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Abstract Compared with an isolated exceptional point, exceptional surfaces in non-Hermitian systems are more robust

against environment noises, fabrication errors, and experimental uncertainties. Thanks to this, exceptional surfaces can be

applied to enhance the sensitivity of sensors and develop new quantum techniques. Over the past few years, several studies

have been devoted to studying high-order exceptional surfaces. However, they are restricted to non-Hermitian systems

without pseudo-Hermiticity. To date, research on high-order exceptional surfaces in pseudo-Hermitian systems still remains

an untouched area. In this work, we propose a pseudo-Hermitian superconducting circuit, which consists of three circularly-

coupled superconducting cavities with balanced gain and loss. We then study the third-order exceptional surface in the

proposed circuit. By investigating the eigenvalues, we find that in the parameter space, all third-order exceptional points of

the circuit form a third-order exceptional line in the parity-time-symmetric case. When the parity-time-symmetric condition

is extended to pseudo-Hermitian conditions, we find more third-order exceptional points, which constitute a third-order

exceptional surface in the parameter space. The proposed scheme is universal and can be applied to explore third-order

exceptional surfaces in other physical systems, such as optomechanical systems, cavity-magnon systems, and photonic micro-

ring systems. This work is of fundamental interest in quantum mechanics and opens a way for studying high-order exceptional

surfaces in pseudo-Hermitian systems.
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1 Introduction

Over the past decade, a number of studies have been devoted to studying exceptional points (EPs) in
non-Hermitian systems [1–23]. The EP refers to the spectral singularity of non-Hermitian Hamiltonians,
where both k (k > 2) eigenvalues and eigenstates coalesce [24]. The spectral singularity around EPs
can give rise to many intriguing phenomena, such as unidirectional invisibility [25–27], robust wireless
power transfer [28,29], asymmetric mode switching [30,31], phonon lasers [32–34], enhancing spontaneous
emission [35], and coherent perfect absorption [36–38]. In particular, Quijandŕıa et al. [39] proposed the
second-order EP in a superconducting (SC) circuit, and Dogra et al. [40] simulated this on the IBM SC
quantum processor. SC circuits are one of promising platforms for implementing quantum information
processing and exploring various exotic phenomena (see [41–43] for reviews). In experiments, the second-
order EP has been observed in a dissipative SC qubit [44–47] or a coupled system of two dissipative
SC resonators [48]. Moreover, Han et al. experimentally characterized the exceptional entanglement
transition around a second-order EP [49] and the topological invariant for a third-order EP [50] by
measuring the dynamical evolutions of SC circuits.

In many studies, EPs and related applications are associated with the parity-time (PT ) symmetry
(see, e.g., [51–58]). The PT -symmetric Hamiltonian, satisfying [H,PT ] = 0, is a special subset of
non-Hermitian Hamiltonians [59]. Usually, the eigenvalues of non-Hermitian Hamiltonians are complex.
However, if a non-Hermitian Hamiltonian has the PT symmetry, it can also possess an entirely real energy
spectrum [1–3]. It is worth noting that the PT symmetry can be extended to the η-pseudo-Hermitian
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symmetry [60–62]. Here, η is a Hermitian invertible operator. Different from the PT -symmetric Hamil-
tonian, the pseudo-Hermitian Hamiltonian is defined by ηHη−1 = H†, which has the energy-spectrum
properties similar to those of the PT -symmetric Hamiltonian. The relationship among non-Hermitian,
pseudo-Hermitian, PT -symmetric and Hermitian Hamiltonians is shown in Figure 1(a). In the pseudo-
Hermitian case without PT symmetry, high-order EPs (i.e., kth-order EPs with k > 3) and related ap-
plications have been investigated in various physical systems, including cavity-magnon systems [63–65],
cavity optomechanical systems [66, 67], multicoil wireless-power-transfer systems [29], radio-frequency
circuits [68], and atom-cavity QED systems [69].

Recently, research attention has also shifted to the study of exceptional surfaces (ESs) [70–76]. For
a kth-order ES, every point is a kth-order EP. Compared with an isolated EP, ESs have some charac-
teristic properties. ESs are more robust against environment noises, fabrication errors and experimental
uncertainties, which enables ES-based sensors to combine sensitivity and robustness [77–80]. In optical
systems, the ES can grant substantial mastery over the system’s spectral density of states and band
structure, with promising avenues for modulating spontaneous emission rates and amplifying nonlinear
effects [74]. By engineering ESs via tuning the system parameters, Soleymani et al. [81] observed the
chiral perfect absorption with quartic lineshape in a waveguide-coupled microresonator system. In addi-
tion, the second-order ES has also been studied for controlling spontaneous emission [82], manipulating
direction absorption [83], topological behaviors [84–87], chaotic dynamics [88], and optical amplifiers [89].

Similar to the construction of EPs in various PT - and η-pseudo-Hermitian-symmetric systems, it is
critical to combine ESs and PT - and η-pseudo-Hermitian symmetries. Up to now, the second-order ES
has been studied in non-Hermitian systems with different symmetries, e.g., PT symmetry [74], η-pseudo-
Hermitian symmetry [75] and parity-particle-hole symmetry [76]. Furthermore, high-order ESs (i.e.,
kth-order ESs with k > 3) were theoretically proposed [90, 91] and experimentally demonstrated [92].
Specifically, Ref. [92] reported a robust on-chip integrated microlaser source based on ESs, where the
performances of the microlaser source can be improved by increasing the order k of ESs. However, these
studies (i.e., [90–92]) are restricted to non-Hermitian systems without pseudo-Hermiticity, where the
eigenvalues are complex near ESs. In this context, investigating high-order ESs in pseudo-Hermitian
systems is highly desirable, as it may offer novel insights into exploring topological properties and related
applications of high-order ESs in non-Hermitian areas [74–76].

In this work, we propose a pseudo-Hermitian SC circuit and then study the third-order ES in the
circuit. As shown in Figure 1(b), the proposed circuit consists of three SC coplanar waveguide cavities,
which are coupled to a common SC qubit. Due to the large detuning between the qubit and the three
SC cavities, we can adiabatically eliminate the degrees of freedom of the qubit and obtain an effective
non-Hermitian Hamiltonian, which describes three circularly coupled SC cavities mediated by a SC
qubit (cf. Subection. 2.1). When the circuit parameters satisfy certain constraints, the circuit possesses
the pseudo-Hermiticity, and it has either (i) three real eigenvalues or (ii) one real eigenvalue and two
complex-conjugate eigenvalues. In the PT -symmetric case, we find that all third-order EPs of the circuit
form a line in the parameter space, i.e., third-order exceptional line (EL). When the PT symmetry is
extended to the η-pseudo-Hermitian symmetry, we find the third-order EL becomes a third-order ES in
the parameter space. We further study the energy spectrum of the pseudo-Hermitian SC circuit around
third-order EPs. This proposal is universal and can be applied to investigate the third-order ES in other
physical systems, such as optomechanical systems [31], cavity-magnon systems [37], and photonic micro-
ring systems [52]. This work is of fundamental interest in quantum mechanics [93–95] and opens a way
for studying high-order ESs in pseudo-Hermitian systems [63–69].

This paper is organized as follows. In Section 2, we introduce the proposed SC circuit and derive the
pseudo-Hermitian conditions for the SC circuit. In Section 3, we investigate the third-order EL of the SC
circuit in the PT -symmetric case. In Section 4, we construct the third-order ES of the SC circuit under
the pseudo-Hermitian conditions. We end up with brief discussions and conclusion in Section 5.

2 Model

As illustrated in Figure 1(b), the proposed SC circuit consists of three SC coplanar waveguide cavities,
which are indirectly coupled via an SC qubit. Below, we first derive the effective Hamiltonian for the
three SC cavities by eliminating the degrees of freedom of the qubit in the dispersive regime, and then
derive the pseudo-Hermitian conditions for the SC circuit.
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Figure 1 (Color online) (a) The relationship among non-Hermitian, pseudo-Hermitian, PT -symmetric and Hermitian Hamiltoni-

ans. In the figure, the non-Hermitian, pseudo-Hermitian, PT -symmetric and Hermitian Hamiltonians are denoted as NHH, PHH,

PTSH and HH, respectively. (b) Schematic diagram of the proposed SC circuit, which is composed of three SC coplanar waveguide

cavities coupled to an SC qubit (the circle) through capacitances C1, C2, and C3, respectively.

2.1 Effective Hamiltonian of the proposed SC circuit

Consider three SC cavities (labeled as cavity 1, cavity 2, and cavity 3, respectively) coupled to an SC
qubit (see Figure 1(b)). The total Hamiltonian of the proposed SC circuit contains two parts:

Htot = H0 +Hint. (1)

Here, H0 is the Hamiltonian of bare cavities and qubit given by (hereafter assuming ~ = 1)

H0 =

3
∑

n=1

(ω′
n − iκn)a

†
nan + (ωq − iγ)σ+σ−, (2)

where an and a†n (n = 1, 2, 3) are the annihilation and creation operators of cavity n with angular
frequency ω′

n and loss rate (or gain rate) κn, ωq is the transition frequency between ground state |g〉
and excited state |e〉 of the qubit, γ is the loss rate of the qubit, and σ− = |g〉〈e| and σ+ = |e〉〈g| are
the ladder operators of the qubit. In (2), −iκna

†
nan and −iγσ+σ− describe the dissipations of cavity

n and qubit, respectively, which have been widely used in studying EPs [1–5]. Theoretically, this form
can be derived using the Langevin equations [66]. If cavity n is passive (active), the loss rate (gain rate)
is positive (negative), i.e., κn > 0 (κn < 0). Under the rotating-wave approximation, the interaction
Hamiltonian between three cavities and qubit is

Hint =

3
∑

n=1

gnq(a
†
nσ

− + anσ
+), (3)

where gnq (> 0) is the coupling strength between cavity n and qubit. In our work, we assume that the SC
circuit is in the strong-coupling regime, where the circuit parameters satisfy {ω′

n, ωq} ≫ gnq ≫ {|κn|, γ}.
When the frequency detuning of cavity n from the qubit is much larger than the coupling strength

gnq between them (i.e., ω′
n − ωq ≫ gnq, corresponding to the dispersive regime), we can use a Fröhlich-

Nakajima transformation U = exp(V ) on the Hamiltonian Htot to decouple the cavities and the qubit [96,
97]. The anti-Hermitian operator V needs to satisfy both V † = −V and Hint + [H0, V ] ≈ 0. Up to the
second order, the transformed Hamiltonian Heff = U †HtotU can be approximatively expressed as

Heff ≈ H0 +
1

2
[HI , V ]. (4)

If we choose

V = −
3

∑

n=1

gnq
ω′
n − ωq

(a†nσ
− − anσ

+), (5)
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the corresponding effective Hamiltonian is

Heff =

3
∑

n=1

(ω′
n − iκn)a

†
nan + (ωq − iγ)σ+σ−

−
3

∑

n=1

3
∑

m>n

gnm(a
†
nam + ana

†
m)σz

−
3

∑

n=1

g2nq
ω′
n − ωq

(a†nanσz + σ+σ−), (6)

where the effective coupling strength gnm between cavity n and cavity m is

gnm =
gnqgmq

2

(

1

ω′
n − ωq

+
1

ω′
m − ωq

)

. (7)

Because the qubit has a large detuning from three SC cavities, we can assume that there is no energy
exchange between qubit and cavities. If the SC qubit is initially prepared in its ground state, we can elim-
inate the degrees of freedom of the qubit by replacing σz with −1 in (6). Then, the effective Hamiltonian
Heff of three SC cavities can be reduced to

Heff =

3
∑

n=1

(ωn − iκn)a
†
nan +

3
∑

n=1

3
∑

m>n

gnm(a†nam + ana
†
m) (8)

with the shifted frequency ωn = ω′
n + g2nq/(ω

′
n − ωq) of cavity n.

The effective Hamiltonian in (8) describes three circularly-coupled SC cavities, which are mediated by
the SC qubit. Without loss of generality, we assume that cavity 2 is lossy, i.e.,

κ2 > 0. (9)

In the absence of cavity 3 (i.e., g13 = g23 = 0), the binary system of cavities 1 and 2 has the PT
symmetry when the system parameters satisfy ω1 = ω2 and κ1 = −κ2. This special case has been
investigated in [39], where the PT -symmetric phase transition at a second-order EP was studied.

2.2 Pseudo-Hermitian conditions for the SC circuit

In this work, we study the third-order ES of the SC circuit under the pseudo-Hermitian conditions. For
the convenience of following calculations, we give the corresponding matrix form H of the non-Hermitian
Hamiltonian Heff in (8) via the relation Heff = α†Hα, with α = (a1, a2, a3)

T and

H =









ω1 − iκ1 g12 g13

g12 ω2 − iκ2 g23

g13 g23 ω3 − iκ3









. (10)

If the SC circuit possesses the pseudo-Hermiticity, the three eigenvalues of the non-Hermitian matrix H
are all real or one real and the other two constituting a complex-conjugate pair [60–62]. This energy-
spectrum property of the pseudo-Hermitian Hamiltonian is equal to that the non-Hermitian matrix H
and its complex-conjugate matrix H∗ have the same eigenvalues [63], i.e., |H − λI| = |H∗ − λI| = 0,
where I is an identity matrix and λ is the eigenvalue of the non-Hermitian matrix H . Using the relation
|H − λI| = |H∗ − λI|, we can obtain the pseudo-Hermitian conditions,

κ1 + κ2 + κ3 = 0,

δ1κ1 + δ2κ2 = 0,

g212κ3 + g213κ2 + g223κ1 − δ1δ2κ3 + κ1κ2κ3 = 0, (11)

where δ1(2) = ω1(2) − ω3 is the frequency detuning of cavity 1 (cavity 2) from cavity 3. Under the
pseudo-Hermitian conditions, the characteristic secular equation |H − λI| = 0 is reduced to

a(λ− ω3)
3 + b(λ− ω3)

2 + c(λ− ω3) + d = 0, (12)
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where the four coefficients, a, b, c and d, are given by

a = 1,

b = −(δ1 + δ2),

c = δ1δ2 − (g212 + g213 + g223)− (κ1κ2 + κ1κ3 + κ2κ3),

d = δ1g
2
23 + δ2g

2
13 − 2g12g13g23 + (δ1κ2 + δ2κ1)κ3. (13)

Note that Eq. (12) is a cubic equation for the eigenvalue λ, which has three roots denoted as λ± and λ0.
According to the root discriminant of the cubic equation with one unknown [98], the three roots λ± and
λ0 are unequally real if the circuit parameters satisfy ∆ < 0, where

∆ ≡ B2 − 4AC (14)

is the discriminant, with

A = b2 − 3ac, B = bc− 9ad, C = c2 − 3bd. (15)

In particular, for A = B = 0 (satisfying ∆ = 0), i.e.,

(κ2
1 + κ1κ2 + κ2

2)(δ
2
1 − 3κ2

2) + 3κ2
2(g

2
12 + g213 + g223) = 0,

(κ1 − κ2)κ1δ
3
1 − 18κ2

2g13g23g12 + ξδ1κ2 = 0, (16)

λ± and λ0 coalesce to

λ± = λ0 = λEP3 ≡ ω3 +
1

3
(δ1 + δ2), (17)

which corresponds to the third-order EP of the SC circuit. The coefficient ξ in (16) is given by

ξ = (g212 + 9κ1κ2)(κ1 − κ2)− g213(8κ1 + κ2)

+g223(κ1 + 8κ2) + 8(κ3
1 − κ3

2). (18)

In the other case of ∆ = 0 but A 6= 0 and B 6= 0, only λ+ and λ− become coalescent (i.e., λ+ = λ− 6= λ0),
corresponding to the second-order EP of the SC circuit. When ∆ > 0, only λ0 is still real, while λ+ and
λ− form a complex-conjugate pair.

3 Third-order exceptional line in the PT -symmetric case

In the quantum mechanics, the time-reversal operator T is usually defined by the complex conjugation
operator K, i.e., T = K [59]. For our system consisting of three SC cavities, the parity operator P can
be represented as

P =









1 0 0

0 0 1

0 1 0









. (19)

If the proposed SC circuit owns the PT symmetry, the matrix form H of the non-Hermitian Hamiltonian
given in (10) must satisfy

[H,PT ] = 0, (20)

which is equivalent to H = PT H(PT )−1 = P(KHK−1)P−1 = PH∗P−1. Using the relation H =
PH∗P−1, we obtain the PT -symmetric conditions given by

ω2 = ω3, g12 = g13, κ1 = 0, κ3 = −κ2. (21)
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Figure 2 (Color online) (a) Third-order EL in the PT -symmetric case with κ1 = 0, obtained by numerically solving (23);

(b) third-order ELs for different κ1/κ2, obtained by numerically solving (16) under the pseudo-Hermitian conditions in (11). Here

κ1/κ2 = 0.1 for the (black) solid curve, κ1/κ2 = 1 for the (red) dashed curve, κ1/κ2 = 2 for the (blue) dotted curve, and κ1/κ2 = 3

for the (green) dotted-dashed curve.

It can be easily verified that the PT -symmetric conditions are a special case of the pseudo-Hermitian
conditions in (11). With the PT symmetry, the conditions of third-order EP given in (16) are reduced
to

δ21 + 6g213 + 3g223 − 3κ2
2 = 0,

9g23g
2
13 − (4g223 − g213 − 4κ2

2)δ1 = 0. (22)

From the first equation in (22), we have 0 6 g13/κ2 6 1/
√
2 and 0 6 g23/κ2 6 1. By eliminating δ1 in

(22), we find the constraint on the coupling strengths g13 and g23, given by

4g223 + 2g213 + 3
3
√
4g

4/3
13 κ

2/3
2 − 4κ2

2 = 0, (23)

which describes a third-order EL, as plotted in Figure 2(a). In the third-order EL, every point corresponds
to a third-order EP, where the PT -symmetric phase transition generally occurs [1–3]. For example, at
g13/κ2 = 0.707 and g23 = 0 (g13/κ2 = 0.4 and g23/κ2 = 0.754) indicated by the green dot (purple dot)
in Figure 2(a), the corresponding three eigenvalues of the circuit coalesce to λ± = λ0 = λEP3 = ω3

(λ± = λ0 = λEP3 = ω3 − 0.1923κ2), cf. (17).
Usually, one can observe the EP by measuring the energy spectrum of the system via varying the

coupling strength in the experiment, where other system parameters are fixed [1–3]. In the symmetric
case of ω1 = ω2 = ω3 (i.e., the three cavities are on-resonance), the three eigenvalues λ± and λ0 of the
circuit, given by

λ± = ω3 ±
√

2g213 − κ2
2, λ0 = ω3, (24)

can be obtained by solving the characteristic equation, i.e., (12), under the PT -symmetric conditions given
by (21). According to (24), we find that the SC circuit has three real eigenvalues (one real eigenvalue
and two complex-conjugate eigenvalues) in the region g13/κ2 > 1/

√
2 (g13/κ2 < 1/

√
2). This indicates

that the circuit is in the PT -symmetric phase for g13/κ2 > 1/
√
2 and the PT -symmetry-breaking phase

for g13/κ2 < 1/
√
2, respectively. Particularly, the three eigenvalues coalesce to λ± = λ0 = λEP3 = ω3

at g13/κ2 = 1/
√
2, corresponding to the third-order EP indicated by the green dot in Figure 2(a). If we

vary the coupling strength g13 from g13/κ2 > 1/
√
2 to g13/κ2 < 1/

√
2, the circuit will undergo a phase

transition from the PT -symmetric phase to the PT -symmetry-breaking phase at a third-order EP with
g13/κ2 = 1/

√
2. In the asymmetric case of ω1 6= ω2 = ω3 (i.e., the three cavities are off-resonance), the

third-order EP still exists, but it is difficult to analytically investigate the eigenvalues of the SC circuit
because the expressions of three eigenvalues are cumbersome and not shown here.

In Figure 3, we display the energy spectrum of the Hamiltonian Heff in (8) versus the coupling strength
g13/κ2 in the PT -symmetric case. Figures 3(a) and (b) show the real and imaginary parts of the eigen-
values λ± and λ0 given in (24) versus g13/κ2 in the symmetric case (i.e., ω1 = ω2 = ω3). It can be seen
that the eigenvalue λ0 is real for any values of g13/κ2 (see the solid red curves), while other two eigen-
values λ+ and λ− are complex (real) when g13/κ2 < 0.707 (g13/κ2 > 0.707) (see the dashed black and
dotted blue curves). This means that in the region g13/κ2 > 0.707 (g13/κ2 < 0.707), the circuit is in the
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Figure 3 (Color online) Real and imaginary parts of the eigenvalue (λ− ω3)/κ2 as a function of the coupling strength g13/κ2 in

the PT -symmetric case, where the green dots and purple dots indicate third-order EPs, and the black dots indicate second-order

EPs. Here δ1 = g23 = 0 in (a) and (b), while δ1/κ2 = −0.5768 and g23/κ2 = 0.7544 in (c) and (d). Other parameters are κ1 = 0,

κ3/κ2 = −1, δ2 = 0, and g12 = g13.

PT -symmetric phase (PT -symmetry-breaking phase). In particular, for g13/κ2 = 0.707, the three eigen-
values coalesce together (corresponding to a third-order EP), where the PT -symmetric phase transition
occurs. Compared with the symmetric case, the eigenvalues of the SC circuit have significantly different
characteristics in the asymmetric case (i.e., ω1 6= ω2 = ω3; cf. Figures 3(a) and (c); Figures 3(b) and (d)),
where the results in Figures 3(c) and (d) are obtained by numerically solving the characteristic equation
(i.e., (12)) under the PT -symmetric conditions given in (21). As shown in Figures 3(c) and (d), the SC
circuit can exhibit a PT -symmetric phase transition at the second-order EP (rather than the third-order
EP in the symmetric case; cf. Figures 3(a) and (b)) with g13/κ2 = 1.109, where only two eigenvalues
λ+ and λ− (see the dashed black and dotted blue curves) are coalescent. In the PT -symmetry-breaking
phase with complex eigenvalues, there exists a third-order EP at g13/κ2 = 0.401, marked by the purple
dots in Figures 3(c) and (d). Note that no PT -symmetric phase transition occurs at this third-order EP.

4 Third-order exceptional surface under the pseudo-Hermitian conditions

In the last section, we study the third-order EL in the PT -symmetric case. Here we investigate the
third-order ES. When κ1 > 0, the SC circuit can own the pseudo-Hermiticity without PT symmetry. For
any given value of κ1/κ2 (> 0), we can obtain a third-order EL by numerically solving (16) under the
pseudo-Hermitian conditions given in (11). In Figure 2(b), we take κ1/κ2 = 0.1, 1, 2, and 3 as an example.
At each point in the four third-order ELs, the corresponding three eigenvalues of the SC circuit coalesce
to one, such as λ± = λ0 = λEP3 = ω3 at g13/κ2 = g23/κ2 = 1.155 (indicated by the green dot) and
λ± = λ0 = λEP3 = ω3 at g13/κ2 = 1.633 and g23 = 0 (indicated by the purple dot). If we continuously
vary κ1/κ2, these third-order ELs will form a surface in the three-dimensional space (g13, g23, κ1). In
Figure 4, we plot the distribution of third-order EPs in the space (g13, g23, κ1) by numerically solving
(16) and (11). These third-order EPs form a third-order ES. Note that the third-order ES also contains
the third-order EL in the PT -symmetric case with κ1 = 0, cf. Figure 2(a).

Next, we study the energy spectrum of the SC circuit in the pseudo-Hermitian case with κ1 > 0. For
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Figure 4 (Color online) (a) Third-order ES obtained by numerically solving (16) under the pseudo-Hermitian conditions in (11);

(b) the projection of the third-order ES depicted in (a) in the space of g13 and g23. The colors in (a) and (b) represent the values

of κ1/κ2.

the symmetric case of κ1/κ2 = 1, g12 = 0 and g23 = g13, the pseudo-Hermitian conditions in (11) are
reduced to

κ3 = −2κ2, δ1 = −δ2, δ2 =
√

g213 − κ2
2. (25)

The third equation in (25) means that there is the pseudo-Hermiticity for the circuit only when the
coupling strength g13 satisfies g213 − κ2

2 > 0, i.e., g13/κ2 > 1. This feature is significantly different from
the PT -symmetric case, where the SC circuit has the PT symmetry for any value of g13 (cf. (21) and
related discussions). Under the pseudo-Hermitian conditions given in (25), the three eigenvalues of the
SC circuit are given by

λ± = ω3 ±
√

3g213 − 4κ2
2, λ0 = ω3. (26)

In the region g13/κ2 > 2/
√
3, the SC circuit has three real eigenvalues. For g13/κ2 = 2/

√
3 in particular,

the three eigenvalues λ± and λ0 coalesce to λ± = λ0 = λEP3 = ω3, corresponding to the third-order EP
indicated by the green dot in Figure 2(b). While, for 1 6 g13/κ2 < 2/

√
3, λ0 is also real but λ+ and λ−

become complex. In addition, we take an asymmetric case with κ1/κ2 = 1, g12 = g13/
√
8 and g23 = 0.

Now the pseudo-Hermitian conditions in (11) become

κ3 = −2κ2, δ1 = −δ2, δ2 =
√

3g213/8− κ2
2, (27)

which indicates that the allowed minimal value of the coupling strength g13 is g13 =
√

8/3κ2 to ensure
3g213/8− κ2

2 > 0. In this circumstance, we do not show the cumbersome expressions of three eigenvalues
and only give the coalesced eigenvalues λ± = λ0 = λEP3 = ω3 at g13/κ2 =

√

8/3, indicated by the purple
dot in Figure 2(b).

Furthermore, we plot the energy spectrum of the pseudo-Hermitian SC circuit without PT symmetry
in Figure 5. Note that in the yellow regions, no pseudo-Hermiticity exists. Figures 5(a) and (b) display
the real and imaginary parts of the eigenvalues λ± and λ0, given in (26), as a function of the coupling
strength g13/κ2 for the symmetric case of κ1/κ2 = 1, g12 = 0 and g23 = g13. In the region 1 6 g13/κ2 <
1.155, the pseudo-Hermitian circuit has one real eigenvalue (see the solid red curves) and two complex-
conjugate eigenvalues (see the dashed black and dotted blue curves). At the critical coupling strength
g13/κ2 = 1.155, the three eigenvalues λ± and λ0 coalesce to λ± = λ0 = λEP3 = ω3, which is a third-
order EP of the pseudo-Hermitian circuit. When g13/κ2 > 1.155, all three eigenvalues are real. In the
asymmetric case of κ1/κ2 = 1, g12 = g13/

√
8 and g23 = 0, the real and imaginary parts of the eigenvalues

λ± and λ0, obtained by numerically solving (12) under the pseudo-Hermitian conditions in (27), are also
shown in Figures 5(c) and (d), where the eigenvalues exist in the region g13/κ2 > 1.633. In addition to the
third-order EP at g13/κ2 = 1.633 (corresponding to λ± = λ0 = λEP3 = ω3), the eigenvalue λ0 is real (see
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Figure 5 (Color online) Real and imaginary parts of the eigenvalue (λ − ω3)/κ2 versus the coupling strength g13/κ2 in the

pseudo-Hermitian case without PT symmetry, where the green dots and purple dots indicate third-order EPs. Note that in the

yellow regions, the SC circuit does not have the pseudo-Hermiticity. Here g12 = 0, g23 = g13 and δ2 =
√

g2

13
− κ2

2
in (a) and (b),

while g12 = g13/
√
8, g23 = 0 and δ2 =

√

3g2

13
/8 − κ2

2
in (c) and (d). Other parameters are κ1/κ2 = 1, κ3/κ2 = −2 and δ1 = −δ2.

the solid red curves) while the eigenvalues λ+ and λ− are complex-conjugate (see the dashed black and
dotted blue curves) for any allowed values of g13. Different from Figure 3, there are no second-order EPs
in Figure 5. This discrepancy is primarily attributed to the parameter selection. By carefully choosing
appropriate parameters, second-order EPs can also emerge even in the pseudo-Hermitian case without
PT symmetry (see, e.g., [66]). A thorough investigation of this topic is beyond the scope of the current
study and is not shown here.

5 Discussions and conclusion

If more SC cavities are coupled to an SC qubit, higher-order ESs, such as fourth-order and fifth-order
ESs, can also be constructed using a similar methodology outlined in the paper. As the order of ESs
increases, the complexity of the construction process will grow significantly. By introducing additional
symmetries into the pseudo-Hermitian circuit, it is expected to effectively reduce the complexity [75,76].
On the other hand, the Liouvillian EP has garnered extensive attention in research, which is defined
via the degeneracy of a Liouvillian superoperator [99–101]. This is very different from the Hamiltonian
EP, with the degeneracy of a non-Hermitian Hamiltonian. However, existing studies exclusively focused
on ESs consisting of Hamiltonian EPs [70–92]. In the future, it is a fascinating topic to explore the
Liouvillian ES, on which each point is a Liouvillian EP. The Liouville spectrum is relatively complex,
which gives rise to the challenge in constructing Liouvillian ESs. One potential approach to addressing
this challenge is to incorporate symmetries into the Liouvillian superoperator [75, 76].

Previous studies have primarily focused on high-order ESs without pseudo-Hermiticity [90–92]. This
paper presents the first study of the high-order ES in a pseudo-Hermitian circuit. The pseudo-Hermitian
nature of the circuit ensures that all eigenvalues on the third-order ES are real. In the parameter
space, certain EPs on the third-order ES mark the boundaries of the phase transition between η-pseudo-
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Hermiticity broken and unbroken regions (with complex eigenvalues and real eigenvalues, respectively).
In addition, non-Hermitian systems serve as an excellent platform for exploring diverse symmetries. The
study of second-order ESs and their topological properties has been actively conducted in non-Hermitian
systems with different symmetries, such as PT symmetry [74], η-pseudo-Hermitian symmetry [75] and
parity-particle-hole symmetry [76]. Combining high-order ESs with pseudo-Hermiticity holds significant
promise for uncovering their topological properties and potential applications. For instance, the third-
order ES with pseudo-Hermiticity may further improve the performance of ES-based sensors, as the
pseudo-Hermiticity can effectively narrow the spectral linewidths of non-Hermitian systems, and EPs on
high-order ESs are more sensitive to weak external perturbations [52, 64].

Before concluding, we briefly discuss the experimental feasibility of the proposal in SC circuits. In
experiments, the typical frequency for an SC cavity can be made as 1–10 GHz, and the loss rate of
an SC cavity is on the order of 0.1–1 MHz [102]. By embedding an SC quantum interference device
(SQUID) in an SC cavity, the frequency of the SC cavity can be readily tunable via controlling the bias
magnetic flux threading the SQUID loop [48]. As for the active SC cavity, its gain rate can be adjusted
(ranging from 0 to 6 MHz) via controlling the drive field on the auxiliary SC qubit, which is transversely
coupled to the SC cavity [39, 103]. In addition, the coupling strength between SC cavities can be tuned
by varying the cavity-qubit coupling strength [104,105]. With these accessible technologies, our proposal
is experimentally feasible.

In summary, we have studied the third-order ES in the proposed pseudo-Hermitian SC circuit composed
of three circularly-coupled SC cavities, where the gain and loss are balanced. Using the energy-spectrum
properties of the pseudo-Hermitian Hamiltonian, we have derived the pseudo-Hermitian conditions for
the SC circuit. For the PT -symmetric case, we found that all third-order EPs of the circuit are located
on a third-order EL in the parameter space. By investigating the eigenvalues of the circuit versus the
coupling strength, we have discovered that the circuit exhibits the PT -symmetric phase transition at a
third-order EP. Under the pseudo-Hermitian conditions, we found that all third-order EPs form a third-
order ES in the parameter space, which contains the third-order EL in the PT -symmetric case. In the
pseudo-Hermitian case without PT symmetry, we have also studied the energy spectrum of the SC circuit
around third-order EPs. To the best of our knowledge, this work is the first to study high-order ESs in
pseudo-Hermitian systems. These results are of fundamental interest, which may be found in applications
in enhancing the sensitivity of sensors and developing new quantum techniques.
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