

Otherwise, we choose a qubit i ∈ {1, 2, 3} uniformly at ran-

dom to perform MX,i. Mathematically, the verification op-

erator is

ΩXZ = µ(Z)MZ +
1

3
µ(X)

3∑

i=1

MX,i. (11)

We numerically analyze the performance of the verifi-

cation operator ΩXZ and show that max ν(ΩXZ ) ≈ 0.262

when µ(Z) ≈ 0.424. Therefore, to achieve a confidence level

of 1− δ, we have

N(ΩXZ) ≈
⌈
3.817× 1

ǫ
ln

1

δ

⌉
. (12)

Rotation strategy. Then, we introduce the rotation strat-

egy with the 10 test operators. In each round, we select

P ∈ {X,Z} according to a probability distribution µ(P ). If

the Z measurement is chosen, we perform MZ . Otherwise,

we apply U1, U2 or ∅ (no unitary at all) uniformly at ran-

dom, followed by choosing one qubit uniformly at random

to perform MX,i. This can be written as

M̂X :=
1

3

3∑

i=1

M ′
X,i, (13)

where M ′
X,i :=

1
3
(MX,i +U†

1MX,iU1 +U†
2MX,iU2). There-

fore, the verification operator for this strategy is given by

Ωµ := µ(Z)MZ + µ(X)M̂X . (14)

The optimal probability distribution can be determined an-

alytically, as shown in Proposition 1.

Proposition 1. The strategy operator defined in (14),

achieves the largest spectral gap of 141/317 when µ⋆(X) =

240/317.

Figure 1 (Color online) Comparison of the total number of

state copies required to verify the three-qubit GHZ-W subspace

for different strategies with fixed δ = 0.001. Here, NG is given

in (2), NXZ is given in (12), and NR is given in (15).

Therefore, to achieve a confidence level of 1− δ, we have

N(Ωµ⋆ ) =

⌈
317

141
× 1

ǫ
ln

1

δ

⌉
≈

⌈
2.248 × 1

ǫ
ln

1

δ

⌉
. (15)

In Figure 1, we compare the efficiency of these strategies.
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