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Abstract Distinguishability is fundamental to information theory and extends naturally to quantum systems. While

quantum state discrimination is well understood, quantum channel discrimination remains challenging due to the dynamic

nature of channels and the variety of discrimination strategies. This work advances the understanding of quantum channel

discrimination and its fundamental limits. We develop new tools for quantum divergences, including sharper bounds on

the quantum hypothesis testing relative entropy and additivity results for channel divergences. We establish a quantum

Stein’s lemma for memoryless channel discrimination, and link the strong converse property to the asymptotic equipartition

property and continuity of divergences. Notably, we prove the equivalence of exponentially strong converse properties under

coherent and sequential strategies. We further explore the interplay among operational regimes, discrimination strategies, and

channel divergences, deriving exponents in various settings and contributing to a unified framework for channel discrimination.

Finally, we recast quantum communication tasks as discrimination problems, uncovering deep connections between channel

capacities, channel discrimination, and the mathematical structure of channel divergences. These results bridge two core

areas of quantum information theory and offer new insights for future exploration.
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1 Introduction

Distinguishability is a central topic in information theory from both theoretical and practical perspectives.
A fundamental framework for studying distinguishability is asymmetric hypothesis testing. In this setting,
a source generates a sample x from one of two probability distributions p ≡ {p(x)}x∈X or q ≡ {q(x)}x∈X .
The objective of asymmetric hypothesis testing is to minimize the Type-II error (decides p when the
fact is q) while keeping the Type-I error (decides q when the fact is p) within a certain threshold. The
celebrated Chernoff-Stein’s lemma [1] states that, for any constant bound on the Type-I error, the optimal
Type-II error decays exponentially fast in the number of samples, and the decay rate is exactly the relative
entropy (Kullback-Leibler divergence),

D(p‖q) =
∑

x∈X

p(x) log2[p(x)/q(x)]. (1)

In particular, this lemma also states the “strong converse property”, a desirable mathematical property
in information theory [2] that delineates a sharp boundary for the tradeoff between the Type-I and
Type-II errors in the asymptotic regime: any possible scheme with Type-II error decaying to zero with
an exponent larger than the relative entropy will result in the Type-I error converging to one in the
asymptotic limit. Therefore, the Chernoff-Stein’s lemma provides a rigorous operational interpretation
of the relative entropy and establishes a crucial connection between hypothesis testing and information
theory [3].

* Corresponding author (email: kunfang@cuhk.edu.cn, giladgour@technion.ac.il, felixxinwang@hkust-gz.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-024-4488-0&domain=pdf&date_stamp=2025-7-10
https://doi.org/10.1007/s11432-024-4488-0
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-024-4488-0
https://doi.org/10.1007/s11432-024-4488-0


Fang K, et al. Sci China Inf Sci August 2025, Vol. 68, Iss. 8, 180509:2

A natural question is whether the above result generalizes to the quantum case. Substantial efforts
have been made to answer this fundamental question in quantum information community (see, e.g.,
[4–15]). The basic task is quantum state discrimination, in which we are given an independent and
identically distributed (i.i.d.) quantum state, which could be either ρ⊗n or σ⊗n. We set that ρ⊗n is
the null hypothesis and σ⊗n is the alternative hypothesis. The goal is to perform a binary measurement
{Πn, I − Πn} on the state to determine which hypothesis is true. The corresponding error probabilities
are defined analogously to the classical case, as follows:

(Type-I) αn(Πn) := Tr[(I −Πn)ρ
⊗n], (Type-II) βn(Πn) := Tr[Πnσ

⊗n]. (2)

The quantum version of the Chernoff-Stein’s lemma (also known as quantum Stein’s lemma) states
that [4, 5]

lim
n→∞

1

n
Dε

H

(
ρ⊗n‖σ⊗n

)
= D(ρ‖σ), ∀ε ∈ (0, 1), (3)

where Dε
H(ρ‖σ) := − log inf{Tr[Πσ] : 0 6 Π 6 I,Tr[(I − Π)ρ] 6 ε} denotes the quantum hypothesis

testing relative entropy that characterizes the decay rate of the optimal Type-II error and D(ρ‖σ) =
Tr[ρ(log ρ− log σ)] denotes the quantum relative entropy. This quantum Stein’s lemma delivers a rigorous
operational interpretation for the quantum relative entropy. Extended research on quantum Stein’s lemma
are presented in [6–9, 14–18].

Although research in quantum hypothesis testing has largely focused on quantum states, there are
various situations in which quantum channels play the role of the main objects of study. The task of
channel discrimination is very similar to that of state discrimination. Here, we are given black-box access
to n uses of a channel G with the aim to identify it from candidates N and M. However, quantum
channel discrimination has more diversities in terms of discrimination strategies (e.g., product strategy,
coherent strategy, sequential strategy) due to its nature as dynamic resources [10,13,19–25], which leads
to several variants of the quantum channel Stein’s lemma. In particular, for the coherent strategies (also
known as parallel strategies in some literature), the black box can be used n times in parallel to any state
with a reference system before performing a measurement at the final output to identify the channel.
Based on the recently developed resource theory of asymmetric distinguishability for quantum channels,
the state-of-the-art result [13] arrives at

lim
ε→0

lim
n→∞

1

n
Dε

H(N⊗n‖M⊗n) = Dreg(N‖M) (4)

with Dε
H(N‖M) denotes the hypothesis testing relative entropy of quantum channels and Dreg(N‖M)

denotes the regularized quantum relative entropy. That is, for Type-I error bounded by ε, the asymptotic
optimal rate of the Type-II error exponent is given by Dreg(N‖M) when ε goes to 0.

However, the condition of vanishing ε left a notable gap to achieve the quantum channel version of
Stein’s lemma. Unlike state discrimination, the dynamic feature of quantum channels raises challeng-
ing difficulties in determining the optimal discrimination scheme as we have to handle the additional
optimization of the input states and the non-i.i.d. structure of the testing states. To fill the gap, it
requires a deeper understanding and analysis on the error exponent in hypothesis testing of quantum
channels. The solution could promptly advance our understanding of quantum channel discrimination,
quantum communication [26–29], and the related field of quantum metrology [30–32]. Beyond the quan-
tum channel Stein’s lemma, various channel divergences have emerged to analyze different regimes of
quantum channel discrimination. Establishing a unified framework that encompasses these divergences
and discrimination regimes is a desirable step toward a deeper understanding of the manipulation and
operational characterization of quantum channels.

In this work, we provide a study towards the ultimate limits of quantum channel discrimination and
quantum communication. Our contributions are summarized as follows.

• In Section 2, we present several technical advancements in quantum divergences for quantum states
and channels. Specifically, we provide a quantitative improvement in lower bounding the quantum hy-
pothesis testing relative entropy using the Petz Rényi divergence, addressing an open question posed
by Nuradha and Wilde in [33, Remark 4]. Additionally, we demonstrate that the previously explored
amortized and regularized channel divergences are generally additive under the tensor product of dis-
tinct quantum channels. These technical results are expected to be of independent interest and provide
valuable tools for future research.
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• In Section 3, we investigate the limits of the unstabilized quantum channel divergences and prove a
quantum channel analog of Stein’s lemma without quantum memory assistance. To further strengthen
the result, we introduce the (exponentially) strong converse properties for channel discrimination and
establish its equivalence to the asymptotic equipartition property (AEP) of various quantum channel di-
vergences as well as the continuity of the quantum channel Rényi divergence. Leveraging these equivalent
characterizations, we demonstrate, rather surprisingly, that the exponentially strong converse properties
under coherent and sequential strategies are equivalent.

• In Section 4, we study the interplay between the strategies of channel discrimination (e.g., sequen-
tial, coherent, product), the operational regimes (e.g., error exponent, Stein exponent, strong converse
exponent), and three variants of channel divergences (e.g., Petz, Umegaki, sandwiched). We find a nice
correspondence that shows that the proper divergences to use (Petz, Umegaki, sandwiched) are deter-
mined by the operational regime of interest, while the types of channel extension (one-shot, regularized,
amortized) are determined by the discrimination strategies. We determine the exponents of quantum
channel discrimination in various regimes and contribute towards a complete picture of channel discrim-
ination in a unified framework.

• In Section 5, we present a new perspective by framing the study of quantum communication prob-
lems as quantum channel discrimination tasks. This offers deeper insights into the intricate relationships
between channel capacities, channel discrimination, and the mathematical properties of quantum chan-
nel divergences. Leveraging this connection, we demonstrate that the channel coherent information and
quantum channel capacity can be precisely characterized as Stein exponent for discriminating between
two quantum channels under product and coherent strategies without quantum memory assistance, re-
spectively. Furthermore, we show that the strong converse property of quantum channel capacity, a
long-standing open problem in quantum information theory, can be established if the channels being
discriminated exhibit the strong converse property.

Our technical results are primarily presented in terms of the unstabilized channel divergence, a versatile
yet less explored notion of channel divergence compared to the more commonly studied divergences in
the literature. This concept naturally arises in the context of quantum communication problems, offering
a broader framework for analysis. Given the extensive applications of quantum divergences and quantum
channel discrimination [13,24,26–28,34–42], this work contributes to a more comprehensive understanding
of the ultimate limits of quantum channel discrimination in various regimes. Moreover, it provides a
novel perspective on quantum communication problems by framing them as tasks of quantum channel
discrimination, thereby bridging two fundamental areas of quantum information science and paving the
way for addressing the remaining challenges in future studies.

2 Preliminaries

In this section, we introduce the notations to be employed throughout the paper. Subsequently, we inves-
tigate the mathematical tool of quantum divergences as applied to both states and channels. Following
this, we review the operational task of quantum channel discrimination under different strategies and
consider scenarios both with and without quantum memory assistance.

2.1 Notation

In this paper, we only consider finite-dimensional Hilbert spaces, which we denote with capital Latin
letters such as C. The dimension of a Hilbert space C is denoted by |C|. The set of linear operators
on Hilbert space C is denoted by L(C) and the set of density matrices acting on it by D(C). Density
matrices are represented by small Greek letters such as ρC , where the subscript indicates that ρ acts on
C. For a state ρAB ∈ D(AB) we will also use the convention that ρA = TrB [ρAB] denotes the marginal
on system A. The support of an operator X is denoted by supp(X). The projector onto the subspace
spanned by the positive eigenvalues of X is represented as X+. The identity operator is denoted by I
and the maximally mixed state is denoted by π. Quantum channels will be denoted by calligraphic large
Latin letters such as N and the set of all quantum channels from A to B by CPTP(A→ B), which stands
for completely positive and trace-preserving maps. The identity channel is represented by I, while the
replacer channel is denoted as Rσ, which maps any input state to the fixed state σ. Throughout the
paper, we take the logarithm to be base two unless stated otherwise.
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2.2 Quantum divergences

A divergence between two quantum states is defined as a real-valued function D : D × D → R ∪
{∞} subject to the data processing inequality D(E(ρ)‖E(σ)) 6 D(ρ‖σ) for all quantum states ρ, σ ∈
D(A) and quantum channel E ∈ CPTP(A → B). Divergences serve as crucial tools for quantifying the
distinguishability of quantum states. In our discussion, we will frequently employ the following quantum
divergences, which hold particular relevance.

Definition 1 (Umegaki relative entropy). The Umegaki relative entropy (also called quantum relative
entropy) between two quantum states ρ, σ ∈ D(A) is defined by [43]

D(ρ‖σ) := Tr[ρ(log ρ− log σ)], (5)

if supp(ρ) ⊆ supp(σ) and +∞ otherwise.

Definition 2 (Petz Rényi divergence). The Petz Rényi divergence of order α between two quantum
states ρ, σ ∈ D(A) is defined by [44]

D̄α(ρ‖σ) :=
1

α− 1
logTr

[
ρασ1−α

]
, (6)

if α ∈ (0, 1) or α ∈ (1,+∞) with supp(ρ) ⊆ supp(σ), and +∞ otherwise.

Definition 3 (Sandwiched Rényi divergence). The sandwiched Rényi divergence of order α between
two quantum states ρ, σ ∈ D(A) is defined by [45, 46]

D̃α(ρ‖σ) :=
1

α− 1
logTr

[
σ

1−α

2α ρσ
1−α

2α

]α
, (7)

if α ∈ (0, 1) or α ∈ (1,+∞) with supp(ρ) ⊆ supp(σ), and +∞ otherwise.

Definition 4 (Max-relative entropy). The max-relative entropy between two quantum states ρ, σ ∈
D(A) is defined by [47, 48]

Dmax(ρ‖σ) := log inf
{
t ∈ R : ρ 6 tσ

}
, (8)

if supp(ρ) ⊆ supp(σ) and +∞ otherwise. Let F (ρ, σ) := ‖√ρ√σ‖1 +
√
(1− Tr ρ)(1− Trσ) be the

generalized fidelity and P (ρ, σ) :=
√
1− F 2(ρ, σ) be the purified distance. Let ε ∈ (0, 1). Then the

smoothed max-relative entropy is defined by

Dε
max(ρ‖σ) := inf

ρ′:P (ρ′,ρ)6ε
Dmax(ρ

′‖σ), (9)

where the infimum is taken over all subnormalized states that are ε-close to the state ρ.

Definition 5 (Quantum hypothesis testing). Let ε ∈ [0, 1]. The quantum hypothesis testing relative
entropy between two quantum state ρ, σ ∈ D(A) is defined by

Dε
H(ρ‖σ) := − log inf{Tr[Πσ] : 0 6 Π 6 I,Tr[Πρ] > 1− ε}. (10)

The following result establishes an inequality relating the quantum hypothesis testing relative entropy
and the sandwiched Rényi divergence [10, Lemma 5]. For any α ∈ (1,+∞) and ε ∈ (0, 1), it holds that

Dε
H(ρ‖σ) 6 D̃α(ρ‖σ) +

α

α− 1
log

1

1− ε
. (11)

The quantum hypothesis testing relative entropy can also be lower bounded by the Petz Rényi diver-
gence [49, Proposition 3]. For any α ∈ (0, 1) and ε ∈ (0, 1), it holds that

Dε
H(ρ‖σ) > D̄α(ρ‖σ)−

α

1− α
log

1

ε
. (12)

Here we provide a tighter lower bound with a simple proof, addressing the open question posed by
Nuradha and Wilde in [33, Remark 4].



Fang K, et al. Sci China Inf Sci August 2025, Vol. 68, Iss. 8, 180509:5

Lemma 1. Let ε ∈ (0, 1) and ρ, σ ∈ D(A). For any α ∈ (0, 1),

Dε
H(ρ‖σ) > D̄α(ρ‖σ) +

α

1− α

(
h(α)

α
− log

(
1

ε

))
, (13)

where h(α) = −α logα− (1 − α) log(1 − α) is the binary entropy.

Proof. Recall a variational expression of the hypothesis testing relative entropy [50, Eq. (2)]

2−Dε

H
(ρ‖σ) = max

t>0

{
t(1− ε)− Tr(tρ− σ)+

}
. (14)

To bound the term Tr(tρ − σ)+ we use the quantum weighted geometric-mean inequality; i.e., for any
two positive semidefinite matrices M,N and any α ∈ [0, 1]

1

2
Tr

[
M +N −

∣∣M −N
∣∣
]
6 Tr

[
MαN1−α

]
. (15)

Since the term |M −N | can be expressed as |M −N | = 2(M −N)+ − (M −N), the above inequality is
equivalent to

Tr(M −N)+ > Tr[M ]− Tr
[
MαN1−α

]
. (16)

Taking M = tρ and N = σ, we have

Tr(tρ− σ)+ > t− tα Tr
[
ρασ1−α

]
= t− tα2(α−1)D̄α(ρ‖σ). (17)

Substituting this into (14) gives

2−Dε

H
(ρ‖σ) = max

t>0

{
t(1− ε)− Tr(tρ− σ)+

}
6 max

t>0

{
− tε+ tα2(α−1)D̄α(ρ‖σ)

}
. (18)

It is straightforward to check that for fixed α, ρ, σ, ε, the function t 7→ −tε+ tα2(α−1)D̄α(ρ‖σ) obtains its
maximal value at

t =
(α
ε

) 1
1−α

2−D̄α(ρ‖σ). (19)

Substituting this value into the optimization in (18) gives

2−Dε

H
(ρ‖σ)

6 (1− α)
(α
ε

) α

1−α

2−D̄α(ρ‖σ). (20)

By taking − log on both sides, we get (13) and conclude the proof.

2.3 Quantum channel divergences

The divergence between quantum states can be naturally extended to quantum channels. The key idea is
to quantify the worst-case divergence among the outputs produced by these channels. Depending on the
selection of input states, three distinct variants of quantum channel divergences arise, namely unstabilized,
stabilized, and amortized divergences. It is noteworthy that channel divergences have been served as
crucial tools in various fundamental areas, including the resource theory of quantum channels [13, 34–
37, 51], quantum communication [24, 26–28, 38, 52], quantum coherence [39, 40], fault-tolerant quantum
computing [41], and quantum thermodynamics [42]. We review their definitions here and provide several
general properties, which will be used in the later discussions and can be of independent interests for
future studies as well.

2.3.1 Unstabilized quantum channel divergence

Definition 6. Let D be a quantum state divergence. The unstabilized quantum channel divergence
between two quantum channels N ,M ∈ CPTP(A→ B) is defined by

d(N‖M) := sup
ρ∈D(A)

D(NA→B(ρA)‖MA→B(ρA)), (21)

where the supremum is taken over all density operators ρ on system A.
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The term “unstabilized” arises from the observation that the divergence value typically varies when
appending an identity map, as expressed by the inequality

d(N‖M) 6= d(N ⊗ I‖M⊗ I). (22)

This distinguishes it from the conventional channel divergence [53, Definition II.2].

In the following, we use d, d̃, d̄, dεmax, d
ε
H to represent the unstabilized channel divergences induced by

D, D̃, D̄,Dε
max, D

ε
H , respectively.

Many properties of state divergence can be extended to channel divergences. For instance, the following
continuity property holds true.

Lemma 2. Let d̄α, d̃α and d be the unstabilized quantum channel divergences induced by the Petz
Rényi divergence, the sandwiched Rényi divergence and the Umegaki relative entropy, respectively. Then
for any N ,M ∈ CPTP(A→ B), it holds that

lim
α→1

d̄α(N‖M) = lim
α→1

d̃α(N‖M) = d(N‖M). (23)

Proof. The proof follows similarly as [10, Lemma 10].
A widely-studied unstabilized channel divergence is the min-output entropy [54]

h(N ) := min
ρ∈D(A)

H(N (ρ)) = log |B| − d(N‖Rπ
E), (24)

where N ∈ CPTP(A → B) and the maximally mixed state π ∈ D(B). It is known that this quantity is
not additive under the tensor product of quantum channels [54].

Given that an unstabilized quantum channel divergence is generally non-additive, it is natural to
introduce its regularized counterpart.

Definition 7. Let D be a quantum state divergence. For any N ,M ∈ CPTP(A→ B), the regularized
version of the unstabilized channel divergence is defined by

d
reg(N‖M) := sup

n∈N

1

n
d(N⊗n‖M⊗n). (25)

If the quantum state divergence D is superadditive under tensor product, i.e.,

D(ρ1 ⊗ ρ2‖σ1 ⊗ σ2) > D(ρ1‖σ1) +D(ρ2‖σ2), (26)

then it is easy to check that its unstabilized channel divergence is also superadditive, i.e.,

d(N1 ⊗N2‖M1 ⊗M2) > d(N1‖M1) + d(N2‖M2). (27)

Using a standard argument, we also have

d
reg(N‖M) = lim

n→∞

1

n
d(N⊗n‖M⊗n). (28)

Later, as demonstrated in Theorem 12, we will see that the unstabilized channel divergence can exhibit
an extremely non-additive behavior. In other words, an unbounded number of channel uses may be
necessary to achieve its regularization.

2.3.2 Stabilized quantum channel divergence

The unstabilized quantum channel divergence exhibits deviation when an identity map is appended. To
mitigate this, we can consider a stabilized version that allows the inclusion of an identity map.

Definition 8. Let D be a quantum state divergence. The (stabilized) quantum channel divergence
between two quantum channels N ,M ∈ CPTP(A→ B) is defined by [53]

D(N‖M) := sup
|R|∈N

d(IR ⊗N‖IR ⊗M), (29)

where the supremum is taken over Hilbert space R of arbitrary dimension.
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Remark 1. As a consequence of purification, data processing, and the Schmidt decomposition, the
supremum can be constrained such that the reference system R is isomorphic to the channel input
system A [53]. Thus, D(N‖M) = d(IR ⊗N‖IR ⊗M), where R is isomorphic to A.

Similar to the unstabilized channel divergence, the stabilized version is non-additive [24] in general.
This observation motivates the introduction of their regularization.

Definition 9. Let D be a quantum state divergence. For any N ,M ∈ CPTP(A→ B), the regularized
version of the stabilized channel divergence is defined by

D
reg(N‖M) := sup

n∈N

1

n
D

(
N⊗n

∥∥M⊗n
)
. (30)

2.3.3 Amortized quantum channel divergence

Both the unstabilized and stabilized channel divergences assess the distinguishability of channel outputs
using the same input state. Alternatively, a method for inducing channel divergence is amortization,
which uses different input states.

Definition 10. Let D be a quantum state divergence. The amortized quantum channel divergence
between two quantum channels N ,M ∈ CPTP(A→ B) is defined by [38]

D
A(N‖M) := sup

ρ,σ∈D(RA)

[
D (IR ⊗N (ρRA)‖IR ⊗M(σRA))−D (ρRA‖σRA)

]
, (31)

where the supremum is taken over all quantum states ρ, σ ∈ D(RA) and R is of arbitrary dimension.

As previously mentioned, both unstabilized and stabilized channel divergences are generally non-
additive. In contrast, the amortized channel divergence can inherit the additivity property from the
corresponding state divergence.

Lemma 3. Let D be a quantum state divergence. Let N1,M1 ∈ CPTP(A1 → B1) and N2,M2 ∈
CPTP(A2 → B2). If D is additive under the tensor product of quantum states, then

D
A(N1 ⊗N2‖M1 ⊗M2) = D

A(N1‖M1) +D
A(M1‖M2). (32)

Proof. For any quantum state ρ, σ ∈ D(RA1A2), it holds that

D(N1 ⊗N2(ρ)‖M1 ⊗M2(σ)) 6 D
A(N1‖M1) +D(N2(ρ)‖M2(σ)) (33)

6 D
A(N1‖M1) +D

A(N2‖M2) +D(ρ‖σ), (34)

where the two inequalities follow by using the definition of the amortized channel divergence twice. Then
moving the termD(ρ‖σ) to the l.h.s. and taking supremum over all input states ρ, σ, we have one direction
of the stated result. On the other hand, for any input states ρ1, σ1 ∈ D(R1A1) and ρ2, σ2 ∈ D(R2A2),
we have

D
A(N1 ⊗N2‖M1 ⊗M2) (35)

> sup
ρ1,ρ2,σ1,σ2

[
D(N1 ⊗N2(ρ1 ⊗ ρ2)‖M1 ⊗M2(σ1 ⊗ σ2))−D(ρ1 ⊗ ρ2‖σ1 ⊗ σ2)

]
(36)

= sup
ρ1,ρ2,σ1,σ2

[
D(N1(ρ1)‖M1(σ1))−D(ρ1‖σ1)

]
+
[
D(N2(ρ2)‖M2(σ2))−D(ρ2‖σ2)

]
(37)

= sup
ρ1,σ1

[
D(N1(ρ1)‖M1(σ1))−D(ρ1‖σ1)

]
+ sup

ρ2,σ2

[
D(N2(ρ2)‖M2(σ2))−D(ρ2‖σ2)

]
(38)

= D
A(N1‖M1) +D

A(N2‖M2), (39)

where the inequality follows as tensor product states are particular choices of input states for DA(N1 ⊗
N2‖M1 ⊗M2), the first equality follows by the additivity assumption of D. This concludes the proof.

By the chain rules of Umegaki relative entropy [24, Corollary 3] and the sandwiched Rényi diver-

gence [55, Theorem 5.4], it follows that Dreg(N‖M) = DA(N‖M) and D̃reg
α (N‖M) = D̃A

α (N‖M) for
any quantum channels N ,M ∈ CPTP(A → B) and α > 1. Consequently, from Lemma 3, we can infer

that Dreg and D̃reg
α are also additive under the tensor product of distinct quantum channels. Establishing

this directly from their definitions can be challenging.
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Figure 1 (Color online) Illustration depicting different classes of strategies for quantum channel discrimination. Each blue

box represents an unknown quantum channel G ∈ {N ,M} to discriminate, each yellow box represents a quantum measurement

{Πn, I − Πn}, and each green box represents an update channel Pi. (a) Product strategy; (b) coherent strategy; (c) sequential

strategy.

Lemma 4. Let N1,M1 ∈ CPTP(A1 → B1) and N2,M2 ∈ CPTP(A2 → B2). For any α ∈ (1,+∞),
the following additivity properties hold

Dreg(N1 ⊗N2‖M1 ⊗M2) = Dreg(N1‖M1) +Dreg(N2‖M2), (40)

D̃reg
α (N1 ⊗N2‖M1 ⊗M2) = D̃reg

α (N1‖M1) + D̃reg
α (N2‖M2). (41)

The next result establishes the chain relation among different variants of channel divergences.

Lemma 5. Let D be a quantum state divergence that is superadditive under the tensor product of
quantum states. Then for any N ,M ∈ CPTP(A→ B), it holds that

d(N‖M) 6 D(N‖M) 6 D
reg(N‖M) 6 D

A(N‖M). (42)

Proof. The first two inequalities follow from their definitions. We also have that

1

n
D(N⊗n‖M⊗n) 6

1

n
D

A(N⊗n‖M⊗n) 6 D
A(N‖M), (43)

where the first inequality follows by definition and the second inequality follows from (34). Taking the
supremum over all integers n, we have D

reg(N‖M) 6 D
A(N‖M).

2.4 Quantum channel discrimination

The task of channel discrimination closely parallels that of state discrimination. In the case of an unknown
quantum channel G, the goal is to identify it among potential candidates N or M. A standard approach
to discrimination involves hypothesis testing to distinguish between the null hypothesis G = N and the
alternative hypothesis G = M. What distinguishes channel discrimination is the varied selection of
discrimination strategies and whether the utilization of quantum memories is permitted.

Different classes of available strategies are illustrated in Figure 1. Each strategy class comprises
two components, denoted as (Sn,Πn), where Sn is a method for generating a testing state, and Πn

(0 6 Πn 6 I) defines a quantum test, a binary quantum measurement {Πn, I − Πn} performed on this
state. For a given strategy (Sn,Πn), let ρn(Sn) and σn(Sn) be the testing states generated by n uses of
the channel, depending on whether it is N or M. Then the Type-I and Type-II errors are defined as

(Type-I) αn(Sn,Πn) := Tr[(I −Πn)ρn(Sn)], (44)

(Type-II) βn(Sn,Πn) := Tr[Πnσn(Sn)], (45)

respectively. As perfect discrimination (i.e., simultaneous elimination of both errors) is not always possi-
ble, the focus shifts to the asymptotic behavior of αn and βn for sufficiently large n, expecting a tradeoff
between minimizing αn and minimizing βn.

Product strategy. Let Ri be the ancillary quantum system of a quantum memory for the i-th use
of the quantum channel. In a product strategy (Figure 1(a)), the testing state is created by selecting a
sequence of input states ϕi ∈ D(RiAi) and sending the Ai system to the unknown channel G individually.
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The generated testing state is then given by G⊗n(
⊗n

i=1 ϕi). The class of all product strategies is denoted
as PRO. It is important to note that the input states considered here are not restricted to having an
i.i.d. structure (e.g., ϕ⊗n) but rather general tensor product states. In other words, we allow the choice
of different input states for different instances of G, distinguishing it from the product strategy discussed
in [10]. If the dimension of the ancillary quantum system reduces to 1, it corresponds to product strategies
without quantum memory assistance.

Coherent strategy. Let R be the ancillary quantum system of a quantum memory. In a coherent
strategy (Figure 1(b)), the testing state is created by choosing an input state ψn ∈ D(RAn) and sending
the corresponding Ai system to each copy of the channel. The generated testing state is then given by
G⊗n(ψn). The class of all coherent strategies is denoted as COH. It is evident that if our choice of ψn

has a tensor product structure
⊗n

i=1 ϕi with ϕi ∈ D(RiAi), we effectively obtain a product strategy.
Thus, we have the set inclusion PRO ⊆ COH. If the dimension of the reference systems reduces to 1, it
corresponds to coherent strategies without quantum memory assistance.

Sequential strategy. Let Ri be the ancillary quantum system of a quantum memory for the i-th use
of the quantum channel. In a sequential strategy (Figure 1(c)), the testing state is created adaptively.
Initially, we choose an initial state ψn ∈ D(R1A1) and send it through one copy of the channel G followed
by the application of an update channel P1. Subsequently, another copy of the channel G is applied,
followed by an update channel P2. This process is repeated n times, resulting in the final testing state
G ◦ Pn−1 ◦ · · · ◦ P2 ◦ G ◦ P1 ◦ G(ψn), where Pi ∈ CPTP(RiBi → Ri+1Ai+1). The class of all sequential
strategies is denoted as SEQ. It is evident that if all update channels Pi are chosen as identity maps, the
sequential strategy reduces to a coherent strategy. Thus, we have COH ⊆ SEQ. If the dimension of the
ancillary quantum system reduces to 1, it corresponds to sequential strategies without quantum memory
assistance.

3 Limits of quantum channel divergence

In this section, we investigate the limits of the unstabilized quantum channel divergences and prove a
quantum channel analog of Stein’s lemma without quantum memory assistance. To further strengthen
the result, we introduce the (exponentially) strong converse properties for channel discrimination and
establish its equivalence to the AEP of various quantum channel divergences as well as the continuity of the
quantum channel Rényi divergence. Leveraging these equivalent characterizations, we demonstrate, rather
surprisingly, that the exponentially strong converse properties under coherent and sequential strategies
are equivalent.

Given the widespread applications of quantum Stein’s lemma, our channel Stein’s lemma is antici-
pated to have significant implications once its strong converse version is completely solved. Our results
contribute to distinct perspectives towards establishing such a result and can serve as building blocks
for its applications. This includes facilitating a deeper understanding of the tasks of quantum channel
discrimination and quantum communication in subsequent sections.

3.1 A quantum channel Stein’s lemma without memory assistance

The following result establishes an analog of the Stein’s lemma for quantum channels.

Proposition 1. For any two quantum channels N ,M ∈ CPTP(A→ B), it holds that

lim
ε→0

lim
n→∞

1

n
dεH(N⊗n‖M⊗n) = dreg(N‖M). (46)

Proof. Recall that for any ρ, σ ∈ D(A) and ε ∈ [0, 1), it holds that

Dε
H(ρ‖σ) 6 1

1− ε
[D(ρ‖σ) + h2(ε)], (47)

where h2(·) is the binary entropy (see e.g., [17]). Applying this to N⊗n(ρn) and M⊗n(ρn) and taking
supremum over all input states ρn ∈ D(An), we have

dεH(N⊗n‖M⊗n) 6
1

1− ε

[
d(N⊗n‖M⊗n) + h2(ε)

]
. (48)
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Taking limits on both sides, we have

lim
ε→0

lim
n→∞

1

n
dεH(N⊗n‖M⊗n) 6 dreg(N‖M). (49)

For the other direction, suppose the optimal solution for d(N‖M) is taken at ρA. Then we have

lim
n→∞

1

n
dεH(N⊗n‖M⊗n) > lim

n→∞

1

n
dεH(N (ρ)⊗n‖M(ρ)⊗n) = d(N (ρ)‖M(ρ)) = d(N‖M), (50)

where the first inequality follows as ρ⊗n is a particular choice for the unstabilized divergence, the first
equality follows by the quantum Stein’s Lemma, and the second equality follows by the optimality as-
sumption of ρ. Then for any fixed m, by replacing N with N⊗m and M with M⊗m, we have

lim
n→∞

1

mn
dεH(N⊗mn‖M⊗mn) >

1

m
d(N⊗m‖M⊗m). (51)

Finally taking m→ ∞ and then ε→ 0, we have the achievable part and conclude the proof.

3.2 Towards a strong converse version

Similar to the strong converse property of quantum state discrimination, an analog property can also be
defined for quantum channels.

Definition 11 (Strong converse property). Let N ,M ∈ CPTP(A → B) be two quantum channels.
These channels exhibit the strong converse property for coherent channel discrimination strategies without
quantum memory assistance if, for any sequence of strategies where the Type-II errors βn satisfy

lim inf
n→∞

− 1

n
log βn =: r > dreg(N‖M), (52)

there necessarily exists a subsequence of Type-I errors αnk
that converges to 1 as nk → ∞.

If the strong converse property holds, the Type-I error will typically converge to one exponentially fast.
Therefore, we introduce a stronger version by requiring exponential convergence and term this condition
as an exponentially strong converse property.

Definition 12 (Exponentially strong converse property). Let N ,M ∈ CPTP(A → B) be two quan-
tum channels. These channels exhibit the strong converse property for coherent channel discrimination
strategies without quantum memory assistance if, for any sequence of strategies where the Type-II errors
βn satisfy

lim inf
n→∞

− 1

n
log βn =: r > dreg(N‖M), (53)

there necessarily exists a subsequence of Type-I errors αnk
such that 1−αnk

6 2−cnk for a constant c > 0
and for sufficiently large nk.

The strong converse properties require the study of all suitable discrimination strategies, which can be
hard to validate in general. In the following, we provide several equivalent characterizations related to
the limits of unstabilized channel divergences.

From the proof of Proposition 1, we actually have a stronger statement that

lim
n→∞

1

n
dεH

(
N⊗n

∥∥M⊗n
)
> dreg(N‖M), ∀ε ∈ (0, 1). (54)

The following result shows that the other direction is equivalent to the strong converse property in
Definition 11.

Theorem 1. Let N ,M ∈ CPTP(A → B) be two quantum channels. Then these channels exhibit the
strong converse property as defined in Definition 11 if and only if the following holds:

lim sup
n→∞

1

n
dεH

(
N⊗n

∥∥M⊗n
)
6 dreg(N‖M), ∀ε ∈ (0, 1). (55)
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Proof. Suppose the strong converse property as defined in Definition 11 holds and assume that

lim sup
n→∞

1

n
dεH

(
N⊗n

∥∥M⊗n
)
> dreg(N‖M), (56)

then there exists a subsequence nk such that limnk→∞
1
nk

dεH
(
N⊗nk

∥∥M⊗nk

)
> dreg(N‖M). This implies

a sequence of strategies such that the Type-I error αnk
6 ε and the Type-II error limnk→∞ − 1

nk

log βnk
>

dreg(N‖M). By Definition 11, we know that the second condition implies a subsequence of αnk
converges

to 1, which contradicts to the first condition αnk
6 ε. So Eq. (55) holds. On the other hand, we prove

that Eq. (55) implies Definition 11. For any strategies such that lim infn→∞ − 1
n
log βn > dreg(N‖M).

We now show that there exists a subsequence of αn converges to 1. Assume there exists 0 < ε < 1 such
that αn 6 ε. By the definition of dεH , we have − 1

n
log βn 6 dεH(N⊗n‖M⊗n). This implies

lim inf
n→∞

− 1

n
log βn 6 lim sup

n→∞

1

n
dεH

(
N⊗n

∥∥M⊗n
)
6 dreg(N‖M), (57)

which forms a contradiction to the assumption that lim infn→∞ − 1
n
log βn > dreg(N‖M).

The following shows that the AEP of max-relative entropy is also equivalent to Definition 11.

Theorem 2. Let N ,M ∈ CPTP(A → B) be two quantum channels. Then these channels exhibit the
strong converse property as defined in Definition 11 if and only if the following holds:

lim sup
n→∞

1

n
dεmax

(
N⊗n

∥∥M⊗n
)
6 dreg(N‖M), ∀ε ∈ (0, 1). (58)

This is also equivalent to the following:

lim
ε→0

lim sup
n→∞

1

n
dεmax

(
N⊗n

∥∥M⊗n
)
6 dreg(N‖M). (59)

Proof. By Theorem 1, we only need to prove that Eqs. (55), (58) and (59) are equivalent.
(i) (55) =⇒ (58): for any two quantum states ρ, σ ∈ D(A), any ε ∈ (0, 1), it is known that [56,

Proposition 4.1],

Dε
max (ρ‖σ) 6 D

1− 1
2
ε2

H (ρ‖σ) + log

(
2

ε2

)
. (60)

Applying this to channel divergence gives

dεmax (N‖M) 6 d
1− 1

2
ε2

H (N‖M) + log

(
2

ε2

)
. (61)

Taking n copies of N and M, we get

1

n
dεmax

(
N⊗n

∥∥M⊗n
)
6

1

n
d

1− 1
2
ε2

H

(
N⊗n

∥∥M⊗n
)
+

1

n
log

(
2

ε2

)
. (62)

Taking lim supn→∞ on both sides, we can see that Eq. (55) implies (58).
(ii) (58) =⇒ (59): trivial.
(iii) (59) =⇒ (55): for any two quantum states ρ, σ ∈ D(A), any ε ∈ (0, 1), and any ε′ ∈ (0, 1− ε), it

is known that [57, Theorem 11],

Dε′

H(ρ‖σ) + log (1− ε− ε′) 6 Dε
max (ρ‖σ) . (63)

Applying this to channel divergence gives

dε
′

H(N‖M) + log (1− ε− ε′) 6 dεmax (N‖M) . (64)

Taking n copies of N and M, we get

1

n
dε

′

H

(
N⊗n

∥∥M⊗n
)
+

1

n
log (1− ε− ε′) 6

1

n
dεmax

(
N⊗n

∥∥M⊗n
)
. (65)

Taking lim supn→∞ and limε→0, we get

1

n
dε

′

H

(
N⊗n

∥∥M⊗n
)
6 dreg(N‖M), (66)

which implies (55).



Fang K, et al. Sci China Inf Sci August 2025, Vol. 68, Iss. 8, 180509:12

It is interesting to see that Eqs. (58) and (59) are actually equivalent, despite the latter appearing much
weaker than the former. As DH and Dmax are the two extreme cases of one-shot quantum divergences,
the above result would also apply to other intermediate divergences such as the information spectrum
relative entropies [58, 59] and the recently introduced smoothed sandwiched Rényi divergence [60].

Besides the above AEPs, the strong converse properties also relate to the continuity of the regularized
(amortized) sandwiched Rényi channel divergence at α = 1.

Theorem 3. Let N ,M ∈ CPTP(A→ B) be two quantum channels. Then the following continuitity:

lim
α→1+

d̃reg
α (N‖M) = dreg(N‖M) (67)

implies that these channels exhibit the exponentially strong converse property as defined in Definition 12.
Conversely, if the exponentially strong converse property as defined in Definition 12 holds true for channels
I ⊗ N and I ⊗M with the identity channel I ∈ CPTP(A→ A), then

lim
α→1+

d̃reg
α (I ⊗ N‖I ⊗M) = dreg(I ⊗ N‖I ⊗M). (68)

Proof. Note that by the monotonicity of sandwiched Rényi divergence with respect to α, the limits
in the above statement can be replaced with infα>1. Suppose the continuity in (67) holds. Recall
that [10, Lemma 5] for any α ∈ (1,+∞) and ε ∈ (0, 1), it holds that

Dε
H(ρ‖σ) 6 D̃α(ρ‖σ) +

α

α− 1
log

1

1− ε
. (69)

Applying this to the discrimination of n copies of the channels, it implies

− 1

n
log βn 6

1

n
d̃α(N⊗n‖M⊗n) +

1

n

α

α− 1
log

1

1− αn

. (70)

If lim infn→∞ − 1
n
log βn := r > dreg(N‖M), then there exists a subsequence nk and δ > 0 such that

− 1
nk

log βnk
> r − δ > dreg(N‖M). Let r′ := r − δ. We have

r′ <
1

nk

d̃α(N⊗nk‖M⊗nk) +
1

nk

α

α− 1
log

1

1− αnk

. (71)

Since 1
nk
d̃α(N⊗nk‖M⊗nk) 6 d̃reg

α (N‖M), we have

r′ < d̃reg
α (N‖M) +

1

nk

α

α− 1
log

1

1− αnk

, (72)

which is equivalent to

1− αnk
< 2−

α−1
α

nk(r′−d̃reg
α

(N‖M)). (73)

Since r′ > dreg(N‖M) = infα>1 d̃
reg
α (N‖M) by assumption, there exists α > 1 such that r′ > d̃reg

α (N‖M).

We can choose c := (α− 1)/α(r′ − d̃reg
α (N‖M)). This implies the exponentially strong converse property

in Definition 12.
We now prove the second statement. Suppose the exponentially strong converse property in Defini-

tion 12 holds true for I ⊗N and I ⊗M. For any α > 1, we have D̃reg
α (N‖M) > Dreg(N‖M). Thus it is

clear that infα>1 D̃
reg
α (N‖M) > Dreg(N‖M). We now prove the other direction. If infα>1 D̃

reg
α (N‖M) >

Dreg(N‖M), we can find r ∈ R such that infα>1 D̃
reg
α (N‖M) > r > Dreg(N‖M). Consider a sequence

of coherent channel discrimination strategies such that the Type-II error converges at an exponential
rate r. By the result [55, Theorem 5.5 and Remark 5.6], we know that the strong converse exponent is

zero since r < infα>1 D̃
reg
α (N‖M), which means the Type-I error does not exponentially converge to one.

However, by Definition 12, the condition r > Dreg(N‖M) implies that the Type-I error has to converge

exponentially to one, which forms a contradiction and concludes that infα>1 D̃
reg
α (N‖M) 6 Dreg(N‖M).

This proves (68).
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Note that the second statement above holds for the stabilized channel divergence, as its proof relies
on the results in [55, Theorem 5.5 and Remark 5.6]. It would be interesting to determine whether this
result also holds for the unstabilized channel divergence in general.

Corollary 1. LetN ,M ∈ CPTP(A→ B) be two quantum channels. The exponentially strong converse
property as defined in Definition 12 holds true for channels I ⊗N and I ⊗M with the identity channel
I ∈ CPTP(A→ A) if and only if one of the following continuities holds

lim
α→1+

D̃reg
α (N‖M) = Dreg(N‖M), (74)

lim
α→1+

D̃A
α (N‖M) = DA(N‖M). (75)

Proof. The first equation follows from Theorem 3. The second equation follows from the existing
results D̃reg

α (N‖M) = D̃A
α (N‖M) [55, Theorem 5.4] and Dreg(N‖M) = DA(N‖M) [24, Corollary 3].

Note that the exponentially strong converse property in Definition 12 is defined for coherent strategies.
Here, we demonstrate that it is equivalent to the exponentially strong converse property under sequential
strategies. This is quite remarkable, as sequential strategies can be significantly more general than
coherent strategies.

Theorem 4. Let N ,M ∈ CPTP(A → B) be two quantum channels and I ∈ CPTP(A → A) be the
identity channel. The exponentially strong converse property in Definition 12 holds true under coherent
strategies for channels I ⊗ N and I ⊗M if and only if it holds true under sequential strategies.

Proof. By the result in [23, Proposition 20], for any sequential strategies and α > 1 it holds that

− 1

n
log(1 − αn) >

α− 1

α

(
− 1

n
log βn − D̃A

α (N‖M)

)
. (76)

By the exponentially strong converse property under sequential strategies, we assume lim infn→∞ − 1
n
βn :=

r > Dreg(N‖M) = DA(N‖M) where the second equality follows by [24, Corollary 3]. This implies that
there exists δ > 0 and a subsequence βnk

such that − 1
nk

log βnk
> r − δ > DA(N‖M) for sufficiently

large nk. By Corollary 1, the exponentially strong converse property in Definition 12 is equivalent to the
continuity of the amortized channel divergence limα→1+ D̃A

α (N‖M) = DA(N‖M). As r > DA(N‖M),

there exists α0 > 1 such that r − δ > D̃A
α0
(N‖M). Then we have

− 1

nk

log βnk
− D̃A

α0
(N‖M) > r − δ − D̃A

α0
(N‖M) =: b > 0. (77)

Taking this into (76), we get

− 1

nk

log(1− αnk
) >

α0 − 1

α0
b =: c > 0, (78)

which is equivalent to 1−αnk
6 2−cnk . This establishes the exponentially strong converse property under

sequential strategies. Conversely, since any coherent strategy is a specific case of a sequential strategy, the
strong converse property under sequential strategies also implies the property under coherent strategies.

4 Quantum channel discrimination in different regimes

The task of channel discrimination aims to distinguish a quantum channel from the other under a given
type of strategy. A standard approach for discrimination is to perform hypothesis testing and make a
decision based on the testing result. However, two types of error (Type-I error and Type-II error) arise. In
the same spirit of state discrimination, one can study the asymptotic behavior of these errors in different
operational regimes (see Figure 2), particularly, (I) error exponent regime that studies the exponent
of the exponential convergence of the Type-I error given that the Type-II error exponentially decays;
(II) Stein exponent regime that studies the exponent of the exponential decay of the Type-II error given
that the Type-I error is within a constant threshold; (III) strong converse exponent regime that studies
the exponent of the exponential convergence of the Type-I error given that the Type-II error exponentially
decays.
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Figure 2 (Color online) Illustration depicting different regimes of quantum channel discrimination. Each curve represents the

tradeoff between the Type-I and Type-II errors for varying block lengths, with darker lines corresponding to longer block lengths.

(I) represents the error exponent regime, (II) represents the Stein exponent regime, and (III) represents the strong converse exponent

regime.

Quantum state discrimination in different operational regimes has been well-studied. In particular,
there is a nice correspondence between the regime studied and the quantum divergence to use. More
precisely, the Stein exponent is given by the Umegaki relative entropy [4,5], the strong converse exponent
is determined by the sandwiched Rényi divergence [11], and the error exponent is determined by the Petz
Rényi divergence [7,8,61]. However, when it comes to channel discrimination, the situation becomes much
more involved due to the diverse range of discrimination strategies and different extensions of channel
divergence.

In this section, we study the interplay between the strategies of channel discrimination (e.g., sequen-
tial, coherent, product), the operational regimes (e.g., error exponent, Stein exponent, strong converse
exponent), and three variants of channel divergences (e.g., Petz, Umegaki, sandwiched). We find a nice
correspondence that shows that the proper divergences to use (Petz, Umegaki, sandwiched) are deter-
mined by the operational regime of interest, while the types of channel extension (one-shot, regularized,
amortized) are determined by the discrimination strategies. Our results contribute towards a complete
picture of channel discrimination in a unified framework.

4.1 Stein exponent

In this subsection, we consider minimizing the Type-II error probability, under the constraint that the
Type-I error probability does not exceed a constant threshold ε ∈ (0, 1). We characterize the exact
exponent, named Stein exponent, with which the Type-II error exponentially decays.

Definition 13 (Stein exponent). Let N ,M ∈ CPTP(A→ B) be two quantum channels and ε ∈ (0, 1)
be a fixed error. The Stein exponents of quantum channel discrimination by the strategy class Ω ∈
{PRO,COH, SEQ} without quantum memory assistance are defined by

Est
Ω,sup(ε|N‖M) := lim sup

n→∞

1

n
dεH,Ω(N⊗n‖M⊗n), (79)

Est
Ω,inf(ε|N‖M) := lim inf

n→∞

1

n
dεH,Ω(N⊗n‖M⊗n), (80)

where

dεH,Ω(N⊗n‖M⊗n) := sup
(Sn,Πn)∈Ω

{
− 1

n
log βn(Sn,Πn) : αn(Sn,Πn) 6 ε

}
. (81)

The supremum is taken over all possible strategies (Sn,Πn) ∈ Ω satisfying the condition and the type-I
and type-II errors are defined in (44) and (45), respectively.

The non-asymptotic quantity in (81) can also be written as a notion of hypothesis testing relative
entropy between the testing states,

dεH,Ω(N⊗n‖M⊗n) = sup
Sn∈Ω

Dε
H(ρn(Sn)‖σn(Sn)), (82)
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where the hypothesis testing relative entropy on the r.h.s. is between two quantum states which is defined
in (10) and the supremum is taken over all strategies Sn ∈ Ω that generate the testing states ρn(Sn)
and σn(Sn). More explicitly, when Ω = PRO, we have ρn(Sn) = N⊗n(

⊗n
i=1 ϕi), σn(Sn) = M⊗n(

⊗n
i=1 ϕi)

and the supremum is taken over all ϕi ∈ D(RiAi). When Ω = COH, we have ρn(Sn) = N⊗n(ψn),
σn(Sn) = M⊗n(ψn) and the supremum is taken over all ψn ∈ D(RAn). When Ω = SEQ, we have
ρn(Sn) = N ◦Pn−1 ◦ · · · ◦ P2 ◦ N ◦P1 ◦N (ψn), σn(Sn) = M◦Pn−1 ◦ · · · ◦ P2 ◦M◦P1 ◦M(ψn) and the
supremum is taken over all ψn ∈ D(R1A1) and Pi ∈ CPTP(RiBi → Ri+1Ai+1).

Theorem 5 (Product strategy). Let N ,M ∈ CPTP(A→ B) be two quantum channels and ε ∈ (0, 1)
be a fixed error. Then it holds that

Est
PRO,sup(ε|N‖M) = Est

PRO,inf(ε|N‖M) = d(N‖M). (83)

Proof. It suffices to show that

lim
n→∞

1

n
dεH,PRO(N⊗n‖M⊗n) = d(N‖M). (84)

For the achievable part, let ϕ ∈ D(A) be an optimal input state for d(N‖M), i.e., D(N (ϕ)‖M(ϕ)) =
d(N‖M). Using ϕ⊗n as the input state in the product strategy, we have

Est
PRO,inf(ε|N‖M) > lim inf

n→∞

1

n
dεH([N (ϕ)]⊗n‖[M(ϕ)]⊗n) = D(N (ϕ)‖M(ϕ)) = d(N‖M), (85)

where the first equality follows from the quantum Stein’s lemma [4,5] and the second equality follows from
the optimality assumption of ϕ. For the converse part, consider any input states

⊗n
i=1 ϕi with ϕi ∈ D(Ai)

and α > 1 we have

1

n
Dε

H

(
n⊗

i=1
N (ϕi)

∥∥∥
n⊗

i=1
M(ϕi)

)
6

1

n
D̃α

(
n⊗

i=1
N (ϕi)

∥∥∥
n⊗

i=1
M(ϕi)

)
+

1

n

α

α− 1
log

1

1− ε
(86)

=
1

n

n∑

i=1

D̃α

(
N (ϕi)

∥∥M(ϕi)
)
+

1

n

α

α− 1
log

1

1− ε
(87)

6 d̃α(N‖M) +
1

n

α

α− 1
log

1

1− ε
, (88)

where the first inequality follows from (11), the first equality follows from the additivity of sandwiched
Rényi divergence under tensor product states, and the second inequality follows from the definition of
channel divergence. Taking the supremum of all input states

⊗n
i=1 ϕi and taking the limit of n→ ∞, we

have

Est
PRO,sup(ε|N‖M) = lim sup

n→∞

1

n
dεH,PRO(N⊗n‖M⊗n) 6 d̃α(N‖M). (89)

Finally, taking α→ 1 and applying Lemma 2, we have the converse part.
Note that we can actually extend the input choices of product strategy to a convex combination of

tensor product states
∑m

j=1 pj(
⊗n
i=1 ϕi,j). In this case, Theorem 5 still holds by adding an extra step in

the proof of the converse part and using the joint quasi-convexity of the sandwiched Rényi divergence
(e.g., [11, Corollary 3.16]). This indicates that shared randomness between the input states for each use of
the channel will not help to get a faster convergence rate of the Type-II error for channel discrimination.

Theorem 6 (Coherent strategy). Let N ,M ∈ CPTP(A→ B) be two quantum channels and ε ∈ (0, 1)
be a fixed error. If these channels exhibit the strong converse property as defined in Definition 11, then
it implies that

Est
COH,sup(ε|N‖M) = Est

COH,inf(ε|N‖M) = dreg(N‖M). (90)

Proof. The assertion is a combination of (54) (achievability) and a restatement of Theorem 1 (converse)
by noting that

dεH,COH(N⊗n
∥∥M⊗n) = dεH(N⊗n

∥∥M⊗n), (91)

where the l.h.s. is the operational definition and the r.h.s. is the mathematical definition.
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Theorem 7 (Sequential strategy). Let N ,M ∈ CPTP(A → B) be two quantum channels. Let I ∈
CPTP(A → A) be the identity channel. Then if the exponentially strong converse property, as defined
in Definition 12, holds for the channels I ⊗ N and I ⊗M, this implies that

Est
SEQ,sup(ε|N‖M) = Est

SEQ,inf(ε|N‖M) = DA(N‖M). (92)

Proof. By definition it is clear that Est
SEQ,inf(ε|N‖M) is monotone increasing in ε. Thus for any fixed

ε ∈ (0, 1) we have

Est
SEQ,inf(ε|N‖M) > lim

ε→0
Est

SEQ,inf(ε|N‖M) = DA(N‖M), (93)

where the equality follows from [13, Theorem 6].
Next we prove the converse part. For any ψn ∈ D(RAn), Pi ∈ CPTP(RiBi → Ri+1Ai+1), denote

ρn = N ◦ Pn−1 ◦ · · · ◦ P2 ◦ N ◦ P1 ◦ N (ψn), (94)

σn = M◦Pn−1 ◦ · · · ◦ P2 ◦M ◦ P1 ◦M(ψn). (95)

Due to (11), it holds for any α > 1 that

1

n
Dε

H(ρn‖σn) 6
1

n
D̃α(ρn‖σn) +

1

n

α

α− 1
log

1

1− ε
. (96)

Note that for any quantum state ρ, σ and quantum channels E ,F , we have by definition

D̃α(E(ρ)‖F(σ)) 6 D̃A
α (E‖F) + D̃α(ρ‖σ). (97)

By using this relation and the data-processing inequality of D̃α iteratively, we have D̃α(ρn‖σn) 6

nD̃A
α (N‖M). This gives

1

n
Dε

H(ρn‖σn) 6 D̃A
α (N‖M) +

1

n

α

α− 1
log

1

1− ε
. (98)

Taking on both sides the supremum over all sequential strategies following by the limit n→ ∞ gives

Est
SEQ,sup(ε|N‖M) = lim sup

n→∞

1

n
Dε

H,SEQ

(
N⊗n

∥∥M⊗n
)
6 D̃A

α (N‖M). (99)

Since the above inequality holds for all α > 1, by taking α → 1+ and using Corollary 1, we have

Est
SEQ,sup(ε|N‖M) 6 DA(N‖M). (100)

Combining (93) and (100), we have the complete proof.
Note that Theorems 6 and 7 have been proved in [13, Theorems 3 and 6] for vanishing ε. But the

above results are stronger as they hold for any fixed ε ∈ (0, 1) without the need to take ε→ 0.

4.2 Strong converse exponent

In the task of state discrimination, the strong converse exponent is defined by

Esc(r|ρ‖σ) := inf
{Πn}

{
− lim inf

n→+∞

1

n
logTr ρ⊗nΠn : lim sup

n→+∞

1

n
logTr σ⊗nΠn 6 −r

}
, (101)

where the infimum is taken over all possible sequences of quantum tests {Πn}n∈N satisfying the condition.
It has been shown in [11, Theorem 4.10] that this exponent is precisely characterized by

Esc(r|ρ‖σ) = sup
α>1

α− 1

α

[
r − D̃α(ρ‖σ)

]
. (102)

We aim to extend this result to the channel case.
Let us start by defining the strong converse exponent of channel discrimination.
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Definition 14 (Strong converse exponent). Let N ,M ∈ CPTP(A → B) and r > 0. The strong
converse exponents of channel discrimination by the strategy class Ω ∈ {PRO,COH, SEQ} without
quantum memory assistance are defined by

Esc
Ω (r|N‖M) := inf

(Sn,Πn)∈Ω

{
− lim inf

n→+∞

1

n
log(1− αn(Sn,Πn)) : lim sup

n→+∞

1

n
log βn(Sn,Πn) 6 −r

}
, (103)

where the infimum is taken over all possible strategies (Sn,Πn) ∈ Ω satisfying the condition.

Theorem 8 (Product strategy). Let N ,M ∈ CPTP(A→ B) and r > 0. Then it holds that

Esc
PRO(r|N‖M) = sup

α>1

α− 1

α

[
r − d̃α(N‖M)

]
. (104)

Proof. We first prove the converse part which closely follows the proof of its state analog in [11,
Lemma 4.7]. For any product strategy ({ϕi}ni=1,Πn) with input states ϕi ∈ D(Ai) and measurement
operator 0 6 Πn 6 I. Let ρn := N⊗n(

⊗n
i=1 ϕi), σn := M⊗n(

⊗n
i=1 ϕi) be the output states and pn :=

(Tr ρnΠn,Tr ρn(I −Πn)) and qn := (Tr σnΠn,Trσn(I −Πn)) be the post-measurement states. Then the
Type-I error is αn = Tr[(I − Πn)ρn] and the Type-II error is βn = Tr[Πnσn]. By definition it suffices to
consider sequences ({ϕi}ni=1,Πn) such that lim supn→+∞

1
n
log βn 6 −r. From the data-processing of the

sandwiched Rényi divergence, we have for any α > 1 that

D̃α(ρn‖σn) > D̃α(pn‖qn)

>
1

α− 1
log

[
(Tr ρnΠn)

α(TrσnΠn)
1−α

]
=

α

α− 1
log(1− αn)− log βn. (105)

This can be equivalently written as

− 1

n
log(1− αn) >

α− 1

α

[
− 1

n
log βn − 1

n
D̃α(ρn‖σn)

]
. (106)

By the assumption of ({ϕi}ni=1,Πn) and taking lim supn→∞ on both sides, we have

− lim inf
n→+∞

1

n
log(1− αn) >

α− 1

α

[
r − lim inf

n→+∞

1

n
D̃α(ρn‖σn)

]
. (107)

By the additivity of sandwiched Rényi divergence under tensor product states and the definition of
channel divergence, we have D̃α(ρn‖σn) =

∑n
i=1 D̃α(N (ϕi)‖M(ϕi)) 6 nd̃α(N‖M). Thus

− lim inf
n→+∞

1

n
log(1 − αn) >

α− 1

α

[
r − d̃α(N‖M)

]
. (108)

Finally taking the infimum over all product strategies and the supremum over all α > 1 on both sides,
we can conclude the converse part

Esc
PRO (r|N‖M) > sup

α>1

α− 1

α

[
r − d̃α(N‖M)

]
. (109)

We then proceed to show the achievable part. Let ϕ ∈ D(A) be an optimal quantum state such that

d̃α(N‖M) = D̃α(N (ϕ)‖M(ϕ)). Consider the task of distinguishing quantum states N (ϕ) and M(ϕ).
Suppose the optimal test in Esc(r|N (ϕ)‖M(ϕ)) is given by the sequence {Πn}n∈N. Then by the quantum
converse Hoeffiding theorem (see (102)) we have

lim sup
n→+∞

1

n
log Tr[M(ϕ)]⊗nΠn 6 −r, (110)

− lim inf
n→+∞

1

n
logTr[N (ϕ)]⊗nΠn = sup

α>1

α− 1

α

[
r − D̃α(N (ϕ)‖M(ϕ))

]
. (111)

Note that ({ϕ}ni=1,Πn) is a product strategy for the task of channel discrimination between N⊗n and
M⊗n. We have

Esc
PRO (r|N‖M) 6 − lim inf

n→+∞

1

n
logTrN⊗n(ϕ⊗n)Πn (112)
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= sup
α>1

α− 1

α

[
r − D̃α(N (ϕ)‖M(ϕ))

]
(113)

= sup
α>1

α− 1

α

[
r − d̃α(N‖M)

]
, (114)

where the first equality follows from (111), the second equality follows from the optimality assumption
of ϕ. Combining (109) and (114), we have the complete proof.

Note here that one can extend the input choices of product strategy to a convex combination of tensor
product states

∑m
j=1 pj(

⊗n
i=1 ϕi,j). In this case, Theorem 8 still holds by adding an additional step in

the proof of the converse part and using the joint quasi-convexity of the sandwiched Rényi divergence
(e.g., [11, Corollary 3.16]). This indicates that shared randomness between the input states for each use
of the channel will provide no advantage in reducing the convergence rate of the Type-I error.

Remark 2. The strong converse exponents under coherent and sequential strategies were established
in [55, Theorem 5.5]. However, regarding the exact threshold for exponential convergence, their result only

identifies the threshold as infα>1 D̃
reg
α (N‖M). The continuity result in Theorem 3 could fully determine

this threshold as Dreg(N‖M) if the strong converse property can be proven.

4.3 Error exponent

In the task of state discrimination, the error exponent is defined by

Eer(r|ρ‖σ) := sup
{Πn}

{
− lim sup

n→+∞

1

n
logTr[(I −Πn)ρ

⊗n] : lim sup
n→+∞

1

n
logTr[Πnσ

⊗n] 6 −r
}
, (115)

where the supremum is taken over all possible sequences of quantum tests {Πn}n∈N satisfying the condi-
tion. It has been shown in [7, 8, 61] that the error exponent is precisely given by

Eer(r|ρ‖σ) = sup
0<α<1

α− 1

α

[
r − D̃α(ρ‖σ)

]
. (116)

We aim to extend this result to the channel case.

Definition 15 (Error exponent). Let N ,M ∈ CPTP(A → B) and r > 0. The error exponents of
quantum channel discrimination by the strategy class Ω ∈ {PRO,COH, SEQ} without quantum memory
assistance are defined by

Eer
Ω (r|N‖M) := sup

(Sn,Πn)∈Ω

{
− lim sup

n→+∞

1

n
logαn(Sn,Πn) : lim sup

n→+∞

1

n
log βn(Sn,Πn) 6 −r

}
, (117)

where the supremum is taken over all possible strategies (Sn,Πn) ∈ Ω satisfying the condition.

Theorem 9 (Product strategy). Let N ,M ∈ CPTP(A→ B) and r > 0. Then it holds that

Eer
PRO(r|N‖M) > sup

0<α<1

α− 1

α

[
r − D̃α(N‖M)

]
. (118)

Proof. Let ϕ ∈ D(A) an optimal input state such that d̄α(N‖M) = D̄α(N (ϕ)‖M(ϕ)). Consider the
task of distinguishing quantum states N (ϕ) and M(ϕ). Suppose the optimal test in Eer(r|N (ϕ)‖M(ϕ))
is given by the sequence {Πn}n∈N. Then by the quantum Hoeffding theorem (116) we have

lim sup
n→+∞

1

n
logTr[M(ϕ)]⊗nΠn 6 −r, (119)

− lim sup
n→+∞

1

n
log(1− Tr[N (ϕ)]⊗nΠn) = sup

0<α<1

α− 1

α

[
r − D̄α(N (ϕ)‖M(ϕ))

]
. (120)

Note that ({ϕ}ni=1,Πn) is a product strategy for the task of channel discrimination between N⊗n and
M⊗n. Then we have

Eer
PRO (r|N‖M) > − lim sup

n→+∞

1

n
log(1− TrN⊗n(ϕ⊗n)Πn) (121)
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= − lim sup
n→+∞

1

n
log(1− Tr[N (ϕ)]⊗nΠn) (122)

= sup
0<α<1

α− 1

α

[
r − D̄α(N (ϕ)‖M(ϕ))

]
(123)

= sup
0<α<1

α− 1

α

[
r − d̄α(N‖M)

]
, (124)

where the second equality follows from (120), the third equality follows from the optimality assumption
of ϕ. This completes the proof.

Theorem 10 (Coherent strategy). Let N ,M ∈ CPTP(A→ B) and r > 0. Then it holds that

Eer
COH(r|N‖M) > sup

0<α<1

α− 1

α

[
r − d̄reg

α (N‖M)
]
. (125)

Proof. For any given m ∈ N, let ψm ∈ D(Am) an optimal input state such that d̄α(N⊗m‖M⊗m) =
D̄α(N⊗m(ψm)‖M⊗m(ψm)). Denote ρm := N⊗m(ψm) and σm := M⊗m(ψm). Consider the task of
distinguishing quantum states ρm and σm. Suppose the optimal test in Eer(r|ρm‖σm) is given by the
sequence {Πm,n}n∈N. Then by the quantum Hoeffding theorem (see (116)) we have

lim sup
n→+∞

1

n
logTr[σm]⊗nΠm,n 6 −r, (126)

− lim sup
n→+∞

1

n
log(1− Tr[ρm]⊗nΠm,n) = sup

0<α<1

α− 1

α

[
r − D̄α(ρm‖σm)

]
. (127)

Note that (ψ⊗n
m ,Πm,n) is a coherent strategy for the task of channel discrimination between N⊗mn and

M⊗mn, satisfying

lim sup
n→+∞

1

mn
logTrM⊗mn(ψ⊗n

m )Πm,n 6 − r

m
. (128)

Then we have

Eer
COH

( r
m
|N‖M

)
> − lim sup

n→+∞

1

mn
log(1− TrN⊗mn(ψ⊗n

m )Πm,n) (129)

= − lim sup
n→+∞

1

mn
log(1− Tr[ρm]⊗nΠm,n) (130)

=
1

m
sup

0<α<1

α− 1

α

[
r − D̄α(ρm‖σm)

]
(131)

=
1

m
sup

0<α<1

α− 1

α

[
r − d̄α(N⊗m‖M⊗m)

]
(132)

= sup
0<α<1

α− 1

α

[
r

m
− 1

m
d̄α(N⊗m‖M⊗m)

]
, (133)

where the second equality follows from (127), the third equality follows from the optimality assumption
of ψm. Replacing r/m as r, we have

Eer
COH (r|N‖M) > sup

0<α<1

α− 1

α

[
r − 1

m
d̄α(N⊗m‖M⊗m)

]
. (134)

Since Eq. (134) holds for any integer m ∈ N, we have

Eer
COH (r|N‖M) > sup

m∈N

sup
0<α<1

α− 1

α

[
r − 1

m
d̄α(N⊗m‖M⊗m)

]
(135)

= sup
0<α<1

sup
m∈N

α− 1

α

[
r − 1

m
d̄α(N⊗m‖M⊗m)

]
(136)

= sup
0<α<1

α− 1

α

[
r − sup

m∈N

1

m
d̄α(N⊗m‖M⊗m)

]
(137)

= sup
0<α<1

α− 1

α

[
r − d̄reg

α (N‖M)
]
. (138)

This completes the proof.
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Figure 3 (Color online) Coding scheme for entanglement transmission over n uses of a channel N ∈ CPTP(A → B). The systems

E and K are isomorphic. The encoder E ∈ CPTP(K → An) encodes the part K of the maximally entangled state ΦEK into the

channel input systems. Later, the decoder D ∈ CPTP(Bn → K) recovers the state from the channel output systems. The map

I ∈ CPTP(E → E) is the identity map. The final state after the coding strategy is denoted as ρEK [E,D] and the performance of

the code is quantified using the fidelity F (ΦEK , ρEK [E,D]).

5 Quantum communication as quantum channel discrimination

Quantum communication via quantum channels forms the cornerstone of future quantum networks [62]
and the quantum channel capacity is a central question in quantum Shannon theory [26–29]. In this
section, we present a perspective by framing the study of quantum communication problems as quantum
channel discrimination tasks. This perspective offers deeper insights into the intricate relationships be-
tween channel capacities, channel discrimination, and the mathematical properties of quantum channel
divergences. On one hand, leveraging this connection, we demonstrate that the channel coherent informa-
tion and quantum channel capacity can be precisely characterized as Stein exponent for discriminating
between two quantum channels under the product and coherent strategies without quantum memory
assistance, respectively. Furthermore, we show that the strong converse property of quantum channel
capacity can be established if the channels being discriminated exhibit the strong converse property. On
the other hand, the extreme non-additivity of quantum channel capacity implies a similar fundamental
property for the unstabilized channel divergence, which can be of independent interest for future studies.

5.1 Operational interpretation of quantum channel capacity

In this subsection, we discuss quantum channel communication and its operational interpretation in the
context of quantum channel discrimination. The coding scheme for n uses of the channel is depicted in
Figure 3. We are given a quantum channel N ∈ CPTP(A → B) and denote by N⊗n the n-fold parallel
repetition of this channel. An entanglement transmission code for N⊗n is given by a triplet {|K|, E ,D},
where |K| is the local dimension of a maximally entangled state ΦEK := 1

|E|

∑|E|
i,j=1 |ii〉〈jj| that is to

be transmitted over N⊗n. The quantum channels E ∈ CPTP(K → An) and D ∈ CPTP(Bn → K) are
encoding and decoding operations, respectively. Denote the outcome state after the coding strategy by

ρEK [E ,D] := IE ⊗DB→K ◦ NA→B ◦ EK→A(ΦEK). (139)

With this in hand, we now say that a triplet {r, n, ε} is achievable on the channel N if there exists an
entanglement transmission code satisfying

1

n
log |K| > r and F (ΦEK , ρEK [E ,D]) > 1− ε, (140)

where F (ρ, σ) := (‖√ρ√σ‖1)
2 is the quantum fidelity and ‖ · ‖1 is the trace norm. If one of the states is

pure, we have the simplification F (|ψ〉〈ψ|, σ) = Tr[|ψ〉〈ψ|σ].
When considering a single use of the channel, the one-shot quantum capacity, which establishes the

boundary of all achievable triples {r, 1, ε}, is defined as follows.

Definition 16. Let N ∈ CPTP(A → B) be a quantum channel and ε ∈ (0, 1) be a fixed error. The
one-shot quantum capacity of N is defined by

Q(1)(N , ε) := sup
|K|=|E|∈N

E∈CPTP(K→A)
D∈CPTP(B→K)

{
log |K| : Tr (ρEK [E ,D] · ΦEK) > 1− ε

}
. (141)
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Then the quantum capacity is defined as the asymptotic limit

Q(N ) := lim
ε→0

lim
n→∞

1

n
Q(1)(N⊗n, ε). (142)

The well-established Lloyd-Shor-Devetak theorem [63–65] states that the quantum capacity of a channel
can be expressed in terms of a regularized channel coherent information:

Q(N ) = lim
n→∞

1

n
Ic(N⊗n) = sup

n∈N

1

n
Ic(N⊗n), (143)

where the channel coherent information is defined by

Ic(N ) := sup
ρ∈D(EA)

−H(E|B)ρ with ρEB = IE ⊗NA→B(ρEA), (144)

and the supremum is taken over all density matrices ρ on system E ⊗A and E is isomorphic to A.
Based on the notion of unstabilized channel divergence, we can rewrite the channel coherent information

and quantum capacity as follows.

Theorem 11. For any quantum channel N ∈ CPTP(A→ B), it holds that

Ic(N ) = d
(
IE ⊗NA→B

∥∥Rπ
E ⊗NA→B

)
− log |E|, (145)

Q(N ) = dreg
(
IE ⊗NA→B

∥∥Rπ
E ⊗NA→B

)
− log |E|, (146)

where E is isomorphic to A and Rπ
E ∈ CPTP(E → E) represents a replacer channel that maps any input

state to a maximally mixed state π ∈ D(E).

Proof. For any given state ρ ∈ D(EB), we have

−H(E|B)ρ = D(ρEB‖IE ⊗ [TrE ρEB]) = D(ρEB‖Rπ
E ⊗ IB(ρEB))− log |E|. (147)

Let ρEB = IE ⊗NA→B(ρEA) and take supremum over all ρ ∈ D(EA). We get

Ic(N ) = sup
ρ∈D(EA)

D
(
IE ⊗NA→B(ρEA)

∥∥(Rπ
E ⊗ IB) ◦ (IE ⊗NA→B)(ρEA)

)
− log |E| (148)

= d
(
IE ⊗NA→B

∥∥RI
E ⊗NA→B

)
− log |E|. (149)

Eq. (146) directly follows from (145) by taking a regularization on both sides. That is,

Q(N ) = lim
n→∞

1

n
Ic(N⊗n) (150)

= lim
n→∞

1

n
d
(
IEn ⊗ [NA→B]

⊗n
∥∥Rπ⊗n ⊗ [NA→B ]

⊗n
)
− log |E| (151)

= lim
n→∞

1

n
d
( [

IE ⊗NA→B

]⊗n∥∥[Rπ ⊗NA→B

]⊗n
)
− log |E| (152)

= dreg
(
IE ⊗NA→B

∥∥Rπ
E ⊗NA→B

)
− log |E|, (153)

which completes the proof.

Remark 3 (Operational interpretation). From the operational meaning of dreg, we can understand
quantum capacity as the Stein exponent of channel discrimination between the ideal case IE ⊗ NA→B

and the worst case Rπ
E ⊗NA→B . Noting that dreg(IE‖Rπ

E) = log |E|, we can also write

Q(N ) = dreg(IE ⊗NA→B‖Rπ
E ⊗NA→B)− dreg(IE‖Rπ

E), (154)

indicating that the quantum capacity of a channel N can be understood as the “power” of this channel
as a catalyst to discriminate the perfect channel IE and the completely useless channel Rπ

E for quantum
communication.

Drawing upon the correspondence established in Theorem 11 and the extreme non-additivity of channel
coherent information as shown in [66] (where an unbounded number of channel uses may be necessary
to detect quantum capacity), we can infer that the unstabilized quantum channel divergence can also
exhibit extreme non-additivity.
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Figure 4 (Color online) Conceptual process that replaces IE in Figure 3 with the CP map RI

E
, and gives the final state σEK [E,D].

Theorem 12. Let d be the unstabilized quantum channel divergence induced by the Umegaki relative
entropy. Then d is extremely non-additive. That is, for any n ∈ N, there exists quantum channels
N ,M ∈ CPTP(A→ B) such that

d(N⊗n‖M⊗n) < dreg(N‖M). (155)

Proof. It has been shown in [66] that for any n ∈ N, there exists quantum channels E ∈ CPTP(A→ B)
such that Ic(E⊗n) = 0 < Q(E). Then by the relation in Theorem 11, we can take N = I ⊗ E and
M = Rπ

E ⊗ E . This gives d(N⊗n‖M⊗n) = log |A| < dreg(N‖M).

5.2 One-shot converse bound for quantum channel capacity

Here we establish a converse bound for one-shot quantum capacity, which can be seen as a smoothed
analogue of channel coherent information. The one-shot converse bound is mostly inspired by the channel
divergence formula of coherent information (146). That is, the channel coherent information as well as
quantum capacity characterize the distinguishability between the channel IE ⊗NA→B and the CP map
RI

E ⊗NA→B (here we use the identity operator I instead of π to absorb the constant factor log |E|). It
is thus convenient for us to consider a conceptual process in Figure 4 which replaces the identity map IE
in Figure 3 with the CP map RI

E . Its final state is denoted as

σEK [E ,D] := RI
E ⊗DB→K ◦ NA→B ◦ EK→A(ΦEK) = RI

E ⊗ IK(ρEK [E ,D]). (156)

Theorem 13 (One-shot converse bound). For any N ∈ CPTP(A→ B) and ε ∈ (0, 1), it holds that

Q(1)(N , ε) 6 sup
|E|∈N

dεH
(
IE ⊗NA→B

∥∥RI
E ⊗NA→B

)
, (157)

where the supremum is taken over E of arbitrary dimension.

Proof. For any entanglement transmission code {|K|, E ,D} such that TrΦEKρEK [E ,D] > 1 − ε. We
have a key observation that

TrΦEKσEK [E ,D] = TrΦEK

{
RI

E ⊗ IK(ρEK [E ,D])
}

(158)

= TrΦEK {IE ⊗ TrE(ρEK [E ,D])} (159)

= Tr {TrE(ΦEK)} {TrE(ρEK [E ,D])} (160)

= Tr {IK/|K|} {TrE(ρEK [E ,D])} (161)

= 1/|K|, (162)

where the first line follows by (156), the second line follows by definition of RI
E , the third line follows by

the identity TrXAB(IA⊗YB) = Tr{TrAXAB}{YB}, the last line follows by the fact that TrE(ρEK [E ,D])
is a normalized quantum state. Then we have

log |K| = − logTrΦEKσEK [E ,D] (163)

6 Dε
H

(
ρEK [E ,D]

∥∥σEK [E ,D]
)

(164)

6 Dε
H

(
(IE ⊗NA→B) ◦ (EK→A(ΦEK))

∥∥(RI
E ⊗NA→B) ◦ (EK→A(ΦEK))

)
(165)

6 sup
ρ∈D(EA)

Dε
H

(
IE ⊗NA→B(ρEA)

∥∥RI
E ⊗NA→B(ρEA)

)
, (166)
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where the first inequality follows because ΦEK is a particular choice of quantum test for hypothesis
testing relative entropy that satisfies TrΦEKρEK [E ,D] > 1−ε, the second inequality follows by the data-
processing inequality of Dε

H under the action of IE ⊗ DB→K , the third inequality follows by relaxing
EK→A(ΦEK) to all density matrices on system E ⊗ A. Finally taking supremum over all possible codes
{|K|, E ,D}, we have the desired result.

Corollary 2. For any N ∈ CPTP(A→ B) and ε ∈ (0, 1), δ ∈ (0, 1) and ε+ δ < 1, it holds that

Q(1)(N , ε) 6 dδmax

(
IE ⊗NA→B

∥∥Rπ
E ⊗NA→B

)
+ log

1

1− ε− δ
− log |E|, (167)

where E is isomorphic to A.

Proof. Combining Theorem 13 and (63) we have

Q(1)(N , ε) 6 sup
|E|∈N

ρ∈D(EA)

Dδ
max

(
IE ⊗NA→B(ρEA)

∥∥RI
E ⊗NA→B(ρEA)

)
+ log

1

1− ε− δ
. (168)

Since Dδ
max is jointly quasi-convex [57, Lemma 7], the optimization can be restricted to pure states.

Furthermore, due to the isometry invariance property of Dδ
max, we can, without loss of generality, assume

that E is isomorphic to A. Finally, noting that RI
E(·) = |E|Rπ

E(·) and Dδ
max(ρ‖aσ) = Dδ

max(ρ‖σ)− log a,
we have the asserted result.

5.3 Towards the strong converse property of quantum channel capacity

Consider any entanglement transmission code with an achievable triplet {r, n, ε}. The strong converse
property of channel N is that if the communication rate r > Q(N ), then the communication error ε
converges to one as n goes to infinity. Similar to the proof of Theorem 1, this can be equivalently
expressed by

lim sup
n→∞

1

n
Q(1)(N⊗n, ε) 6 Q(N ), ∀ε ∈ (0, 1). (169)

The strong converse property of quantum capacity is a long-standing open problem in quantum infor-
mation theory. Upon the connection between quantum communication and channel discrimination, we
show that the strong converser property for channel discrimination implies the strong converse property
of quantum capacity.

Theorem 14 (Strong converse property). Let N ∈ CPTP(A → B) be a quantum channel, I ∈
CPTP(E → E) be the identity channel with E isomorphic to A and Rπ

E ∈ CPTP(E → E) be the replacer
channel. Then if the channels IE ⊗ NA→B and Rπ

E ⊗ NA→B exhibit the strong converse property, as
defined in Definition 11, this implies the strong converse property of the channel capacity for N .

Proof. For any ε ∈ (0, 1), let δ ∈ (0, 1) such that ε+ δ < 1. Then

lim sup
n→∞

1

n
Q(1)(N⊗n, ε) 6 lim sup

n→∞

1

n
dδmax

(
(IE ⊗NA→B)

⊗n
∥∥(Rπ

E ⊗NA→B)
⊗n

)
− log |E| (170)

6 dreg
(
IE ⊗NA→B

∥∥Rπ
E ⊗NA→B

)
− log |E| (171)

= Q(N ), (172)

where the first inequality follows from Corollary 2, the second inequality follows from Theorem 2 and the
equality follows from Theorem 11. This completes the proof.

6 Discussion

In conclusion, this work advances the understanding of the ultimate limits of quantum channel discrimi-
nation and quantum communication by developing versatile tools and frameworks rooted in unstabilized
channel divergence. We address key open problems, such as improving bounds on hypothesis testing
relative entropy, proving additivity for channel divergences, and establishing a quantum channel analog
of Stein’s lemma. Our unified approach links channel discrimination strategies with operational regimes
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and mathematical divergences, providing a comprehensive perspective on quantum channel discrimination
across various settings. Furthermore, by framing quantum communication problems as quantum channel
discrimination tasks, we uncover connections between channel capacities, channel discrimination, and
operational exponents. These results bridge two core areas of quantum information theory and offer new
insights for future exploration.

An initial attempt to prove the exponentially strong converse property for two general channels was
presented in the first arXiv submission of this work (arXiv:2110.14842v1). However, this effort triggers
the discovery of a gap in a technical lemma from [9], which undermines the validity of the original
proof and leaves the problem unresolved. Notably, this gap has drawn great attention in the quantum
information community since then and the generalized quantum Stein’s lemma, originally proposed in [9],
has been recently reproved in [67,68]. Given our findings in this work that the strong converse property is a
pivotal element for achieving a complete understanding of quantum channel discrimination, we encourage
interested readers to give further investigations into this important problem. Several results from our
initial analysis remain valid and could hold independent interest. These details are included in Appendix
A, and we hope they will inspire and support future efforts to resolve this challenging issue.
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