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Appendix A Attempt to solve the strong converse property
An initial attempt to prove the exponentially strong converse property for two general channels, I ⊗ N and I ⊗ M, was
presented in the first arXiv submission (arXiv:2110.14842v1). However, a flaw has been identified in the original proof,
rendering it invalid and leaving the problem unresolved. Nevertheless, several preliminary results from our initial analysis
remain valid and may hold independent interest. These details are included in this appendix, and we hope they will
contribute to resolving the problem in future studies.

The first lemma is an analog of a result of Ogawa and Nagaoka [1] that was originally used to establish the strong
converse of quantum Stein’s lemma. A similar result was proved by Brandão and Plenio for tensor product states [2]. Here
we extend it further to permutation-symmetric states.
Lemma A1. Let µ ∈ R and ρn, σn ∈ D(An) be symmetric under permutations of the n subsystems such that supp(ρn) ⊆
supp(σn). Then, for any r ∈ R and s ∈ [0, 1] the following relation holds

Tr (ρn − 2µnσn)+ ⩽ 2−nrs+log Tr[ρ1+s
n ] + 2−ns(µ−r)+s|A| log(1+n)+log Tr[ρnσ

−s
n ] . (A1)

Proof. Let Π be the projection to the positive part of ρn − 2µnσn and Π =
∑|A|n
x=1 axΠx be a decomposition of Π

into orthogonal rank-one projectors, where ax ∈ {0, 1} and
∑
x Πx = IAn (i.e. the set {Πx} forms a von-Neumann rank-

one projective measurement). In general, this decomposition of Π is not unique, and the precise choice of {Πx} will be
determined later on in the proof. Finally, denote by px := Tr [ρnΠx], qx := Tr [σnΠx] (note that px and qx depends on n),
and let I be the set of all x for which px > 2µnqx. Since (ρn − 2nµσn)+ = Π(ρn − 2nµσn)Π, we have

Tr (ρn − 2nµσn)+ =
∑
x

ax (px − 2µnqx) ⩽
∑
x∈I

(px − 2µnqx) ⩽
∑
x∈I

px = Pr(I) , (A2)

where Pr(I) is the probability of the set I with respect to the probability distribution {px}. Note that the set I can be
written as

I =

{
x :

1

n
log px > µ+

1

n
log qx

}
. (A3)

We would like to replace the set I with two sets: one depends solely on px, and the other only on qx. This can be done in
the following way. For any r ∈ R define the two sets

I(1) :=

{
x :

1

n
log px ⩾ r

}
and I(2) :=

{
x :

1

n
log qx ⩽ r − µ

}
. (A4)
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Note that if x ∈ I then either x ∈ I(1) or x ∈ I(2). We therefore conclude that

Tr (ρn − 2nµσn)+ ⩽ Pr
(
I(1)

)
+ Pr

(
I(2)

)
. (A5)

From Cramér’s theorem [3] it follows that

− log Pr
(
I(1)

)
⩾ sup
s∈[0,1]

{
nsr − log

∑
x

p1+sx

}
(A6)

− log Pr
(
I(2)

)
⩾ sup
s∈[0,1]

{
ns(µ− r)− log

∑
x

pxq
−s
x

}
. (A7)

We first bound (A6) in terms of ρn. For this purpose, let ∆ ∈ CPTP(An → An) be the completely dephasing map (also
a pinching map) ∆(ω) :=

∑
x ΠxωΠx defined on all ω ∈ D(An). Then, the density matrix ∆(ρn) is diagonal (in the basis

that the operators {Πx} project to) with components {px} on its diagonal. Hence, denoting by πAn := IAn/|A|n the
completely mixed state in D(An), and by α := 1 + s, we get by direct calculation that

− log
∑
x

p1+sx = n(α− 1) log |A| − (α− 1)Dα
(
∆(ρn)

∥∥πAn
)
. (A8)

Since Dα
(
∆(ρn)

∥∥πAn
)
= Dα

(
∆(ρn)

∥∥∆(πAn )
)
⩽ Dα

(
ρn

∥∥πAn
)
, we get

− log
∑
x

p1+sx ⩾ n(α− 1) log |A| − (α− 1)Dα
(
ρn

∥∥πAn
)
= − log Tr [ραn ] = − log Tr

[
ρ1+sn

]
. (A9)

Together with (A6), this gives the first term on the r.h.s. of (A1).
For the second term, observe that∑

x

pxq
−s
x = Tr

[
∆(ρn) (∆ (σn))

−s
]
= Tr

[
ρn (∆ (σn))

−s
]
. (A10)

We now estimate this term by utilizing the symmetry of ρn and σn. Since ρn and σn are symmetric under permutations of
the n subsystems they can be expressed as

ρn =
⊕

λ∈Irr(Sn)

IBλ ⊗ ρ
Cλ
λ and σn =

⊕
λ∈Irr(Sn)

IBλ ⊗ σ
Cλ
λ (A11)

where λ represents an irrep of the natural representation of the permutation group Sn on An, and ρλ, σλ ⩾ 0. We therefore
have

ρn − 2µnσn =
⊕

λ∈Irr(Sn)

IBλ ⊗
(
ρ
Cλ
λ − 2µnσ

Cλ
λ

)
(A12)

The condition supp(ρn) ⊆ supp(σn) implies that without loss of generality we can assume that σn > 0 (otherwise we can
restrict our consideration to the subspace of supp(σn) and embed ρn in this space). Therefore, under this assumption we
have that each σλ > 0. Let Pλ be the projector to the support of (ρλ − 2µnσλ)+, and let Pλ :=

∑|Cλ|n
j=1 aλ,jPλ,j be a

decomposition of Pλ into orthogonal rank-one projectors, where aλ,j ∈ {0, 1} and
∑
j Pλ,j = ICλ . Moreover, for each

λ ∈ Irr(Sn) decompose IBλ :=
∑|Bλ|
k=1 |ψλ,k⟩⟨ψλ,k|Bλ , where {|ψλ,k⟩}k forms an orthonormal basis of Bλ. Finally, we

denote by x := {λ, j, k} and take Πx := |ψλ,k⟩⟨ψλ,k|Bλ ⊗ P
Cλ
λ,j . With this choice of Πx we get that

∆(σn) =
⊕

λ∈Irr(Sn)

∑
j,k

|ψλ,k⟩⟨ψλ,k|Bλ ⊗ P
Cλ
λ,j σ

Cλ
λ P

Cλ
λ,j

=
⊕

λ∈Irr(Sn)

IBλ ⊗
∑
j

P
Cλ
λ,j σ

Cλ
λ P

Cλ
λ,j

=
⊕

λ∈Irr(Sn)

IBλ ⊗∆
Cλ→Cλ
λ

(
σ
Cλ
λ

) (A13)

where each ∆λ(·) :=
∑
j Pλ,j(·)Pλ,j is a completely dephasing map in CPTP(Cλ → Cλ). Therefore,

∑
x

pxq
−s
x = Tr

[
ρn (∆ (σn))

−s
]
=

∑
λ∈Irr(Sn)

|Bλ|Tr
[
ρλ

(
∆λ(σλ)

)−s]
. (A14)

From the pinching inequality, for each λ ∈ Irr(Sn) we have ∆λ(σλ) ⩾ 1
|Cλ|σλ. Moreover, since the function r 7→ rα is

operator anti-monotone for α ∈ [−1, 0] we get that

(
∆λ(σλ)

)−s ⩽

(
1

|Cλ|
σλ

)−s
. (A15)
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Substituting this into (A14) gives ∑
x

pxq
−s
x ⩽

∑
λ∈Irr(Sn)

|Cλ|s|Bλ|Tr
[
ρλσ

−s
λ

]
. (A16)

Now, since Cλ can be viewed as a subspace of Symn(A), its dimension cannot exceed that of Symn(A) which itself is
bounded by (n+ 1)|A|. We therefore conclude that

∑
x

pxq
−s
x ⩽ (n+ 1)s|A|

∑
λ∈Irr(Sn)

|Bλ|Tr
[
ρλσ

−s
λ

]
= (n+ 1)s|A| Tr

[
ρnσ

−s
n

]
. (A17)

Together with (A7), this gives the second term on the r.h.s. of (A1).

The next lemma shows that the eigenvalues of the output from n use of a positive definite channel N > 0 (i.e., its Choi
matrix is a positive definite operator) are uniformly bounded by an exponential factor.
Lemma A2. Let N ∈ CPTP(A→ B) and N > 0. Then, there exists b ∈ (0, 1) such that for any n ∈ N

max
ρ∈D(RnAn)

∥∥N⊗n (ρRnAn )
∥∥
∞ ⩽ bn . (A18)

Proof. Since N > 0 we have its Choi matrix JN > 0. Then there exists τ ∈ D(B) with ∥τ∥∞ < 1 (e.g. the maximally
mixed state) and its associated replacer channel Rτ such that tJN > JRτ for some t ∈ (0,∞). Equivalently, we have
tN > Rτ . Set ε := 1/t and then M := (N−εRτ )/(1−ε) > 0; in particular, M ∈ CPTP(A→ B) and N = (1−ε)M+εRτ .
Observe that

N⊗n =
n∑
k=0

(n
k

)
(1− ε)kεn−kFn,k (A19)

where Fn,k ∈ CPTP(An → Bn) is a uniform convex combination of
(n
k

)
channels all having the form M⊗k ⊗ R⊗n−k

τ up
to permutations of the n channels. Now, observe that∥∥∥M⊗k ⊗R⊗n−k

τ (ρRnAn )
∥∥∥
∞

=
∥∥∥M⊗k (ρRnAk )⊗ τ⊗n−k

∥∥∥
∞

⩽
∥∥∥τ⊗n−k∥∥∥

∞
= ∥τ∥n−k∞ . (A20)

Note that the order that N and Rτ appear in the equation above does not effect this upper bound. Therefore, since Fn,k
is a convex combination of such channels we conclude that also∥∥Fn,k (ρRnAn )

∥∥
∞ ⩽ ∥τ∥n−k∞ . (A21)

Hence, for any ρ ∈ D(RnAn)

∥∥N⊗n (ρRnAn )
∥∥
∞ ⩽

n∑
k=0

(n
k

)
(1− ε)kεn−k

∥∥∥Fn,k (ρRnAn
)∥∥∥

∞

⩽
n∑
k=0

(n
k

)
(1− ε)kεn−k∥τ∥n−k∞

=
(
1− ε+ ∥τ∥∞ε

)n
.

(A22)

The proof is completed by taking b := 1− ε+ ∥τ∥∞ε which is clearly in (0, 1).

The next lemma shows that by utilizing the permutation symmetry of tensor product channels we can restrict the optimal
input states in the discrimination strategies to be symmetric states. This reduces the problem from the most general form
to a particular one that can be tackled more easily. A general result is given in [4, Proposition II.4]. Here, we give an
alternative proof for the hypothesis testing relative entropy.
Lemma A3. Let N ,M ∈ CPTP(A→ B). For any n ∈ N there exists a pure state |φ⟩ ∈ Symn(R̃A) such that

max
ψ∈D(RnAn)

DεH
(
N⊗n(ψRnAn )

∥∥M⊗n(ψRnAn )
)
= DεH

(
N⊗n(φR̃nAn )

∥∥M⊗n(φR̃nAn )
)
. (A23)

Proof. First recall a variational expression of the hypothesis testing relative entropy [5, Eq.(2)]

DεH(ρ∥σ) = − logmax
t⩾0

{
(1− ε)t− Tr(tρ− σ)+

}
. (A24)

Therefore, we have

DεH
(
N⊗n∥∥M⊗n) = − logmax

t⩾0

{
(1− ε)t− Tr

(
tN⊗n(ψRnAn )−M⊗n(ψRnAn )

)
+

}
, (A25)
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for some state ψRnAn ∈ D(RnAn). Let

ωXRnAn =
1

n!

∑
π∈Sn

|π⟩⟨π|X ⊗ PπψRnAnP ∗
π (A26)

where X is a ‘flag’ system of dimension |X| = n!. By construction, the marginal state ωRnAn is symmetric under permu-
tations (i.e. has support on Symn(RA)), so there exists a symmetric purification of ωRnAn which we denote by φCnRnAn ,
where C ∼= RA [6, Lemma 4.2.2]. Let ωDXRnAn be a purification of ωXRnAn and thus also a purification of ωRnAn . Since
all purifications of a density matrix are related via isometries, there exists an isometry VCn→DX such that

ωDXRnAn = (VCn→DX)φCnRnAn (VCn→DX)†. (A27)

Taking a partial trace of the system D on both sides gives

ωXRnAn = ECn→X (φCnRnAn ) , (A28)

where E(·) = TrD V (·)V † ∈ CPTP(Cn → X). Let R̃ := CR, then |φR̃nAn ⟩ ∈ Symn(R̃A) and

Tr
(
tN⊗n(φR̃nAn

)
−M⊗n(φR̃nAn

))
+

⩾ Tr
(
tN⊗n(ωXRnAn

)
−M⊗n(ωXRnAn

))
+

(A29)

=
1

n!

∑
π∈Sn

Tr
(
tN⊗n (PπψRnAnP ∗

π )−M⊗n(PπψRnAnP ∗
π )

)
+

(A30)

= Tr
(
tN⊗n(ψRnAn )−M⊗n(ψRnAn )

)
+

(A31)

where the first inequality follows from the data processing inequality of Tr(·)+ 1), the first equality follows from the block
diagonal structure of N⊗n(ωXRnAn

)
− tM⊗n(ωXRnAn

)
, the second equality follows because Tr(·)+ is unitary invariant

and N⊗n,M⊗n commute with permutations. Together with (A25), we can conclude that

DεH
(
N⊗n∥∥M⊗n) ⩽ − logmax

t∈R

{
(1− ε)t− Tr

(
tN⊗n(φR̃nAn )−M⊗n(φR̃nAn )

)
+

}
= DεH

(
N⊗n (

φR̃nAn

) ∥∥M⊗n (
φR̃nAn

))
.

(A32)

This completes the proof.

Remark 1. We say that a quantum divergence, D, satisfies the direct sum property if there exists a one-to-one func-
tion f : R+ → R+ such that for any pair of cq-states ρ, σ ∈ D(XA) of the form ρXA :=

∑
x px|x⟩⟨x|X ⊗ ρAx and

σXA :=
∑
x px|x⟩⟨x|X ⊗ σAx where {px} is a probability distribution and ρx, σx ∈ D(A), we have f−1

(
D

(
ρXA

∥∥σXA)) =∑
x pxf

−1
(
D

(
ρAx

∥∥σAx ))
. The direct sum property is essentially equivalent to the general mean property used by Rényi and

Müller-Lennert et al. for its generalization to the quantum case and holds for almost all the quantum divergences studied
in the literature. Following a similar proof, we can show that Lemma A3 holds for any quantum divergence with the direct
sum property.
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1) This can be easily seen from the equation Tr(X)+ = (∥X∥1 + TrX)/2 and the data processing inequality of trace norm.
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