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Abstract The limitations of noisy intermediate-scale quantum (NISQ) devices have motivated the development of varia-

tional quantum algorithms (VQAs), which are designed to potentially achieve quantum advantage for specific tasks. Quan-

tum architecture search (QAS) algorithms play a critical role in automating the design of high-performance parameterized

quantum circuits (PQCs) for VQAs. However, existing QAS approaches struggle with large search spaces, leading to sub-

stantial computational overhead when optimizing large-scale quantum circuits. Extensive empirical analysis reveals that

circuit topology has a greater impact on quantum circuit performance than gate types. Based on this insight, we propose

the topology-driven quantum architecture search (TD-QAS) framework, which first identifies optimal circuit topologies and

then fine-tunes the gate types. In the fine-tuning phase, the QAS inherits parameters from the topology search phase,

eliminating the need for training from scratch. By decoupling the large search space into separate topology and gate-type

components, TD-QAS avoids exploring gate configurations within low-performance topologies, thereby significantly reducing

computational complexity. Numerical simulations across various tasks, under both noiseless and noisy conditions, validate

the effectiveness of the TD-QAS framework. This framework advances standard QAS algorithms by enabling the identifica-

tion of high-performance quantum circuits while minimizing computational demands. These findings indicate that TD-QAS

deepens our understanding of VQAs and offers broad potential for the development of future QAS algorithms.
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1 Introduction

Quantum computing exhibits promising potential in addressing complex problems, such as combinatorial
optimization [1,2], factoring [3], linear system solving [4], chemical simulations [5,6], and machine learning
[7–16]. However, noisy intermediate-scale quantum (NISQ) devices [17], which represent the forefront
of near-term quantum technology, face substantial challenges, such as noise, limited qubit count, and
restricted qubit connectivity. These limitations impede the widespread application of quantum computing
[18]. Therefore, variational quantum algorithms (VQAs) have been developed to operate within the
constraints of NISQ devices [19–22], offering the potential to achieve quantum advantage for specific
tasks.

The effectiveness of VQAs highly depends on the design of parameterized quantum circuits (PQCs)
[23,24]. Quantum architecture search (QAS) is a technique employed to automate the discovery of high-
performance PQCs [25–35]. QAS aims to identify the optimal quantum circuit within a vast search space
that encompasses all possible circuit configurations. Consequently, QAS algorithms encounter significant
computational challenges due to the exponential growth of the search space, particularly when scaling
to large quantum circuits [36]. Therefore, developing strategies to efficiently reduce the search space is
crucial for improving the efficiency and scalability of QAS.

*Corresponding author (email: gaof@bupt.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-024-4486-x&domain=pdf&date_stamp=2025-7-3
https://doi.org/10.1007/s11432-024-4486-x
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-024-4486-x
https://doi.org/10.1007/s11432-024-4486-x


Su J J, et al. Sci China Inf Sci August 2025, Vol. 68, Iss. 8, 180507:2

Several methods have been proposed to reduce the search space for QAS algorithms. A common
approach involves imposing strict constraints on the design of PQCs [37], such as limiting quantum
gates to act on fixed qubits rather than arbitrary ones. However, these methods indiscriminately discard
numerous potential PQCs without a targeted approach, which may inadvertently exclude optimal circuit
configurations. Another approach focuses on identifying modular components of quantum circuits and
constructing larger circuits by repeating these components [31,38]. This method effectively manages large
search spaces but may result in circuits with increased depth. Additionally, a preprocessing technique
has been proposed to filter out low-performance quantum circuits in QAS [39]. While this approach
significantly improves the search efficiency of QAS, it introduces additional computational complexity.

In this paper, we propose a novel framework to significantly reduce the search space in QAS. Our
approach is inspired by neural architecture search (NAS), which aims to automatically identify high-
performance neural network architectures for a specific task [40]. It has been established that the perfor-
mance of convolutional neural networks (CNNs) identified through NAS remains relatively robust to the
random replacement of specific operations, such as convolutional layers [41]. Building on this observation,
we explore whether a similar phenomenon occurs in VQA, where the circuit topology plays a more critical
role than specific gate types in determining performance. This motivates us to investigate a method for
decoupling the QAS process into two independent components: topology and gate types. This decou-
pling strategy allows QAS to avoid exploring gate-type configurations associated with low-performance
topologies.

Through extensive numerical simulations, we validate that topology indeed plays a more dominant role
than gate types in the search for high-performance quantum circuits. Therefore, we propose the topology-
driven quantum architecture search (TD-QAS) framework, which prioritizes an independent search for
high-performance topologies, followed by an efficient fine-tuning of gate types. The TD-QAS framework
effectively decouples the original search space into two distinct spaces, topology and gate types, thereby
significantly reducing the overall search space. Furthermore, we observe that during the gate-type opti-
mization phase, QAS can inherit trainable parameters from the topology search phase. This inheritance
method eliminates the need to train the gate-type optimization phase from scratch, accelerating con-
vergence. We performed numerical simulations on various tasks in both noiseless and noisy scenarios.
The results demonstrate that the proposed TD-QAS framework successfully identifies high-performance
quantum circuits while maintaining significantly lower computational complexity compared to original
QAS algorithms, which search both topology and gate types. This study enhances our understanding
of VQAs as well as broadens the applicability of QAS to more complex tasks, paving the way for more
efficient and scalable approaches to quantum circuit design.

2 Background and related work

2.1 Quantum architecture search

QAS is a promising technique for automating the search for high-performing PQCs, enabling integration
of specific target tasks or additional constraints during the search process [34]. It explores the expansive
search space of potential quantum circuits by employing a search strategy to generate candidate circuits,
followed by an evaluation strategy to assess their performance. The feedback from these performance
evaluations is used to optimize the trainable parameters of the search model. However, QAS faces
significant challenges related to high computational complexity, which has spurred the development of
various strategies to mitigate these costs.

Efforts to reduce the computational complexity of QAS have focused on three key aspects: search
strategy, evaluation strategy, and search space optimization. The most basic search strategy is the random
search strategy, which often requires impractically numerous iterations to identify an effective quantum
circuit, causing excessive computational cost. Therefore, advanced search models have been introduced
to enhance search efficiency or reduce training costs. These models include evolutionary algorithms,
reinforcement learning [25], differentiable algorithms [28], and Bayesian optimization methods [31], among
others.

Although advanced search strategies enhance search efficiency, they require substantial feedback for
parameter training, leading to the evaluation of numerous quantum circuits; thus, more efficient eval-
uation techniques have been developed. These methods aim to accelerate the evaluation process while
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maintaining evaluation accuracy. Notable approaches include shared parameter evaluation (one-shot
techniques) [27], performance predictor-based evaluations [29, 32], and training-free predictors [26].

The extensive search space in QAS presents challenges in efficiently learning from exploration and
accurately evaluating quantum circuit performance. Therefore, various techniques have been proposed
to reduce the search space. These include imposing strict constraints on quantum gate operations [36],
searching for small-scale circuit components to construct larger circuits [31, 37], and employing search
space pruning methods [38]. By narrowing the search space, these techniques improve QAS efficiency
and scalability, enabling it to focus on more promising regions.

In this work, we implement the TD-QAS framework based on two representative QAS algorithms
(QuantumSupernet [27] and DQAS [28]), to validate the improvements introduced by our approach over
traditional QAS methods. The following subsections provide a concise overview of the two baseline
algorithms, while Subsection 4.3 describes how TD-QAS can be seamlessly integrated with them without
altering their core mechanisms.

2.1.1 QuantumSupernet

QuantumSupernet, proposed by Duong et al. [27], is a representative QAS algorithm designed to effi-
ciently explore large quantum circuit spaces using a one-shot neural architecture search paradigm. The
core concept of QuantumSupernet is to construct a parameter-sharing supernet that encodes numerous
candidate circuits within a unified structure. The supernet consists of multiple layers, each containing
a set of single-qubit and two-qubit gates from a predefined native gate set. This layered representation
offers a flexible yet efficient search space for quantum circuit design. To explore this space, QuantumSu-
pernet employs a sub-sampling mechanism to extract candidate sub-circuits. The method supports both
uniform random sampling and genetic algorithm-based sampling strategies. The performance of each
sub-circuit is estimated through a shared-parameter evaluation mechanism, eliminating the need to train
every candidate circuit from scratch. The shared parameters are jointly optimized within the supernet,
enabling efficient reuse and rapid evaluation of multiple sub-circuits.

The overall workflow of QuantumSupernet comprises four stages: (1) initialization phase, in which
the supernet architecture and native gate set are defined; (2) shared-parameter training phase, where
sub-circuits are iteratively sampled and evaluated using the shared parameters, which are updated based
on performance feedback; (3) architecture search phase, during which multiple sub-circuits are gener-
ated using either random or genetic sampling strategies, which are evaluated using shared parameters;
(4) evaluation phase, where the best-performing sub-circuit is retrained from scratch to obtain its actual
performance. This streamlined process enables QuantumSupernet to significantly reduce the computa-
tional cost of QAS while maintaining competitive accuracy across a variety of quantum tasks.

2.1.2 DQAS

Differentiable quantum architecture search (DQAS), proposed by Zhang et al. [28], is a flexible framework
that incorporates differentiability into quantum circuit architecture search, enabling gradient-based opti-
mization of circuit structures. DQAS distinguishes itself from other QAS algorithms by formulating the
search for circuit structures as a differentiable process, thereby significantly enhancing search efficiency.

DQAS models quantum circuit design as a bi-level optimization problem, jointly optimizing both the
circuit structure and the associated gate parameters. The core concept is to relax the discrete search space
of circuit architectures into a continuous domain using a parameterized probabilistic search strategy. The
search space consists of a pool of candidate operations (quantum gates) and a circuit encoding mechanism
that enables flexible assignment of these operations to the architecture. During each training iteration,
DQAS samples a batch of circuit structures from the probabilistic model and assesses their performance
using a shared-parameter evaluation strategy. Gradients for both structure parameters (which define the
probabilities of selecting specific gates at each layer) and shared parameters (which define the variational
parameters within each gate) are computed and updated via automatic differentiation. This approach
allows efficient, end-to-end learning of both the circuit layout and gate parameters. The final architecture
is determined by selecting the most probable circuit structure based on the learned probabilistic model.
This structure is retrained from scratch to obtain its true performance. The overall DQAS workflow
consists of five stages: initializing the gate pool, sampling circuit architectures, updating structure and
gate parameters via gradient descent, selecting the optimal architecture, and retraining it from scratch.
Further details are available in the original work [28].
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2.2 Numerical simulation tasks

VQAs are fundamental to quantum computing, offering a wide range of important applications. In QAS,
three representative benchmark tasks commonly used to validate algorithm effectiveness include ground
state energy estimation for molecular systems, solving the MaxCut problem, and performing classification.

2.2.1 Variational quantum eigensolver

Calculating the ground state and the lowest energy of Hamiltonian is a fundamental problem in physics
research [42–44]. In quantum systems, the Hamiltonian’s dimensionality increases exponentially with
system size, posing significant computational challenges. Therefore, researchers have employed the vari-
ational quantum eigensolver (VQE), which offers exponential speedup, to address this issue [45–48]. The
key to solving this problem is to prepare the ground state |ϕ0〉 of the Hamiltonian H and compute the
lowest energy E0 expressed as

E0 =
〈ϕ∗

0|H |ϕ0〉

〈ϕ∗
0|ϕ0〉

. (1)

As the |ϕ0〉 is difficult to prepare, VQE approximates it by constructing a state |ϕn〉 by a PQC U(θ),
shown as

|ϕn〉 = U(θ)|0n〉, (2)

where |0n〉 represents the all-zero quantum state, which serves as the initial state and is processed by
the U(θ). The goal of VQE is to iteratively adjust the parameters θ such that |ϕn〉 gradually approaches
|ϕ0〉. Therefore, calculating the ground state and the lowest energy can be transformed into finding a
suitable θ that minimizes

θ∗ = argmin
θ

L(θ) = 〈0n|U †(θ)HU(θ)|0n〉. (3)

The process of VQE can be summarized as first preparing the quantum state |ϕn〉 through U(θ), then
measuring the energy E of the state |ϕn〉, and finally updating θ until the minimum E is obtained.

2.2.2 Variational quantum algorithm for the MaxCut problem

The MaxCut problem is a classic combinatorial optimization problem. Considering a graph G = (V,E),
the objective is to partition its nodes into two distinct sets to maximize the number of edges connecting
these sets. The objective function of MaxCut can be written as

C(z) =
1

2

∑

(i,j)∈E

(1− zizj) , (4)

where zi, zj ∈ {+1,−1} and zi represents the subset to which vertex i belongs. The quantum approximate
optimization algorithm (QAOA) addresses the MaxCut problem by utilizing alternating optimization to
approximate the optimal solution, offering the potential for quantum speedup [1]. Consequently, the
problem Hamiltonian Hc that encodes the MaxCut objective can be expressed as

HC =
1

2

∑

(i,j)∈E

(I − ZiZj) , (5)

where Zi and Zj are Pauli-Z operators acting on qubits corresponding to the nodes i and j of edge
(i, j) ∈ G. These operators are used to encode the connectivity of the graph in the quantum circuit.
The PQC of QAOA is driven by the problem. By adjusting PQC’s parameters, QAOA can progressively
approximate the optimal solution. In this study, we employed a VQA searched by the QAS algorithm
to replace the ansatz of QAOA for solving the MaxCut problem. The solving process is similar to VQE,
except for the Hamiltonian H .

2.2.3 Quantum neural network for quantum state classification

Quantum machine learning (QML) is an advanced field that integrates quantum computing with machine
learning, aiming to exploit the unique properties of quantum mechanics to enhance data analysis effi-
ciency. In this study, we employed a quantum neural network (QNN) to address a binary quantum state
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Figure 1 (Color online) Comparison between standard QAS and topology-driven QAS (TD-QAS). (1) In standard QAS, the

search must jointly explore both topology and gate types, causing a large and complex search space. (2) TD-QAS decouples

the search into two sequential stages, which first identifies optimal topologies using symbolic placeholders, and then assigns gate

types during a separate tuning phase. Here, (a) and (c) represent complete quantum circuits with both topology and gate-type

information, while (b) depicts a topology-only representation using placeholders.

classification problem. We utilized the quantum entanglement dataset provided in [49], which consists of
quantum states characterized by different levels of concurrence entropy (CE). This dataset was utilized
for training the QNN, which comprises an embedding layer, PQC, and a measurement layer. The embed-
ding layer was implemented using angle encoding with RX rotation gates to map classical information to
quantum states. The PQC component, searched by the QAS algorithm, processes the quantum states
that contain the information from the dataset. Finally, the measurement layer extracts classical informa-
tion from quantum states using Pauli-Z measurements, which are processed by a multilayer perceptron
(MLP) to provide the binary classification result.

3 Method

3.1 Motivation and overview

Standard QAS algorithms explore a vast search space that encompasses both circuit topology information,
such as qubit involvement, and gate-type information. For instance, a fundamental element of a quantum
circuit, such as [RX0], specifies that the RX gate acts on qubit 0. Consequently, an entire circuit can
be represented as a sequence of these elements, such as [RX0, RZ2, Y Y 0, XX1, RY1, ZZ0, RZ2], as
illustrated in Figure 1(a). However, this approach significantly increases the search difficulty in QAS.
Specifically, heuristic search strategies and evaluation mechanisms must simultaneously explore both
topology and gate-type information. This joint exploration across an extremely large search space results
in substantial computational complexity and inefficiency. NAS has demonstrated that high-performance
CNNs remain unaffected by the random replacement of specific operations [50]. If a similar phenomenon
occurs in VQA, decoupling topology and gate-type searches could enhance QAS in discovering high-
performance quantum circuits. This method can significantly reduce the search space by eliminating the
need to search for gate configurations within low-performance topologies.

Extensive numerical simulations, as discussed in Subsection 4.1, reveal that high-performance quantum
circuits exhibit only slight performance changes when quantum gate types are randomly substituted,
provided that the circuit topology remains unchanged. Remarkably, 76% of the quantum circuits exhibited
no significant change in performance after their gate types were altered in the noise scenario. This
observation indicates that identifying an optimal circuit topology is the primary step in searching for a
high-performance VQA, followed by gate-type selection. Therefore, we introduce the TD-QAS framework,
as illustrated in Figure 1(b), which significantly reduces the search space size. Our framework first
employs a topology-driven (TD) phase, which prioritizes the identification of high-performance topologies.
Subsequently, the framework utilizes a gate tuning (GT) phase to adjust the suitable gate types to enhance
circuit performance. To circumvent the substantial computational complexity associated with training
the QAS of the tuning phase from scratch, the tuning phase inherits parameters from the TD-QAS phase,
enabling rapid convergence with only a few additional training epochs.
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3.2 Implementation of TD-QAS framework

Presentation and evaluation strategy collectively enable topology search within QAS algorithms. We
emphasized topology representation and a dedicated search space. At the algorithmic description level,
circuit topology is defined as a sequence of placeholders, each representing a potential position for a
quantum gate. The type of placeholder depends on the number of qubits the gate acts on. As shown
in Figure 1(b), a topology might be represented as [single0, single2, double0, double1, single1, double0,
single2], where single placeholders correspond to single-qubit gates, and double placeholders correspond
to two-qubit gates. This configuration explicitly defines the topology search space for a task with a fixed
number of qubits and quantum gates.

To facilitate the search for topology, it is essential to establish an evaluation method specific to topol-
ogy. The straightforward approach to evaluate a topology’s performance is to exhaustively enumerate
or randomly generate numerous quantum circuits, using their performance metrics as proxies for the
topology’s effectiveness. However, this method becomes computationally prohibitive, especially as the
search space expands. We introduce a resource-efficient topology evaluation strategy called the topology
instantiation evaluation method. In this approach, a topology instantiation is created by replacing single-
and double-qubit placeholders with predefined gates, such as RX for single-qubit and XX (or CNOT)
for two-qubit operations. The performance of a topology instantiation provides an approximation of the
topology’s true performance. Considering the relatively limited impact of gate types on circuit perfor-
mance within QAS, this method provides a reasonable and efficient solution to evaluate topology without
incurring substantial computational complexity. Section 4.2 verifies the accuracy of the topology instan-
tiation evaluation method in reflecting the true performance of the topology. This validation ensures that
our evaluation strategy reliably estimates the effectiveness of different topologies, thereby supporting the
efficiency of the TD-QAS framework.

The proposed topology representation and evaluation strategy collectively enable topology search
within QAS algorithms. This topology search readily integrates into mainstream QAS algorithms with-
out requiring any modifications to their core search mechanisms. Specifically, when the native gate set is
limited to a single-qubit gate and one type of two-qubit gate, mainstream QAS algorithms transition from
searching for quantum circuits to focusing on topology. This design aligns well with our proposed topol-
ogy instantiation evaluation method. Consequently, at the level of practical implementation, all topology
representations can be evaluated through their instantiations. After completing the topology search,
the TD-QAS framework proceeds to the gate-type search phase. The size of the gate-type search space
depends on both the selected topology and the native gate set. The core mechanisms, including the eval-
uation strategy and search procedure, remain unchanged and are omitted here for brevity. In summary,
the TD-QAS framework can be implemented on existing QAS methods with minimal modifications.

3.3 Reduction of search space

In this subsection, we analyze how the TD-QAS framework effectively reduces the search space, offering
an intuitive perspective of its impact. First, the topology search space is typically determined by the
number of placeholder types and the properties of the quantum circuit, such as the number of qubits
and gates. The gate-type search space is determined by the searched topology and the native gate set,
which is typically defined by manual design or hardware constraints. To illustrate the efficacy of the TD-
QAS framework in reducing the search space, consider a three-qubit quantum circuit consisting of seven
quantum gates (Nqubit = 3, Ngate = 7) with ring connectivity among all qubits. We assume the qubit
connectivity is ring connectivity, and there are Nqubit possible positions for placing either single-qubit or
two-qubit gates. Suppose we set the native gate set A = {RX, RY, RZ,XX,YY,ZZ}, thus |A[single]| = 3
and |A[double]| = 3, where |A[single]| denotes the number of single-qubit gates in the native gate set. In
classical QAS, the number of possible operations per layer is 18 (Nqubit · (|A[single]|+ |A[double]|)), and

the search space size is 187 [Nqubit · (|A[single]|+ |A[double]|)]
Ngate . The TD-QAS framework employs

two types of placeholders, with placeholders in each layer having 6 (2 · Nqubit) possible combinations.
Thus, the topology search space size becomes 67 (|(Nqubit · 2)

Ngate |). The gate-type search space is 37

(|A[single]|x · |A[double]|7−x), where x represents the number of single placeholders in the topology. The
TD-QAS framework decouples the operation search space into a topology search space and a gate-type
search space, reducing it from 187 to 67 and 37. The corresponding search space reduction ratio is
approximately 2× 103, and the calculation formula is provided in (6). In this study, we use the reduction
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ratio R to evaluate the compression efficiency of our framework,

R =
Sproposed

Straditional
. (6)

3.4 Quantum computational costs

In this work, we introduce the TD-QAS framework, which is characterized by exceptionally low compu-
tational complexity. In QAS, quantum computational complexity is the primary consideration. Conse-
quently, we utilize quantum computational costs to evaluate the computational overhead of QAS algo-
rithms [51]. Quantum computational costs estimate the execution time for all quantum circuits generated
by QAS algorithms on actual devices. The execution time T for an individual quantum circuit can be
expressed as

T = Tp + (circuit depth) · Tg + TM , (7)

where Tp is the time to prepare the initial state, Tg is the average duration of a quantum gate, and TM

is the time required to measure the qubits. Here, Tp + TM is 1 ms, and the average gate time Tg is set
to 0.01 ms. Circuit depth represents the maximum length of the directed path from input to output
in the quantum circuit, directly influencing the coherence time required to complete the algorithm. In
our numerical simulations, we will compare the quantum computational costs between the TD-QAS
framework and original QAS algorithms, aiming to evaluate their respective efficiencies.

4 Numerical simulation

In this section, we conduct extensive numerical simulations to evaluate the proposed TD-QAS framework
across three representative tasks both noiseless and noisy scenarios. Specifically, three representative
tasks include estimating ground state energies for molecular systems, solving the MaxCut problem on
100 Erdős-Rényi (ER) graphs with 10 nodes, and performing an 8-qubit quantum state classification task.
In the noisy scenario, we adopted depolarizing and bit-flip noise models, with parameters set to 0.01 for
single-qubit depolarizing, 0.001 for two-qubit depolarizing, and 0.01 for bit-flip noise.

In the following sections, we first validated that high-performance quantum circuits experience only
minor performance variations when quantum gate types are randomly replaced, provided the circuit
topology remains unchanged. Thus, prioritizing the search for circuit topology before fine-tuning gate
types is a reasonable approach. Secondly, we validated that the topology instantiation evaluation method
effectively assesses circuit topology performance, offering an evaluation strategy that enables QAS algo-
rithms to efficiently search for low-complexity circuit topologies. Finally, we verify the superiority of our
TD-QAS framework by integrating it with two representative QAS algorithms, which are QuantumSu-
pernet [27] and DQAS [28].

4.1 Core hypothesis of TD-QAS: topology dominates the performance of circuit

This subsection aims to validate the core hypothesis of the TD-QAS framework, which posits that quan-
tum circuit topology has a greater influence on VQA performance than quantum gate types. This
hypothesis is motivated by our preliminary observations, suggesting that for high-performing circuits,
maintaining a fixed topology while randomly modifying the quantum gate type has minimal impact on
overall performance. To verify the generality of this phenomenon, we conducted a series of numerical
simulations. Specifically, we first describe the design and settings of numerical simulations. Thereafter,
we validate the core hypothesis using a VQE task under both noiseless and noisy scenarios. Finally, we ex-
tend the evaluation to additional tasks, including the MaxCut problem and quantum state classification,
to further demonstrate the robustness of the hypothesis across different tasks.

We outline the numerical simulation process, comparing the performance of the original quantum
circuits with their gate-modified variants. Specifically, we first randomly generated 1000 original quantum
circuits. Each quantum circuit consisted of multiple quantum gates chosen from the native gate set
{RX, RY, RZ,XX,YY,ZZ}, with qubit connectivity arranged in a ring connectivity. For each original
circuit, we generated 10 variants by randomly modifying 20% of the gate types, ensuring that each
replaced gate remained within the same class (i.e., single-qubit gates replaced by other single-qubit gates),
thereby preserving the topology. We selected the best performance from the five training runs as the true
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Figure 2 (Color online) Verification of the core hypothesis on the VQE task under noiseless (a) and noisy (b) conditions. The

horizontal axis shows the original circuit’s performance, while the vertical axis indicates the performance difference between the

original circuits and their gate-modified variants. Blue dots represent individual performance differences; the green line denotes

the average difference across performance levels.

performance. This performance dataset consists of pairs, each containing the original circuit performance
and that of its corresponding variants [pi, v

j
i ], where i represents the original circuit (i ∈ [1, 1000])

and j represents the variant circuit (j ∈ [1, 10]). To quantify the performance differences between each
original circuit and its variants, we computed the mean squared error (MSE), yielding pairs of original
performance and performance difference [pi, di] defined as

di =
1

nm

n
∑

i=1

m
∑

j=1

(

pi − p
j
i

)2

. (8)

We first evaluated this hypothesis on a VQE task (6-qubit TFIM) under both noiseless and noisy
scenarios. Specifically, both the original circuits and their variants were configured to contain 35 quantum
gates. The numerical simulation results are visualized in Figure 2, where each blue dot represents a circuit-
variant pair, and the green curve shows the average di over performance intervals (100 and 10 bins,
respectively). To better observe this trend under the noisy scenario, we excluded extreme outliers with
performance below −5. In both noiseless and noisy scenarios, we observe a consistent trend: as circuit
performance improves, the impact of gate-type changes diminishes. Remarkably, in the noisy VQE task,
76% of circuits exhibited minimal performance change (MSE < 0.1) after gate types were altered. We
attribute this phenomenon to the influence of noise, which overwhelms the relatively small effects caused
by changes in gate types. These findings provide strong support for the core hypothesis.

To further assess the robustness of the hypothesis, we extended the simulation protocol to two addi-
tional tasks: solving the MaxCut problem and performing quantum state classification. For each task,
the original circuits and their variants contained 35 or 50 quantum gates, and their performance was
evaluated under noiseless scenarios. The results, shown in Figure 3, demonstrate a similar trend to that
observed in the VQE experiments, reinforcing the generality of our core hypothesis across different tasks.

4.2 Topology instantiation evaluation method

Existing QAS methods lack a dedicated approach for evaluating topology. The ideal method to evaluate a
topology’s performance is to exhaustively analyze all potential quantum circuits or numerous circuits, and
use their average performance as a proxy for topology effectiveness. However, this approach is impractical
owing to its high computational complexity. As observed in Subsection 4.1, we found that random gate
substitutions have minimal impact on performance for high-performance circuits. Therefore, we propose
a highly resource-efficient topology evaluation method called the topology instantiation evaluation. This
method represents the topology using topology instantiation, where the corresponding placeholders are
replaced with specific quantum gates. To validate the effectiveness of this method, we computed the
correlation between the approximate true performance and the performance of the topology instantiation.

We first generated 100 circuit topologies. For each topology, we created 100 quantum circuits by
randomly selecting quantum gates from the set {RX, RY, RZ,XX,YY,ZZ}. For each topology, we initial-
ized parameters for 100 corresponding circuits, trained them, and used their average performance as the
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Figure 3 (Color online) Verification of the core hypothesis on solving the MaxCut problem (a) and quantum state classification

task (b). The horizontal axis represents the original circuit’s performance, and the vertical axis represents the performance difference

between the original circuits and their gate-modified variants. Blue dots represent individual performance differences, while the

green lines show the average difference across different performance levels.

Figure 4 (Color online) Correlation between true performance and instantiation-based approximation in the state classification

task. Each point represents a topology, where the x-axis indicates the true performance (averaged over 100 gate-randomized

circuits), and the y-axis shows the performance estimated by the topology instantiation evaluation method.

approximate true performance, defined as ȳ. Subsequently, for each of topologies, we replaced the single-
qubit and two-qubit placeholders with RX gates and XX gates, respectively. This process generated one
instantiation circuit for each topology. Similarly, we calculated the performance of these instantiations,
defined as y′. Finally, we computed the Pearson correlation coefficient between the true performance y

and the instantiation performance y′.

The numerical simulations yielded correlation values of 0.68, 0.59, and 0.62 for the three tasks. We
present the results for one task in Figure 4. For comparison, the widely used performance predictor
achieved a correlation of 0.71 [29], although it required considerable complexity to prepare the training
datasets. Thus, our method provides a reasonably accurate assessment of topology’s performance while
maintaining significantly lower complexity.

To further evaluate the robustness of the proposed topology instantiation evaluation method, we con-
ducted an additional experiment on the VQE task. In particular, we evaluated two alternative combi-
nations of single- and double-qubit gates (RY with YY and RY with XX), measuring the instantiation
performance and correlating it with the true average performance. The correlation values obtained with
these gate sets were 0.68 and 0.65, respectively, which are closely aligned with the correlation of 0.68
observed when using the RX and XX gates. These results indicate that the accuracy of the proposed
evaluation method remains unaffected by the specific gate types used for instantiation.

4.3 TD-QAS framework

We discussed the challenges faced by existing QAS algorithms, including the vast search spaces and
excessive computational costs. Therefore, we propose the TD-QAS framework, which aims to enhance
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the efficiency of QAS by decomposing the operational search space into separate topology and gate-type
search spaces. To assess the effectiveness of the TD-QAS framework, we compare several metrics from
both the TD and GT phases with those of standard QAS algorithms. These metrics include the size of the
search space, performance in specific tasks, circuit properties, and overall quantum computational costs.
In Subsections 4.3.1 and 4.3.2, we apply the TD-QAS framework to two representative QAS algorithms
and analyze their performance.

4.3.1 TD-QuantumSupernet framework

In this subsection, we detail the implementation of the TD-QAS framework using QuantumSupernet,
followed by a series of numerical simulations. First, we explain how to implement the TD and GT phases
using QuantumSupernet. The core algorithm of QuantumSupernet is described in Subsection 2.1.1.
Subsequently, we define the hyperparameters for various numerical simulation tasks, highlighting their
impact on the comparison variables. Finally, we set the hyperparameters, execute the algorithm, and
analyze the results of the numerical simulations. For the simulations, we select the same VQE and
classification tasks used in QuantumSupernet.

Implementation of TD-QuantumSupernet. Here, we describe the implementation of the TD-
QAS framework within the QuantumSupernet algorithm. The TD phase begins by defining the topology
search space based on the supernet structure and the native gate set. The number of qubits (Nqubit)
and the number of layers (Nlayer) are specified by the task. Each layer supports up to Nqubit quantum
gates. The native gate set is defined as {RX, I,CNOT,CI}, where CI refers to the controlled-identity
gate. If a sampled topology includes an I or CI gate at a specific location, no quantum gate will be placed
there, and the GT phase will bypass fine-tuning for that position. Subsequently, we utilize a random
search strategy to explore potential high-performance topologies. Each quantum circuit is evaluated using
shared parameters, with feedback guiding the updates to these parameters. Specifically, Nexperts shared
parameters are used to assess the performance of each topology, allowing for more precise evaluations.
During the initial Twarm iterations, a randomly selected expert from the Nexperts pool evaluates the
topology instantiation and updates the shared parameters accordingly. Following the warm-up phase, all
Nexperts contribute to the evaluation, but only the parameters with the best performance are updated.
When the shared parameters have converged, we evaluate Nsearch topology instantiations, selecting the
optimal topology. In the GT phase, the search space is determined by the selected topology and the
gate set Ag. To expedite training, the shared parameters from the TD phase are directly inherited and
adjusted to accommodate the new gate configuration. Specifically, this inheritance mechanism involves
replicating the shared parameters from the TD phase based on the number of single-qubit and two-
qubit gates available in the native gate pool. To enhance the accuracy of the evaluation, we performed
additional training on the inherited parameters for a few extra iterations, defined as Textra, which further
refines the assessment of specific circuit performances.

Based on the defined hyperparameters, we compute key comparison variables, including the size of the
search space and the total quantum computational cost (QCC). As the supernet consistently applies both
single-qubit and two-qubit gates across all qubits at each layer, the original search space is calculated
as (|A[single]|Nqubit · |A[double]|Nqubit)Nlayer , where |A[single]| denotes the number of single-qubit gates in
the native gate set. The topology search space is defined as (2Nqubit)Nlayer, where 2Nqubit accounts for
all possible combinations of single- and two-qubit placeholders per layer. The gate-type search space,
conditioned on a specific topology, is expressed as |A[single]|Nlayer−x · |A[double]|x, where x denotes the
number of double-qubit placeholders in the selected topology. The QCC for QuantumSupernet and the
TD phase is given by

∑Twarm

1 Ti +
∑T

Twarm+1
Ti · Nexperts +

∑Nsearch

1 Ti · Nexperts. The QCC for the GT

phase is defined as
∑Nsearch

1 Ti · (1 + Textra). Here, Ti represents the quantum computational cost of a
single circuit evaluation, as defined in (7).

Numerical simulation on the VQE task. In this section, we evaluate the performance of the TD-QAS
framework through numerical simulations. First, we replicate the ground state energy estimation task
for a 4-qubit hydrogen molecule, which is consistent with the simulation in [27]. While this small-scale
task provides valuable insight, it does not fully demonstrate the potential of the TD-QAS framework.
Therefore, we extend the validation to larger tasks, including the 5-qubit Heisenberg model.

For the simulation task estimating the ground state energy of hydrogen (which has a ground state
energy of −1.13618 Hartree), the Hamiltonian construction is detailed in QuantumSupernet [27]. Before
performing the numerical simulations, we define the hyperparameters and compare the search space sizes
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Table 1 Simulation results for the ground state energy estimation of hydrogen. The “Property” column shows the layer depth,

number of parameterized gates, and total gate count of the searched circuits. “QuantumSupernet-5” and “TD-1” refer to the

method with Nexperts as indicated.

Method Energy Property QCC Scenario

QuantumSupernet-5 −1.13610 6.2, 9.2, 16.1 4471.4 Noiseless

TD-1 −1.13572 4.6, 3.0, 7.3 846.2 Noiseless

GT-1 −1.13572 4.6, 3.0, 7.3 16.7 Noiseless

QuantumSupernet-5 −0.97079 3.8, 7.4, 12.8 4327.4 Noise

TDGT-1 −1.09169 4.0, 3.0, 6.4 841.6 Noise

of the QuantumSupernet and TD-QAS methods. Specifically, we set the number of qubits (Nqubit) to 4
and the number of layers (Nlayer) to 3. For the QuantumSupernet, the native gate set A is defined as
{I, RY, RZ,CNOT,CI}. In the TD-QAS framework, the gate sets are defined as At = {RY, I,CNOT,CI}
for the topology-driven phase and Ag = {RY, RZ,CNOT} for the gate tuning phase. Under these settings,
the search space for the QuantumSupernet is calculated as (34 · 24)3. The search space for the TD phase
is calculated as (24 · 24)3, while the GT phase operates within a search space ranging from 1 to 212. This
decoupling yields a search space reduction ratio of 2.5× 101 compared to the original QuantumSupernet.
Owing to the reduced search space, we employ smaller values for the number of experts (Nexperts) and
the total number of iterations (T ) to enhance efficiency. Specifically, for the QuantumSupernet, we set
Nexperts = 5, T = 500, Twarm = 200, and Nsearch = 500. In the TD phase, these parameters are adjusted
to Nexperts = 1, T = 200, Twarm = 100, and Nsearch = 500. In the GT phase, we set Textra = 1.
Considering the small problem size and the limited size of the native gate set, an exhaustive search is
feasible in the GT phase, and thus we omit Nsearch for this stage.

A comparison of the numerical simulations for these methods is presented in Table 1. In the noiseless
scenario, the quantum circuit obtained in the TD and GT phases performs comparably to the Quan-
tumSupernet. However, the circuit depth is reduced to 74.1%, the number of parameterized gates to
32.6%, and the total number of gates to 45.3% of the QuantumSupernet. Consequently, the quantum
computational cost is reduced to approximately 19% of the QuantumSupernet. This demonstrates the
effectiveness of independently searching for the topology and gate types, as the topology search alone suc-
cessfully completes the task, achieving chemical accuracy with an estimation error below 0.0016 Hartree.
In the noisy scenario, the TD-QAS framework identifies higher-performance circuits, likely owing to the
reduced circuit depth. Overall, the results from both noiseless and noisy scenarios confirm that prioritiz-
ing the search for circuit topology, followed by fine-tuning the gate types, enables the TD-QAS framework
to find high-performance circuits with lower quantum computational costs.

To further demonstrate the capabilities of the TD-QAS framework for larger-scale problems, we applied
it to the ground state energy estimation of the 5-qubit Heisenberg model. The Hamiltonian for the
Heisenberg model is defined as

∑n

i=1 (XiXi+1 + YiYi+1 + ZiZi+1)+
∑n

i=1 Zi, and the ground state energy
is −8.47213. The hyperparameters for this simulation are defined as Nqubit = 5, Nlayer = 6, A = {I,
RX, RY, RZ, CNOT, CI}, At = {RY, I, CNOT, CI}, and Ag = {RX, RY, RZ, CNOT}. With these
settings, the search space for the QuantumSupernet is calculated as (45 · 25)6 = 280, while the search
space for the TD and GT phases is 260 and 1–330, respectively. This results in a search space reduction
ratio of approximately 1× 107. To evaluate the performance of the TD-QAS framework and compare it
to the QuantumSupernet, we executed simulations with different values of Nexperts. Specifically, we set
Nexperts = 1 and Nexperts = 5. The hyperparameters for the QuantumSupernet are T = 500, Twarm = 200,
and Nsearch = 500. For the TD-QAS framework, the parameters are adjusted as T = 200, Twarm = 100,
and Nsearch = 300. In the GT phase, we set Textra = 1 and Nsearch = 100.

The results of the numerical simulations are presented in Table 2. With the same Nexperts, the TD
and GT methods outperform the QuantumSupernet. Therefore, the TD-QAS framework enhances the
performance of the QuantumSupernet. When comparing simulations with different numbers of experts
(Nexperts = 1 and Nexperts = 5), we observe that the QuantumSupernet shows a higher dependency on
Nexperts. This is owing to various parameterized quantum gates in the circuits searched by QuantumSu-
pernet, which results in greater sensitivity to the number of experts. However, the circuits found by the
TD and GT methods have fewer parameters, resulting in more stable performance across varying values
of Nexperts. This highlights the TD-QAS framework’s ability to reduce the training burden, which in turn
optimizes the QCC. Additionally, the circuits discovered in both the TD and GT phases exist within
the operation search space, but were not identified by the QuantumSupernet. Therefore, the TD-QAS
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Table 2 Simulation results for the ground state energy estimation of Heisenberg. The “Property” presents layer depth, number

of parameterized gates, and total gate number of searched circuits. “QuantumSupernet-5” and “TD-1” present method-Nexperts.

Method Energy Property QCC Scenario

QuantumSupernet-1 −7.64036 16.0, 38.2, 51.6 1155.1 Noiseless

TD-1 −8.00899 14.8, 18.4, 32.6 624.4 Noiseless

GT-1 −8.11899 14.8, 18.4, 32.6 332.6 Noiseless

QuantumSupernet-5 −8.22164 16.6, 38.4, 52.8 4873.2 Noiseless

TD-5 −8.01173 15.4, 21.0, 37.4 3945.2 Noiseless

GT-5 −8.14162 15.4, 21.0, 37.4 2126.9 Noiseless

QuantumSupernet-5 −7.82812 15.1, 36.7, 50.2 4893.2 Noise

TDGT-1 −8.02160 12.5, 20.5, 34.0 997.5 Noise

Table 3 Numerical simulation results for the state classification task. The “Property” presents layer depth, number of parame-

terized Gates, and total gate number of searched circuits. “QuantumSupernet-5” and “TD-1” present method-Nexperts.

Method Success rate Property QCC Scenario

QuantumSupernet-5 0.83917 14.3, 44.3, 62.8 4800.6 Noiseless

TD-1 0.84250 15.0, 28.7, 49.7 620.1 Noiseless

GT-1 0.85017 15.0, 28.7, 49.7 224.9 Noiseless

QuantumSupernet-5 0.80064 14.1, 42.4, 58.7 4792.2 Noise

TDGT-1 0.81554 14.8, 24.1, 42.3 927.4 Noise

framework may help mitigate the risk of the QAS algorithm becoming trapped in local optima, enhancing
the discovery of more optimal quantum circuits.

QNN for the state classification task. To assess the performance improvements of the TD-QAS frame-
work on more complex tasks, we conducted a numerical evaluation using an 8-qubit quantum state
classification task. Specifically, we employed a QNN to address a binary classification problem, where
the input comprised quantum states with varying levels of entanglement, characterized by concurrence
entropy (CE = 0.15 and CE = 0.45). The quantum dataset used in this experiment is based on the
dataset from [49].

The hyperparameter settings for the numerical simulation are detailed as follows,Nqubit = 8, Nlayer = 6,
A = {I, RX, RY, RZ, CNOT, CI}, At = {RY, I, CNOT, CI}, and Ag = {RX, RY, RZ, CNOT}. With
these parameters, we calculate that the search space for the QuantumSupernet is 2144, while the search
space for the TD and GT phases is 296 and 1–330, respectively. This results in a search space reduction
ratio of approximately 2.6 × 106. The simulation hyperparameters for the QuantumSupernet are set as
T = 500, Twarm = 200, and Nsearch = 500. For the TD-QAS framework, we set T = 200, Twarm = 100,
and Nsearch = 300 in the TD phase, while in the GT phase, Textra = 1 and Nsearch = 100.

Table 3 summarizes the simulation results for the state classification task. The TD-QAS framework
successfully identifies higher-performance circuits compared to the QuantumSupernet, all while incurring
lower quantum computational costs. Notably, this task presents a larger search space than any previously
examined, and the TD-QAS framework significantly enhances QAS performance compared to earlier
numerical simulations. These results further emphasize the importance of the TD-QAS framework in
effectively reducing the search space and enhancing search optimization.

4.3.2 TD-DQAS framework

To validate the TD-QAS framework’s generality and effectiveness across different QAS algorithms, we
implement it using the DQAS algorithm and systematically analyze its performance. The core algo-
rithm of DQAS has been detailed in Subsection 2.1.2. Similar to Subsection 4.3.1, we first describe
the implementation details of the TD-QAS framework using DQAS, followed by an introduction to the
hyperparameter settings. Finally, we execute the QAS algorithms and analyze their results.

Implementation of the TD-DQAS. Here, we outline the process of implementing the TD-QAS frame-
work with DQAS. DQAS aims to identify a high-performance quantum circuit that contains Ngate quan-
tum gates, where arbitrary quantum gates can be placed at any position. In the TD phase, the native
gate set is defined as At is {RX,XX}. DQAS employs a search strategy based on the probabilistic model
to select a batch of Nbatch quantum circuits, each of which is composed of Ngate gates chosen from the set
At and their corresponding qubit positions. The performance of the selected circuits is evaluated using
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Table 4 Numerical simulation results for TD-DQAS on three tasks. The “Performance” column shows the output metric for each

task (energy, approximation ratio, or accuracy). QCC denotes quantum computational cost.

Method Performance QCC Scenario

VQE for TFIM

DQAS −6.38688 9972.5 Noiseless

TD −6.53971 2391.4 Noiseless

GT −7.06726 118.7 Noiseless

DQAS −6.12504 10786.5 Noise

TDGT −6.71821 3604.2 Noise

VQA for MaxCut

DQAS 0.77 11917.0 Noiseless

TD 0.90 2322.8 Noiseless

GT 0.93 361.8 Noiseless

DQAS 0.76 13835.9 Noise

TDGT 0.89 2945.6 Noise

QNN for state classification

DQAS 0.78095 10603.4 Noiseless

TD 0.78222 1750.7 Noiseless

GT 0.85897 280.1 Noiseless

DQAS 0.77460 11894.4 Noise

TDGT 0.79811 2166.5 Noise

shared parameters, which are updated by feedback from the quantum circuit evaluation. This process
continues until Ntrain iterations or when it converges. Subsequently, the probability model selects the
optimal topology with the highest probability. DQAS employs mini-batch gradient descent to optimize
the model. Generally, models with greater complexity require a larger batch size. In the GT phase, the
shared parameters from the TD phase are inherited, and the probability model is trained from scratch.
The model fine-tunes the quantum gates from the native gate set based on the searched topology. As the
probability model only should consider gate types in the GT phase, the number of trainable parameters
is small, allowing for a smaller Ntrain.

We calculate and compare several key metrics, including the search space and total quantum compu-
tational costs. The search space of DQAS is defined as (|A| · Nqubit)

Ngate , whereas the search space of
the TD and GT phases is (2 ·Nqubit)

Ngate and |A[single]|Ngate−x · |A[double]|x, respectively. The QCC for

all methods is computed as
∑Ntrain

i=1

∑Nbatch

j=1 T
j
i . In this section, we do not compare the properties of the

quantum circuits, such as depth and the number of parameterized gates, as the gate placement rules in
DQAS allow arbitrary single-qubit gates to act on any position.

Numerical simulation of TD-DQAS. This section validates the capacity of the TD-DQAS framework
across three tasks: the VQE task, the MaxCut problem, and the state classification task. As the numerical
simulation setup and conclusion largely overlap with those discussed in earlier sections, we focus on
presenting a comparative analysis of the results rather than repeating the full details.

For each task, we set the following hyperparameters, A = Ag = {RX, RY, RZ,XX,YY,ZZ} At =
{RX,XX}, Ntrain = 500, the Nbatch of DQAS, TD and GT phase is 32, 8, 8, respectively. For the VQE
task, we selected the 6-qubit TFIM, using the ground state energy as the performance metric. We set
Nqubit = 6 and Ngate = 36. Therefore, the search space of DQAS, TD, and GT phase is 3636, 1236, and
336. The search space reduction ratio is nearly 1.5 × 1017. In the MaxCut problem, we employed the
ER model to randomly generate 100 distinct graphs, each containing 10 nodes, with an edge creation
probability set to 0.5. The approximation ratio serves as the performance metric. We set Nqubit = 10,
Ngate = 20. Therefore, the search space of DQAS, TD, and GTphase is 6020, 2020, and 320. The search
space reduction ratio is nearly 3.5 × 1010. For the quantum state classification task, the classification
accuracy serves as the performance metric. We set Nqubit = 8, Ngate = 30. Therefore, the search space
of DQAS, TD, and GT phase is 4830, 1630, and 330. The search space reduction ratio is nearly 2× 1015.

Table 4 presents detailed numerical results for each task, demonstrating that the TD-DQAS framework
outperforms the DQAS algorithm across all tasks. Specifically, in the VQE, MaxCut, and quantum
state classification tasks, the TD-QAS framework achieves higher performance with significantly reduced
quantum computational costs. Therefore, decoupling the search process into two phases, topology search
and gate-type fine-tuning, improves the efficiency of QAS algorithms, enabling them to obtain higher-
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performing quantum circuits while minimizing resource requirements.

5 Conclusion and future work

In this study, we proposed the TD-QAS framework, which significantly enhances the efficiency and scal-
ability of QAS by decoupling the search process into two key steps: topology searching and gate-type
fine-tuning. This novel approach minimizes the size and complexity of the search space, allowing for a
more resource-efficient exploration. This method represents a novel paradigm for QAS, which can easily
be integrated with both existing and future QAS algorithms without altering their core mechanisms.
Our experiments across various tasks, conducted in both noisy and noiseless scenarios, demonstrate that
TD-QAS effectively discovers high-performing PQCs while reducing quantum computational costs. The
TD-QAS framework was successfully implemented with two widely used QAS algorithms, i.e., Quan-
tumSupernet and DQAS, demonstrating its compatibility. The numerical results indicate that TD-QAS
improves QAS capacity while minimizing the risk of convergence to suboptimal circuits. To enhance re-
producibility, the code for TD-QAS and all experiments will be made publicly available upon acceptance
at https://github.com/Sujun124/TD-QAS.

In future work, we first aim to extend TD-QAS to other QAS algorithms, thereby enhancing its utility
and adaptability. Next, we will focus on optimizing the evaluation strategy, such as implementing a
predictor-based evaluation method. Additionally, we plan to explore the scalability of TD-QAS for more
complex tasks and scenarios. While our current study validates the core assumption and effectiveness
of TD-QAS on three representative VQA tasks under both noiseless and noisy scenarios, this validation
is limited to quantum machine learning tasks. Within the tasks explored, gate-type selection did not
appear to play an equally or more critical role than topology. However, this assumption may not hold
across all quantum computing settings. Investigating a broader range of tasks and environments remains
an interesting direction for future research. By refining these aspects, we aim to establish TD-QAS as a
foundational approach for efficient and scalable QAS across various quantum computing applications.
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8 Havĺıček V, Córcoles A D, Temme K, et al. Supervised learning with quantum-enhanced feature spaces. Nature, 2019, 567:

209–212
9 Otterbach J S, Manenti R, Alidoust N, et al. Unsupervised machine learning on a hybrid quantum computer. 2017.

ArXiv:1712.05771
10 Song Y Q, Wu Y S, Wu S Y, et al. A quantum federated learning framework for classical clients. Sci China-Phys Mech

Astron, 2024, 67: 250311
11 Shi M, Situ H, Zhang C. Hybrid quantum neural network structures for image multi-classification. Phys Scr, 2024, 99:

056012
12 Wu S, Li R, Song Y, et al. Quantum-assisted hierarchical fuzzy neural network for image classification. IEEE Trans Fuzzy

Syst, 2025, 33: 491–502
13 Chen C, Zhao Q. Quantum generative diffusion model. 2024. ArXiv:2401.07039
14 Li G X, Zhao X Q, Wang X. Quantum self-attention neural networks for text classification. Sci China Inf Sci, 2024, 67:

142501
15 Wang Y, Li G, Wang X. A hybrid quantum-classical Hamiltonian learning algorithm. 2021. ArXiv:2103.01061
16 Xu J X, Ma X, Liu J Y, et al. Automatically identifying imperfections and attacks in practical quantum key distribution

systems via machine learning. Sci China Inf Sci, 2024, 67: 202501
17 Preskill J. Quantum computing in the NISQ era and beyond. Quantum, 2018, 2: 79
18 Knill E. Quantum computing with realistically noisy devices. Nature, 2005, 434: 39–44
19 Situ H, He Z, Wang Y, et al. Quantum generative adversarial network for generating discrete distribution. Inf Sci, 2020,

538: 193–208
20 Cong I, Choi S, Lukin M D. Quantum convolutional neural networks. Nat Phys, 2019, 15: 1273–1278
21 Cerezo M, Arrasmith A, Babbush R, et al. Variational quantum algorithms. Nat Rev Phys, 2021, 3: 625–644
22 Li L X, Li J, Song Y Q, et al. An efficient quantum proactive incremental learning algorithm. Sci China-Phys Mech Astron,

2025, 68: 210313
23 Kandala A, Mezzacapo A, Temme K, et al. Hardware-efficient variational quantum eigensolver for small molecules and

quantum magnets. Nature, 2017, 549: 242–246

https://arxiv.org/abs/1411.4028
https://doi.org/10.1002/qute.202300419
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1007/s11432-023-4039-y
https://doi.org/10.1038/s41534-018-0116-9
https://doi.org/10.1038/s41586-019-0980-2
https://arxiv.org/abs/1712.05771
https://doi.org/10.1007/s11433-023-2337-2
https://doi.org/10.1088/1402-4896/ad3e3d
https://doi.org/10.1109/TFUZZ.2024.3435792
https://arxiv.org/abs/2401.07039
https://doi.org/10.1007/s11432-023-3879-7
https://arxiv.org/abs/2103.01061
https://doi.org/10.1007/s11432-023-3988-x
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/nature03350
https://doi.org/10.1016/j.ins.2020.05.127
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1007/s11433-024-2501-4
https://doi.org/10.1038/nature23879


Su J J, et al. Sci China Inf Sci August 2025, Vol. 68, Iss. 8, 180507:15

24 Romero J, Babbush R, McClean J R, et al. Strategies for quantum computing molecular energies using the unitary coupled
cluster ansatz. Quantum Sci Technol, 2018, 4: 014008

25 Kuo E J, Fang Y L L, Chen S Y C. Quantum architecture search via deep reinforcement learning. 2021. ArXiv:2104.07715
26 He Z, Deng M, Zheng S, et al. Training-free quantum architecture search. In: Proceedings of the AAAI Conference on

Artificial Intelligence, 2024. 38: 12430–12438
27 Du Y, Huang T, You S, et al. Quantum circuit architecture search for variational quantum algorithms. npj Quantum Inf,

2022, 8: 62
28 Zhang S X, Hsieh C Y, Zhang S, et al. Differentiable quantum architecture search. Quantum Sci Technol, 2022, 7: 045023
29 Zhang S X, Hsieh C Y, Zhang S, et al. Neural predictor based quantum architecture search. Mach Learn-Sci Technol, 2021,

2: 045027
30 He Z, Wei J, Chen C, et al. Gradient-based optimization for quantum architecture search. Neural Netws, 2024, 179: 106508
31 Duong T, Truong S T, Tam M, et al. Quantum neural architecture search with quantum circuits metric and Bayesian

optimization. 2022. ArXiv:2206.14115
32 He Z, Li Z, Deng M, et al. Quantum architecture search with neural predictor based on graph measures. Adv Quantum

Tech, 2024, 7: 2400223
33 Situ H, He Z, Zheng S, et al. Distributed quantum architecture search. Phys Rev A, 2024, 110: 022403
34 Zhao T, Chen B, Wu G, et al. Hierarchical quantum architecture search for variational quantum algorithms. IEEE Trans

Quantum Eng, 2024, 5: 1–10
35 Patel Y J, Kundu A, Ostaszewski M, et al. Curriculum reinforcement learning for quantum architecture search under

hardware errors. In: Proceedings of International Conference on Learning Representations, 2024
36 Martyniuk D, Jung J, Paschke A. Quantum architecture search: a survey. 2024. ArXiv:2406.06210
37 Sun Y, Ma Y, Tresp V. Differentiable quantum architecture search for quantum reinforcement learning. In: Proceedings of

the IEEE International Conference on Quantum Computing and Engineering (QCE), 2023. 2: 15–19
38 Wu W, Yan G, Lu X, et al. QuantumDARTS: differentiable quantum architecture search for variational quantum algorithms.

In: Proceedings of International Conference on Machine Learning, 2023. 37745–37764
39 He Z, Su J, Chen C, et al. Search space pruning for quantum architecture search. Eur Phys J Plus, 2022, 137: 491
40 Elsken T, Metzen J H, Hutter F. Neural architecture search: a survey. J Mach Learn Res, 2019, 20: 1997–2017
41 Shu Y, Wang W, Cai S. Understanding architectures learned by cell-based neural architecture search. In: Proceedings of

the International Conference on Learning Representations (ICLR), 2020
42 Lolur P, Rahm M, Skogh M, et al. Benchmarking the variational quantum eigensolver through simulation of the ground

state energy of prebiotic molecules on high-performance computers. AIP Conf Proc, 2021, 2362: 030005
43 Nakanishi K M, Mitarai K, Fujii K. Subspace-search variational quantum eigensolver for excited states. Phys Rev Res, 2019,

1: 033062
44 Parrish R M, Hohenstein E G, McMahon P L, et al. Quantum computation of electronic transitions using a variational

quantum eigensolver. Phys Rev Lett, 2019, 122: 230401
45 Tilly J, Chen H, Cao S, et al. The variational quantum eigensolver: a review of methods and best practices. Phys Rep,

2022, 986: 1–128
46 Wang D, Higgott O, Brierley S. Accelerated variational quantum eigensolver. Phys Rev Lett, 2019, 122: 140504
47 Verteletskyi V, Yen T C, Izmaylov A F. Measurement optimization in the variational quantum eigensolver using a minimum

clique cover. J Chem Phys, 2020, 152: 124114
48 Huggins W J, Lee J, Baek U, et al. A non-orthogonal variational quantum eigensolver. New J Phys, 2020, 22: 073009
49 Schatzki L, Arrasmith A, Coles P J, et al. Entangled datasets for quantum machine learning. 2021. ArXiv:2109.03400
50 Wang L, Chen L. FTSO: effective NAS via first topology second operator. 2023. ArXiv:2303.12948
51 Guerreschi G G, Matsuura A Y. QAOA for Max-Cut requires hundreds of qubits for quantum speed-up. Sci Rep, 2019, 9:

6903

https://doi.org/10.1088/2058-9565/aad3e4
https://arxiv.org/abs/2104.07715
https://doi.org/10.1038/s41534-022-00570-y
https://doi.org/10.1088/2058-9565/ac87cd
https://doi.org/10.1088/2632-2153/ac28dd
https://doi.org/10.1016/j.neunet.2024.106508
https://arxiv.org/abs/2206.14115
https://doi.org/10.1002/qute.202400223
https://doi.org/10.1103/PhysRevA.110.022403
https://doi.org/10.1109/TQE.2024.3454640
https://arxiv.org/abs/2406.06210
https://doi.org/10.1140/epjp/s13360-022-02714-7
https://doi.org/10.1103/PhysRevResearch.1.033062
https://doi.org/10.1103/PhysRevLett.122.230401
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1103/PhysRevLett.122.140504
https://doi.org/10.1063/1.5141458
https://doi.org/10.1088/1367-2630/ab867b
https://arxiv.org/abs/2109.03400
https://arxiv.org/abs/2303.12948
https://doi.org/10.1038/s41598-019-43176-9

	Introduction
	Background and related work
	Quantum architecture search
	QuantumSupernet
	DQAS

	Numerical simulation tasks
	Variational quantum eigensolver
	Variational quantum algorithm for the MaxCut problem
	Quantum neural network for quantum state classification


	Method
	Motivation and overview
	Implementation of TD-QAS framework
	Reduction of search space
	Quantum computational costs

	Numerical simulation
	Core hypothesis of TD-QAS: topology dominates the performance of circuit
	Topology instantiation evaluation method
	TD-QAS framework
	TD-QuantumSupernet framework
	TD-DQAS framework


	Conclusion and future work

