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Abstract. Genuinely entangled subspaces (GESs) are valuable resources in quantum information science. Among
these, the three-qubit GHZ-W GES, spanned by the three-qubit Greenberger-Horne-Zeilinger (GHZ) and W states,
is a universal and crucial entangled subspace resource for three-qubit systems. In this work, we develop two adap-
tive verification strategies, the XZ strategy and the rotation strategy, for the three-qubit GHZ-W GES using local
measurements and one-way classical communication. These strategies are experimentally feasible, efficient and
possess a concise analytical expression for the sample complexity of the rotation strategy, which scales approxi-
mately as 2.248ϵ−1 ln δ−1, where ϵ is the infidelity and 1− δ is the confidence level. Furthermore, we comprehen-
sively analyze the two-dimensional two-qubit subspaces and classify them into three distinct types, which include
unverifiable entangled subspaces, revealing intrinsic limitations in local verification of entangled subspaces.

1 Introduction

Quantum entanglement, a fundamental aspect of quantum physics, has garnered significant attention in the realm
of quantum information science [1]. Among the most prominent examples of multipartite entanglement are the
Greenberger-Horne-Zeilinger (GHZ) and W states, which serve as paradigmatic instances [1–3]. Three-qubit
entanglement is notably classified into two distinct types, represented by the GHZ and W states [4–6]. A key
area of research in multipartite entanglement focuses on subspaces composed entirely of entangled states, known
as the completely entangled subspaces (CESs). These subspaces have proven invaluable in applications such as
quantum error correction [7–10] and quantum cryptography [11]. A particularly important class of completely
entangled subspaces is the genuinely entangled subspace (GES), which consists solely of genuinely multipartite
entangled states [12–17]. A notable example of a GES is the GHZ-W subspace, spanned by the GHZ and W
states [14]. This subspace is also an entangled symmetric subspace, where symmetry plays a fundamental role
in quantum information theory [18, 19], underlying many key applications. The GHZ-W subspace has garnered
significant attention due to its foundational role in quantum teleportation [20, 21] and its broader implications in
multipartite entanglement theory [22–25]. Notably, the three-qubit GHZ-W subspace serves as a universal resource
for three-qubit entangled symmetric states [26], which has been extensively studied in [5, 18, 22].

However, experimentally constructing three-qubit entangled symmetric resources remains challenging due to
the pervasive influence of quantum noise. Consequently, accurately detecting the entanglement of the GHZ-W
subspace has become a critical task in quantum information science. Quantum tomography, the standard method
for characterizing entire quantum systems, provides comprehensive insight but is highly resource intensive [27,28].
To address this limitation, numerous resource-efficient methods have been developed to certify quantum sys-
tems [29–34]. Notably, quantum state verification [35–48] aims to confirm whether quantum states are prepared
as intended, with experimental implementations demonstrating its effectiveness [49–51]. These verification strate-
gies primarily use local operations and classical communication (LOCC) [52] to detect entangled states. Naturally,
certifying entangled subspaces, particularly GESs, has emerged as a critical task in quantum information science.
However, entanglement certification within a subspace is inherently complex because of the structural intricacies of
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quantum subspaces. Recently, several approaches have been proposed to tackle this challenge, including subspace
self-testing [13, 14] and subspace verification [53–57].

In this work, building on the general framework of quantum subspace verification [53–57], our objective is to
construct efficient strategies to verify the three-qubit GHZ-W subspace, which has not been considered in previous
works. The verification or self-testing of GHZ states [42, 43, 58, 59], W states [60], and their superpositions [18]
have been considered before. However, the verification of the GHZ-W subspace is highly nontrivial, as it is inher-
ently more complex than individual entangled states. To address this challenge, we construct verification strategies
using one-way adaptive local measurements. Specifically, we measure one qubit and then adaptively adjust the
second measurement conditioned on the measurement outcome. This approach is intuitive, as it reduces the prob-
lem to verifying a much simpler two-qubit subspace. We comprehensively analyze two-dimensional two-qubit
subspaces and classify them into three distinct types: unverifiable, verifiable, and perfectly verifiable subspaces. In
particular, we prove that unverifiable subspaces cannot be certified by any LOCC strategy that relies on projective
measurements. For the remaining two categories, we propose tailored verification strategies. Building on these re-
sults, we develop two adaptive verification strategies for the three-qubit GHZ-W subspace, the XZ strategy and the
rotation strategy, using local measurements and one-way classical communication. The XZ strategy requires only
four measurement settings. The rotation strategy uses ten measurement settings, but achieves higher efficiency than
the XZ strategy. Notably, our strategies are experimentally friendly, requiring only LOCC, making them suitable
for current quantum systems. Furthermore, our strategies offer new tools for analyzing the entanglement structure
of mixed states within entangled subspace, contributing to the broader goal of certifying entanglement in realistic,
noisy quantum systems.

Related Works. For a self-contained review, we summarize the related works as follows:
• State Verification. Sample-optimal strategies have been developed for a variety of pure quantum states, in-

cluding two-qubit states [35, 36], bipartite maximally entangled states [37, 38], general bipartite pure states [39],
GHZ states [42, 43], stabilizer states [44], and antisymmetric basis states [47]. Efficient protocols have also been
proposed for verifying other pure states such as hypergraph states [45], Dicke and W states [60], phased Dicke
states [47], Affleck-Kennedy-Lieb-Tasaki states [55], and even arbitrary entangled pure states [61]. Many of these
protocols leverage adaptive measurements [39, 47, 60, 61].

• Subspace Verification. The concept of verifying quantum subspaces was first introduced in [57], aiming to
verify the output of fault-tolerant quantum computation in measurement-based quantum computation. It was later
extended to verify ground states of local Hamiltonians [55, 56]. More recently, subspace verification has been
applied to verify the implementation of quantum error correction codes [53, 54].

The remainder of this paper is organized as follows. In Section 2, we provide a brief overview of the sub-
space verification framework. Section 3 focuses on the classification and verification of two-qubit subspaces. In
Section 4, we present two efficient verification strategies for the three-qubit GHZ-W subspace.

2 Subspace verification

Let us first review the framework for the statistical verification of the quantum subspace [53–57]. Suppose that our
objective is to prepare target states within a subspace V , but in practice we obtain a sequence of states σ1, · · · , σN
in N runs. Let D(V) be the set of density operators acting on V and Π be the projector onto V . Our task is to
distinguish between the following two cases:

1. Good: for all i ∈ [N ], Tr[Πσi] = 1;

2. Bad: for all i ∈ [N ], Tr[Πσi] ⩽ 1− ϵ for some fixed ϵ.

To achieve this, assume that we have access to a set of POVM elements M. Define a probability mass µ : M →
[0, 1], satisfying

∑
M∈M µ(M) = 1. For each state, we select a POVM element M ∈ M with probability µ(M)

and perform the corresponding POVM with two results {M,1−M}, where the M outputs “pass” and the 1−M
outputs “fail”. The operatorM is called a test operator. To ensure that all states in the target subspace pass the test,
we require Tr[Mρ] = 1 for all ρ ∈ D(V) and M ∈ M. The sequence of states passes the verification procedure
if all outcomes are “pass”.

Mathematically, we can characterize the verification strategy by the verification operator, defined as

Ω =
∑

M∈M
µ(M)M. (1)
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If Tr[Πσi] is upper bounded by 1− ϵ, the maximal probability that σi passes each test is [55–57]

max
σ:Tr[Πσ]⩽1−ϵ

Tr[Ωσ] = 1− (1− λmax(Ω̂))ϵ, (2)

where Ω̂ := (1−Π)Ω(1−Π) is the projected effective verification operator and λmax(X) denotes the maximum
eigenvalue of the Hermitian operatorX . If the states are independently prepared, the probability of passingN tests
is bounded by [37]

N∏
i=1

Tr[Ωσi] ⩽ (1− ν(Ω)ϵ)N , (3)

where ν(Ω) := 1 − λmax(Ω̂) is the spectral gap. To achieve a confidence level of 1 − δ, the minimum required
number of state copies is given by

N(Ω) =

⌈
1

ln(1− ν(Ω)ϵ)−1
ln

1

δ

⌉
≈

⌈
1

ν(Ω)
× 1

ϵ
ln

1

δ

⌉
. (4)

This equality provides a guide for the construction of efficient verification strategies by maximizing ν(Ω). If there
is no restriction on measurements, the globally optimal strategy is achieved by simply performing the projective
measurement {Π,1−Π}, which produces ν(Π) = 1 and

NG(Π) =

⌈
1

ϵ
ln

1

δ

⌉
. (5)

However, implementing the globally optimal strategy requires highly entangled measurements if the target sub-
space is genuinely entangled, which are experimentally challenging. Consequently, we focus on the verification
of the subspace under the locality constraint, where each test operator M is a local projector. These strategies
significantly improve experimental feasibility while still enabling efficient verification of the target subspace.

3 Two-qubit subspace verification

For the three-qubit target subspace to be verified, measuring one qubit naturally projects the remaining two qubits
into a two-qubit subspace, conditioned on the measurement outcome. Therefore, we begin by discussing the
verification of two-qubit subspaces. Remarkably, two-dimensional two-qubit subspaces can be classified into three
distinct types, each characterized by its unique properties. The basic properties of two-dimensional subspaces
of two-qubits were clarified in [62]. In particular, we demonstrate that there exists a two-dimensional two-qubit
subspace that cannot be verified by any strategy using LOCC. For the remaining two categories, we propose tailored
verification strategies and elaborate their corresponding efficiencies.

3.1 When a two-qubit subspace is verifiable?

First, we identify the types of subspaces that can be verified. Intuitively, a subspace is verifiable if its complement
subspace can be spanned by product states; otherwise, it cannot be verified. Now, consider a two-dimensional
subspace V of a two-qubit Hilbert space, its complement subspace is denoted by V⊥. A key insight from quantum
state verification is that product states in the complement subspace should be identified first [35]. In particular,
two-qubit product states can be efficiently verified using the following method. Any two-qubit pure state |ψ⟩ can
be uniquely represented by a 2× 2 matrix ψ as [63, 64]:

|ψ⟩ = 1⊗ ψ|Φ⟩, (6)

where |Φ⟩ = (|00⟩ + |11⟩)/
√
2 is the maximally entangled state. The concurrence of |ψ⟩, defined as C(|ψ⟩) :=

|det(ψ)| ⩽ 1, quantifies its entanglement [63], where det(A) is the determinant of the square matrix A. Specially,
if C(|ψ⟩) = 0, |ψ⟩ is a product state. This criterion enables a direct method for determining the number of product
states in V . Let |α⟩ and |β⟩ be two linearly independent states spanning V . Then all states in V can be expressed
as |α⟩+ λ|β⟩ (unnormalized) for some λ ∈ C. By solving the equation det(α+ λβ) = 0, we can find all product
states in V . The following lemma shows that the number of distinct product states contained in V is equal to that
in V⊥.
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Lemma 1. For any two-dimensional subspace V of a two-qubit Hilbert space, the number of distinct product
states in V equals that in V⊥, and is either 1, 2, or +∞.

Proof. Here, we disregard global phase factors. Let N be the number of distinct product states in V . Since the
maximum dimension of a CES in two-qubit Hilbert space is 1 [65, 66] and V is two-dimensional, it holds that
N ⩾ 1.

First, suppose that there are at least two distinct product states in V , i.e., N ⩾ 2. Without loss of generality,
using the Schmidt decomposition, we can write these two states as |00⟩ and |ab⟩, where |a⟩, |b⟩ are single-qubit
states. In this case, there must be two product states in V⊥, given by |1b̄⟩ and |ā1⟩, where |ā⟩⟨ā|+ |a⟩⟨a| = 1 and
similarly for |b̄⟩. Then, consider the following cases:

1. If |a⟩ = |0⟩ or |b⟩ = 0, there are infinitely many product states in V , e.g., V = span{|00⟩, |01⟩} or
V = span{|00⟩, |10⟩}. In both cases, the orthogonal complement V⊥ also contains infinitely many product
states, with {|10⟩, |11⟩} or {|01⟩, |11⟩} being orthogonal product bases in this subspace, respectively.

2. Otherwise, |00⟩ and |ab⟩ (|1b̄⟩ and |ā1⟩) are the only product states in V (V⊥).

The above constructive proof reveals that, if V has at least two distinct product states, then the number of distinct
product states in V equals that in V⊥, and is either 2 or +∞.

Then, we consider the case N = 1, where there is only one product state in V . Again, since the maximum
dimension of a CES two-qubit Hilbert space is 1 and V⊥ is two-dimensional, it holds that V⊥ must have at least
one product state. We prove by contradiction that V⊥ has exactly one product state. Assume that V⊥ contains at
least two distinct product states. It follows from the proof for the case N ⩾ 2 that, there are 2 or +∞ distinct
product states in V , thus contradicting the assumption that N = 1. We are done.

We now show that whether V is verifiable is determined by the number of distinct product states in V . Based
on Lemma 1, we classify all two-dimensional subspaces of a two-qubit Hilbert space into three different types:
verifiable, perfectly verifiable, and unverifiable subspaces.

Verifiable and perfectly verifiable subspaces. If V only contains two distinct product states, then, by Lemma 1,
we can span V⊥ using two product states. This implies that we can verify the subspace with two test operators:

Mi = 1− |τi⟩⟨τi|, i = 0, 1, (7)

where |τi⟩ are the product states in V⊥. We call such a subspace V a verifiable subspace. Specifically, if these are
two orthogonal product states, i.e., ⟨τ0|τ1⟩ = 0, we can verify the subspace with only one test operator of the form:

M = 1− (|τ0⟩⟨τ0|+ |τ1⟩⟨τ1|). (8)

In this case, we refer to V as a perfectly verifiable subspace. Obviously, a subspace with infinitely many product
states is also a perfectly verifiable subspace, as it is evident from the constructive proof of Lemma 1 that we can
always find two orthogonal product states in the corresponding complement subspace.

For example, the subspace spanned by |00⟩ and (|0⟩ + |1⟩)⊗2/2 is a verifiable subspace, since its complement
subspace contains two non-orthogonal product states |1⟩⊗ (|0⟩− |1⟩)/

√
2 and (|0⟩− |1⟩)⊗|1⟩/

√
2. The subspace

spanned by (|00⟩+|11⟩)/
√
2 and (|00⟩−|11⟩)/

√
2 is a perfectly verifiable subspace, since its complement subspace

contains two orthogonal product states |01⟩ and |10⟩.

Unverifiable subspace. On the other hand, if there is only one product state in V , then, by Lemma 1, we cannot
span V⊥ with product states . This type of subspace is called an unverifiable subspace. In this case, we can only
reject this product state in the test, and the corresponding test operator is:

M = 1− |τ⟩⟨τ |, (9)

where |τ⟩ is the only product state in V⊥. Mathematically, the corresponding verification operator is:

Ωu =M = 1− |τ⟩⟨τ |. (10)

We have ν(Ωu) = 0, which means this strategy is inevitably fooled by a state |τ ′⟩, where |τ ′⟩ is an entangled
state in the complement subspace and ⟨τ |τ ′⟩ = 0. Therefore, there is no verification strategy based on LOCC and
projective measurements for an unverifiable subspace. For example, the subspace spanned by (|00⟩ + |11⟩)/

√
2

and |01⟩ is an unverifiable subspace, since its complement subspace only contains one orthogonal product state
|10⟩. The verification operator defined in Eq. (10) will be fooled by (|00⟩ − |11⟩)/

√
2.
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3.2 Verification strategy

With the above classification, we design a verification strategy tailored to (perfectly) verifiable subspaces and
analyze their corresponding spectral gaps.

Perfectly verifiable subspace. For a perfectly verifiable subspace, we construct a two-outcomes POVM {|τ0⟩⟨τ0|+
|τ1⟩⟨τ1|,1−|τ0⟩⟨τ0|− |τ1⟩⟨τ1|}, where |τi⟩ (i = 0, 1) are two orthogonal product states in the target subspace. We
pass the state with the result corresponding to |τ0⟩⟨τ0| + |τ1⟩⟨τ1|. Mathematically, the corresponding verification
operator is given by

Ωp = |τ0⟩⟨τ0|+ |τ1⟩⟨τ1|. (11)

Obviously, we have ν(Ωp) = 0, which means no states from the complement subspace can pass this strategy.
Therefore, to achieve a confidence level of 1− δ, it suffices to choose

N(Ωp) =

⌈
1

ϵ
ln

1

δ

⌉
. (12)

We can also refer to this kind of subspace as a local subspace.

Verifiable subspace. For a verifiable subspace, the strategy is slightly more complex than for other types. It
involves two POVMs: {1− |τ2⟩⟨τ2|, |τ2⟩⟨τ2|} and {1− |τ3⟩⟨τ3|, |τ3⟩⟨τ3|}, where |τi⟩ (i = 2, 3) are product states
in the complement subspace. Each POVM is performed with probability 1/2 and we pass the states with the result
corresponding to the 1− |τi⟩⟨τi| (i = 2, 3). Mathematically, the corresponding verification operator is given by

Ωv = 1− 1

2
(|τ2⟩⟨τ2|+ |τ3⟩⟨τ3|). (13)

Although states in the complement subspace can pass each test individually, they cannot pass all tests with certainty.
The spectral gap of this verification operator is given as follows.
Lemma 2. For a verifiable subspace, the spectral gap of the verification operator defined in Eq. (13) is

ν(Ωv) =
1

2
(1− |⟨τ3|τ2⟩|). (14)

where |τi⟩ (i = 2, 3) are the product states in the complement subspace.

Proof. The two (unnormalized) eigenstates of Ωv in V⊥ are

|τ2⟩+
a

|a|
|τ3⟩, |τ2⟩ −

a

|a|
|τ3⟩, (15)

where a = ⟨τ3|τ2⟩. The corresponding eigenvalues are (1 − |a|)/2 and (1 + |a|)/2, respectively. Using the
definition of the spectral gap, we have

ν(Ωv) = 1− 1

2
(1 + |a|) = 1

2
(1− |a|). (16)

Therefore, with the result of Lemma 2, it suffices to choose

N(Ωv) =

⌈
2

1− |⟨τ2|τ3⟩|
× 1

ϵ
ln

1

δ

⌉
, (17)

to achieve a confidence level of 1− δ.
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4 GHZ-W subspace verification

In this section, building on the results of two-qubit subspace verification, we propose two efficient strategies to
verify the subspace V3 := span{|GHZ⟩, |W⟩} spanned by the three-qubit GHZ and W states, where

|GHZ⟩ := 1√
2
(|000⟩+ |111⟩), (18a)

|W⟩ := 1√
3
(|001⟩+ |010⟩+ |100⟩). (18b)

We call V3 the three-qubit GHZ-W subspace, which is genuinely multipartite entangled [14]. Notably, most ver-
ification protocols for bipartite pure states, Dicke states, and W states known so far are based on adaptive mea-
surements [39, 47, 60, 61]. Therefore, we begin by constructing multiple test operators based on one-way adaptive
measurements. Subsequently, we propose two efficient verification strategies and conduct a detailed analysis of
their sample complexities.

4.1 One-way adaptive test operators

One-way adaptive measurements are widely used in the certification of quantum information and were first pro-
posed in Section 6 of [37], owing to their experimental feasibility and practicality. This approach was further
developed in subsequent works [57, 58, 67]. We present a general subroutine to construct one-way adaptive mea-
surements suitable for verifying V3. Specifically, we randomly measure a qubit in the Pauli basis P ∈ {X,Z}.
Each measurement yields one of two possible outcomes, +1 and −1, corresponding to the positive and negative
eigenspaces of P , respectively. Depending on the measurement outcome, the remaining two qubits are projected
into a two-qubit subspace spanned by two post-measurement states, called the post-measurement subspace. Ta-
ble 1 summarizes all possible post-measurement states for different measurement operators and outcomes. Subse-
quently, based on the outcome of the first measurement, we apply the two-qubit subspace test operator. Therefore,
the corresponding one-way adaptive test operators induced by P are given by

MP = P+ ⊗M+
P + P− ⊗M−

P . (19)

That is, if the outcome of P is +1, we perform the two-qubit measurement associated with M+
P . Otherwise, we

perform the measurement corresponding to M−
P . Finally, the states that produce results consistent with MP pass

the test.

First measurement Post-measurement states

Pauli outcome |GHZ⟩ |W⟩

Z
+ |00⟩ 1√

2
(|01⟩+ |10⟩)

− |11⟩ |00⟩

X
+ 1√

2
(|00⟩+ |11⟩) 1√

3
(|01⟩+ |10⟩+ |00⟩)

− 1√
2
(|00⟩ − |11⟩) 1√

3
(|01⟩+ |10⟩ − |00⟩)

Table 1 Post-measurement states for the three-qubit GHZ-W subspace spanned by {|GHZ⟩, |W⟩}.

Now, let us consider two concrete cases where P is chosen to be the Pauli Z or the X measurements. For
the post-measurement subspace induced by the Pauli Z measurement, if the outcome is “+” (“−”), the resulting
two-qubit subspace is unverifiable (perfectly verifiable). The test operators are given by

M+
Z = 1− |11⟩⟨11|, M−

Z = |00⟩⟨00|+ |11⟩⟨11|. (20)

The resulting one-way adaptive test operator induced by the Z measurement thus has the form

MZ = Z+ ⊗M+
Z + Z− ⊗M−

Z = |0⟩⟨0| ⊗ (1− |11⟩⟨11|) + |1⟩⟨1| ⊗ (|00⟩⟨00|+ |11⟩⟨11|) . (21)

Actually, this one-way adaptive test operator can be implemented non-adaptively by performing the Z measure-
ments on each qubit. The state is rejected if the measurement outcome contains exactly two “−” results. Likewise,
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for the post-measurement subspace induced by the X measurement, if the outcome is “+” (“−”), the resulting
two-qubit subspace is perfectly verifiable (unverifiable). The test operators are given by

M+
X = |x+x+⟩⟨x+x+|+ |x̄+x̄+⟩⟨x̄+x̄+|, M−

X = 1− |x−x′−⟩⟨x−x′−|, (22)

where the states are defined as

|x+⟩ = cosα|0⟩+ sinα|1⟩,
|x̄+⟩ = sinα|0⟩ − cosα|1⟩,

|x−⟩ =
|0⟩+ ei

π
3 |1⟩√

2
,

|x′−⟩ =
|0⟩+ e−iπ

3 |1⟩√
2

,

(23)

with α = arctan(
√
5 − 1)/2. The resulting one-way adaptive test operator induced by the X measurement thus

has the form

MX = |+⟩⟨+| ⊗ (|x+x+⟩⟨x+x+|+ |x̄+x̄+⟩⟨x̄+x̄+|) + |−⟩⟨−| ⊗
(
1− |x−x′−⟩⟨x−x′−|

)
, (24)

where |+⟩ = (|0⟩+ |1⟩)/
√
2 and |−⟩ = (|0⟩ − |1⟩)/

√
2 are two eigenstates of X , respectively.

To construct additional test operators beyond MX and MZ , a general framework is necessary. An important
observation from quantum state verification is that the local symmetry of the target subspace can be exploited to
create more test operators from current test operators [35]. Specifically, if a product unitary U satisfies UΠ3U

† =
Π3, where Π3 is the projector of V3, then U is a local symmetry operator of V3. This symmetry also enables an
analytical determination of the spectral gap, possibly optimizing performance. Motivated by this observation, we
identify the following two local symmetries of V3:

1. Qubit permutations:

Vσ :=
∑

i1,i2,i3

|iσ−1(1)iσ−1(2)iσ−1(3)⟩⟨i1i2i3|, (25)

where σ ranges over all elements of the symmetric group S3; and

2. Local unitaries:

U1 := R2π/3 ⊗R2π/3 ⊗R2π/3, (26)
U2 := R4π/3 ⊗R4π/3 ⊗R4π/3, (27)

where Rϕ := |0⟩⟨0|+ eiϕ|1⟩⟨1| and U2 = U2
1 .

One can check that VσΠ3V
†
σ = Π3 and UiΠ3U

†
i = Π3 for σ ∈ S3 and i = 1, 2. Using these two local symmetries

of V3, we can construct additional test operators.
Notice thatMZ is invariant under the above local symmetries, so we focus on constructing additional test opera-

tors fromMX . First, we consider the qubit permutation symmetry. We defineMX,i (i = 1, 2, 3) as a set of new test
operators, where an X measurement is performed on the i-th qubit, followed by a two-qubit verification based on
the measurement result. This construction takes advantage of the qubit permutation symmetry Vσ . Therefore, with
this property, we can construct 3 additional test operators. Then, we use the local unitary symmetry. We observe
that U†

jMX,iUj (j = 1, 2) are also valid one-way adaptive test operators, since the subspace V3 is invariant under
the local unitaries Uj . Physically, U†

jMX,iUj corresponds to first applying the local rotation operator Uj to the
quantum state, followed by the test operator MX,i. Consequently, we can construct a total of six additional test
operators, given by 2× 3 = 6.

To summarize, we build 10 test operators for the GHZ-W subspace by applying local symmetries. We then
present two verification strategies using these one-way adaptive test operators and assess their effectiveness.

4.2 XZ strategy

Here, we propose a verification strategy using the 4 test operators constructed above, termed the XZ strategy.
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The strategy. In each round, we select a measurement P ∈ {X,Z} according to a probability distribution µ(P ),
which will be optimized later. If the Z measurement is chosen, we perform the test operator MZ . Otherwise, we
choose a qubit i ∈ {1, 2, 3} uniformly at random to perform the test projectMX,i. Mathematically, the verification
operator can be written as

ΩXZ = µ(Z)MZ +
1

3
µ(X)

3∑
i=1

MX,i. (28)

Performance analysis. It is challenging to analytically determine the optimal probability µ that maximizes the
spectral gap of ΩXZ. To address this, we numerically analyze the performance of the verification operator ΩXZ.
We sample µ(Z) from 0 to 1 with a step size of 0.001 and compute the spectral gaps. The numerical results are
presented in Fig. 1(a) and show that max ν(ΩXZ) ≈ 0.262 when µ(Z) ≈ 0.424. Therefore, to achieve a confidence
level of 1− δ, the required number of state copies is given by

N(ΩXZ) ≈
⌈
3.817× 1

ϵ
ln

1

δ

⌉
. (29)

Remark. The design of our XZ strategy is directly inspired by the seminal work of Hayashi and Morimae
on quantum graph states verification [67]. In their foundational protocol for verifiable measurement-only blind
quantum computing, the client verifies graph states with X and Z measurements, thereby ensuring the correctness
of the computation result. This pioneering approach was later adapted to verify the output of fault-tolerant quantum
computation in the measurement-based model [57]. Building on these ideas, we use adaptive measurements based
on X and Z measurements to verify the GHZ-W subspace.

Figure 1 (a) Numerical result of the XZ strategy. The probability µ(Z) is sampled from 0 to 1 with a step size of 0.001, and the spectral gaps are computed.
The maximal spectral gap is achieved when µ(Z) ≈ 0.424. (b) Analytical and numerical results of the rotation strategy. The two green lines represent the
functions 47

80µ(X) and 1 − 11
15µ(X), respectively. The blue stars indicate the numerical results of the rotation strategy, where µ(X) is sampled from 0 to 1

with a step size of 0.05. The maximal spectral gap is achieved when µ(Z) = 77
317 ≈ 0.243.

4.3 Rotation strategy

The XZ strategy, while effective, lacks an analytical solution and exhibits a sample complexity approximately four
times that of the globally optimal strategy. To address these limitations, we introduce the rotation strategy, utilizing
the 10 test operators constructed in Section 4.1. This strategy, for which we derive an analytical performance,
achieves a sample complexity approximately twice that of the globally optimal strategy.

The strategy. In each round, we select a measurement P ∈ {X,Z} according to a probability distribution µ(P ),
which will be optimized later. If the Z measurement is chosen, we perform the test operator MZ . Otherwise, we
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apply U1, U2 or ∅ (no unitary at all) uniformly at random, followed by choosing one qubit uniformly at random to
carry out the test project MX,i. Mathematically, this test operator can be written as

M̂X :=
1

3

3∑
i=1

M ′
X,i, (30)

where

M ′
X,i :=

1

3
(MX,i + U†

1MX,iU1 + U†
2MX,iU2). (31)

Therefore, the verification operator for this strategy is given by

Ωµ := µ(Z)MZ + µ(X)M̂X , (32)

where µ is a probability distribution satisfying
∑

P µ(P ) = 1. The whole procedure is illustrated in Fig. 2.

Figure 2 The one-way adaptive verification strategy for GHZ-W subspace. We first randomly select P ∈ {X,Z} according to a predefined probability
distribution µ. (1) If P = Z, we perform the test operator MZ . (2) If P = X , we apply a unitary gate randomly chosen from the set {U1, U2, ∅}, where ∅
denotes applying no gate. Then, we perform the test operator MX,i starting with an X measurement on the i-th qubit. Based on its measurement result, we
proceed with a two-qubit verification strategy on the remaining qubits.

Performance analysis. Obviously, the choice of µ(P ) influences the performance of the strategy. Fortunately,
the optimal probability distribution can be determined analytically, as shown in the following proposition.
Proposition 1. The strategy operator defined in Eq. (32), achieves the largest spectral gap of 141/317 ≈ 0.445
when µ⋆(X) = 240/317 ≈ 0.757.

Proof. The analysis of the spectral gap relies on the invariant properties of the subspace V3. Suppose M is a test
operator for the subspace V3. Define

M ′ :=
1

3

(
M + U†

1MU1 + U†
2MU2

)
. (33)

With the fact that V3 is invariant under Ui, each term UiMU†
i is also a valid test operator. Then, incorporating

qubit permutations, the averaged operator of M can be defined as

M :=
1

6

∑
π∈S3

VπM
′V †

π =



a 0 0 0 0 0 0 b

0 d e 0 e 0 0 0

0 e d 0 e 0 0 0

0 0 0 f 0 g g 0

0 e e 0 d 0 0 0

0 0 0 g 0 f g 0

0 0 0 g 0 g f 0

b 0 0 0 0 0 0 c


, (34)
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where a, b, c, d, e, f, g are coefficients. As M is a test operator, the states |GHZ⟩ and |W⟩ are eigenstates of M ,
i.e., {

M |GHZ⟩ = |GHZ⟩
M |W⟩ = |W⟩

⇒


d = 1− 2e

b = 1− a

c = a

. (35)

Therefore, M reduces to the form

M =



a 0 0 0 0 0 0 1− a

0 1− 2e e 0 e 0 0 0

0 e 1− 2e 0 e 0 0 0

0 0 0 f 0 g g 0

0 e e 0 1− 2e 0 0 0

0 0 0 g 0 f g 0

0 0 0 g 0 g f 0

1− a 0 0 0 0 0 0 a


. (36)

In addition to |GHZ⟩ and |W⟩, the other eigenstates and eigenvalues are:

|v1⟩ =
1√
2
(|000⟩ − |111⟩), λ1 = 2a− 1, (37)

|v2⟩ =
1√
2
(|001⟩ − |010⟩), λ2 = 1− 3e, (38)

|v3⟩ =
1√
2
(|001⟩ − |100⟩), λ3 = 1− 3e, (39)

|v4⟩ =
1√
2
(|011⟩ − |101⟩), λ4 = f − g, (40)

|v5⟩ =
1√
2
(|011⟩ − |110⟩), λ5 = f − g, (41)

|v6⟩ =
1√
3
(|011⟩+ |101⟩+ |110⟩) λ6 = f + 2g. (42)

Obviously, the spectral gap of M is given by

ν(M) = 1−max{2a− 1, 1− 3e, f − g, f + 2g}. (43)

Now consider the verification operator Ωµ, defined in Eq. (32). With the definitions of MZ and M̂X , we have

MZ =MZ , (44)

M̂X =MX . (45)

Therefore, the spectral gap of Ωµ is given by

ν(Ωµ) = 1−max

{
1− 13

20
µ(X), 1− 47

80
µ(X),

131

240
µ(X),

11

15
µ(X)

}
(46)

= min

{
47

80
µ(X), 1− 11

15
µ(X)

}
. (47)

Thus, when µ⋆(X) = 240/317 ≈ 0.757, the spectral gap reaches its maximum value:

ν(Ωµ⋆) =
141

317
≈ 0.445. (48)
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We also compare our analytical results in Lemma 1 with the numerical results, as shown in Fig. 1(b). We sample
µ(X) from 0 to 1 with a step size of 0.05 and find that the results are consistent. Therefore, to achieve a confidence
level of 1− δ, the required number of state copies is given by

N(Ωµ⋆) =

⌈
317

141
× 1

ϵ
ln

1

δ

⌉
≈

⌈
2.248× 1

ϵ
ln

1

δ

⌉
. (49)

Remark. In each round, we can also select a measurement P ∈ {X,Y, Z} according to some probability
distribution. However, the numerical results shows that the optimal spectral gap is achieved when the probability
of performing Y measurement is 0. Thus, it is sufficient to consider the rotation strategy.

4.4 Comparisons

As mentioned previously, to achieve a confidence level of 1− δ, the globally optimal verification strategy requires
only ϵ−1 ln δ−1 state copies, but it involves entangled measurements. In the previous subsections, we proposed two
verification strategies based on one-way adaptive measurements: the XZ strategy and the rotation strategy. The XZ
strategy requires a total of four test operators, while the rotation strategy requires ten test operators. However, the
rotation strategy requires approximately 2.248ϵ−1 ln δ−1 state copies, which is fewer than that of the XZ strategy.
In Fig. 3, we compare the efficiency of these strategies. We set δ = 0.001 and adjust ϵ from 0.001 to 0.1. Each
line represents the minimum number of state copies required to achieve a confidence level of 1 − δ. The globally
optimal verification strategy is the most efficient, with the rotation strategy surpassing the XZ strategy in efficiency.
However, executing the globally optimal strategy is experimentally challenging. Practically, the same confidence
level is attainable with a few local measurement settings, requiring about double the state copies compared to the
global approach.

Figure 3 Comparison of the total number of state copies required to verify the three-qubit GHZ-W subspace for different strategies as a function of the infidelity
ϵ, where δ = 0.001. Here, NG is the sample complexity of the globally optimal strategy given in Eq. (5), NXZ is the sample complexity of the XZ strategy
given in Eq. (29), and NR is the sample complexity of the rotation strategy given in Eq. (49).

5 Conclusions

In this work, we investigated the task of verifying the three-qubit GHZ-W genuinely entangled subspace using
adaptive local measurements. By exploiting the local symmetry properties of the GHZ-W subspace, we first
designed ten test operators and then constructed two efficient verification strategies: the XZ strategy and the
rotation strategy. The XZ strategy, employing four test operators, requires approximately 3.817ϵ−1 ln δ−1 state
copies to achieve a confidence level of 1 − δ. In contrast, the rotation strategy, utilizing all ten test operators,
achieves the same confidence level with a reduced sample complexity of 2.248ϵ−1 ln δ−1. Notably, the sample
complexity of the rotation strategy is only approximately twice that of the globally optimal verification strategy,
demonstrating its high efficiency. Along the way, we comprehensively analyzed the two-dimensional two-qubit
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subspaces, classifying them into three distinct types: unverifiable, verifiable, and perfectly verifiable subspaces.
Interestingly, we demonstrated the existence of two-qubit entangled subspaces that are inherently unverifiable with
local measurements, highlighting fundamental limitations in local entanglement verification.

Our findings raise several important open questions. A primary challenge lies in formulating and rigorously
proving optimal verification strategies with local measurements for arbitrary subspaces. Moreover, extending our
approach to larger GHZ-W subspaces and other entangled subspaces remains an open area of research.
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