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Abstract The laws of quantum physics place a limit on the speed of computation. In particular, the evolution time of

a system from an initial state to a final state cannot be arbitrarily short. Bounds on the speed of evolution for unitary

dynamics have long been studied. A few bounds on the speed of evolution for noisy dynamics have also been obtained

recently, which are, however, not tight. In this paper, we present a new framework for quantum speed limit concerning noisy

dynamics. Within this framework, we obtain the exact maximum rotation angle that noisy dynamics can achieve at any given

time, which gives rise to a tight bound on the evolution time for noisy dynamics. The bound obtained through semi-definite

programming highlights the fundamental differences between noisy dynamics and unitary dynamics. Furthermore, we show

that the orthogonalization time, defined as the minimum time required to evolve any initial state to a state with zero fidelity

with respect to the initial state, is generally not applicable to noisy dynamics.
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1 Introduction

Quantum information processing can be regarded as the transformation of quantum states that encode
the information to be processed or computed. The time for which the states transform dictates the
speed of the quantum computation. Quantum physics imposes a limit on the transformation time. This
quantum speed limit (QSL) [1] arises because the energies of the system as well as the environment are
finite and the state of the system may evolve according to slow dynamics. During a period of time t, a
quantum process can rotate a quantum state by the angle θ. In terms of QSL, the reverse question is
asked. Namely, given a certain angle θ, we ask what minimum time t is required to rotate any state by
angle θ.

The first major result of QSL, which was based on the uncertainty relation, was made by Mandelstam
and Tamm [2] in 1945. Since then, there has been an interest and development in the topic of QSL, includ-
ing generalization to mixed states, Markovian and non-Markovian dynamics, closed and open quantum
systems, different targets such as gauge invariant distances and Bloch angles, and many other applica-
tions including control strategies and shortcuts to adiabaticity associated with QSL [3–60]. Although
various results on unitary dynamics have come out (see e.g., [3–18]), studies on noisy dynamics and open
quantum systems have only been carried out recently. For example, QSL characterization schemes have
been enriched in [60] for open systems, particularly for addressing non-Markovian dynamics.
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In this paper, we present a new framework for QSL concerning noisy dynamics. Although previous
studies mostly focus on the rotating speed of a given state under certain dynamics, here we study
the maximal speed of evolution that the dynamics can generate on all quantum states, which requires
optimization over all states. The obtained speed of evolution represents the limit of quantum speed that
the given dynamics can possibly induce on any quantum states, which is then a fundamental limit of the
dynamics and can be used to provide bounds on the computation speed of a quantum device. While the
QSL on a fixed state tells little about the ability of the dynamics with regard to rotation of the states in
general, the maximal speed of evolution provides a way to gauge the dynamics.

Our framework is based on a method that gives the exact maximum rotation angle for certain given
dynamics, which ensures that the bound is achievable. The bound is obtained directly from the Kraus
operators of the dynamics, allowing for the ease of computation. The bound obtained reveals that noisy
dynamics is essentially different from unitary dynamics. In particular, we show that the orthogonalization
time, a concept commonly used in QSL, is in general not applicable to noisy dynamics.

Our framework is based on a distance measure in quantum channels, which will be briefly described
in the following. For an m × m unitary matrix U , let e−iθj denote the eigenvalues of U , where θj ∈
(−π,π] (1 6 j 6 m) is also referred to as the eigen-angles of U . We define (see, e.g., [52–54]) ‖U‖max =
max16j6m |θj |, and ‖U‖g as the minimum of ‖eiγU‖max over equivalent unitary operators with different
global phases, i.e., ‖U‖g = minγ∈R ‖eiγU‖max. We then define

Cθ(U) =











‖U‖g, if‖U‖g 6
π

2
,

π

2
, if‖U‖g >

π

2
.

(1)

Essentially Cθ(U) represents the maximum angle at which U can rotate a state away from itself [54],
that is

Cθ(U) = arccosmin
ρ

FB(ρ, UρU †), (2)

where the fidelity FB(ρ1, ρ2) between two states is defined as FB(ρ1, ρ2) = tr

√

ρ
1
2

1 ρ2ρ
1
2

1 . For an operator

X, X† denotes the ajoint of X. If the eigen-angles of U are arranged in decreasing order, i.e., θmax = θ1 >

θ2 > · · · > θm = θmin, then Cθ(U) = (θmax − θmin)/2 when θmax − θmin 6 π [54].

Similarly, a distance metric d(U1, U2) on unitary operators U1 and U2 can be induced by Cθ(·) as

d(U1, U2) = Cθ(U
†
1U2) = arccosmin

ρ
FB(U1ρU

†
1 , U2ρU

†
2 ). (3)

The distance metric d(U1, U2) represents the maximum angle that U1 and U2 can generate on the same
input state ρ. This metric can be generalized to noisy dynamics as d(K1,K2) = minUES2

d(UES1
, UES2

),
where UES1

and UES2
are unitary extensions of Kraus opertors K1 and K2, respectively.

To be concrete, for noisy dynamics, d(K1,K2) represents the maximum angle that K1⊗IA and K2⊗IA
can generate with respect to the same input state; the metric can be computed by

d(K1,K2) = arccosmin
ρSA

FB [K1 ⊗ IA(ρSA),K2 ⊗ IA(ρSA)], (4)

where ρSA is a state of the composite systems consisting of the target and the ancilla, with IA denoting
the identity operator defined in the ancillary system. Moreover, the metric d(K1,K2) can also be obtained
by

d(K1,K2) = arccos max
‖W‖61

1

2
λmin(KW +K†

W ), (5)

where λmin(·) denotes taking the minimum eigenvalue, and KW =
∑D

j=1

∑D
i=1 wijF

†
1iF2j . Here F1i and

F2j , denote the Kraus operators of K1 and K2 respectively, wij denotes the ij-th entry of a D×D matrix
W with ‖W‖ 6 1 (‖ · ‖ is the operator norm, which is equal to the maximum singular value).
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Furthermore, let t = 2 cosd(K1,K2), and such a distance can be efficiently calculated via semi-definite
programming as

max
1

2
t

s.t.

(

I W †

W I

)

� 0,

KW +K†
W − tI � 0.

(6)

And the corresponding dual semi-definite programming provides a way to find the optimal state

min
1

2
tr(P ) +

1

2
tr(Q)

s.t.

(

P M †(ρS)

M(ρS) Q

)

� 0,

tr(ρS) = 1, ρS � 0,

(7)

where P , Q are Hermitian matrices andM(ρS) is aD×D matrix with its ij-th entry equaling tr(ρSF
†
1iF2j).

The optimal state is any pure state ρSA with trA(ρSA) = ρS , where ρS is obtained from the above semi-
definite programming.

The metric can be used to obtain a saturable bound for QSL. More precisely, for the dynamics Kt(ρ) =
∑

i Fi(t)ρF
†
i (t), suppose that it takes t units of time for the dynamics to rotate a state, possibly entangled

with an ancillary system, with an angle θ. Then θ = arccosFB[ρSA,Kt⊗ IA(ρSA)] 6 d(I,Kt), and thus a
lower bound on the minimum time can be obtained by this inequality where the equality can be saturated
when ρSA takes the optimal input state. When ρSA is restricted to separable states, the maximal rotation
speed is reduced to the case without an ancillary system, which is in general slower. d(I,Kt) thus provides
a limit on the maximum angle that the given dynamics can generate on any state at the time t.

First of all, for unitary dynamics Ut = e−iHt, suppose it takes t units of time to rotate a state ρ
with the angle θ ∈ [0, π2 ]. Then θ 6 d(I, Ut) = 1

2 (Emax − Emin)t, where Emax (Emin) denotes the
maximum (minimum) eigenvalue of H . The minimum time needed to rotate a state away with the
angle θ is then bounded by t > 2θ/(Emax − Emin). This recovers previous results on the quantum
speed limit for unitary dynamics [8]. This bound is also known to be saturable with the input state |ϕ〉 =
(|Emax〉+eiφ|Emin〉)/

√
2, which can always rotate to an orthogonal state at the time t = π/(Emax − Emin).

QSL bounded via the Bloch angle has been discussed in [39], while our framework generalizes this to
arbitrary noisy dynamics through the metric d(K1,K2).

Here, Emax − Emin can be seen as the energy scale of the system, and thus d(I, Ut) is proportional
to the multiplication of the energy scale and time. The maximum angle that can be rotated is thus
proportional to the time-energy cost of the dynamics [52–55]. For noisy dynamics, such as d(I,Kt) =
minUESt

(IES, UESt
) where UESt

is the unit extension of Kt, the maximum angle is proportional to the
minimum energy cost on all unit extensions of noisy dynamics [52–55]. Unlike the quantum Fisher metric,
which depends on the specific dynamical trajectory and may overestimate the evolution time, our metric
d(K1,K2) directly quantifies the worst-case rotation angle over all possible input states. This ensures a
tight bound that is saturable by an optimal state, even in the presence of decoherence.

In the following part of this paper, we will focus on the analysis of QSL concerning noisy dynamics.

2 QSL for single systems

In this section, we are concerned with the analysis of QSL, characterized by the maximum rotation angle,
under noisy dynamics for single systems.
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2.1 Dynamics with amplitude damping

Consider the Markovian dynamics with amplitude damping Kt(ρ) = F11(t)ρF
†
11(t)+F12(t)ρF

†
12(t), where

the Kraus operators are

F11(t) =

[

1 0

0
√

P (t)

]

, F12(t) =

[

0
√

1− P (t)

0 0

]

. (8)

Here, the time-varying element P (t) = e−γt with γ being the decay rate. Suppose that it takes t units of
time for the dynamics to rotate a state ρSA with angle θ ∈ [0, π2 ]. The density operator ρSA represents
the quantum state of the target system and the ancilla, and then one can have θ = arccosFB [ρSA,Kt ⊗
IA(ρSA)] 6 arccosminρSA

FB [ρSA,Kt ⊗ IA(ρSA)] = d(I,Kt).

One can have cos d(I,Kt) = max‖W‖61
1
2λmin(KW +K†

W ), where KW =
∑

ij wijF
†
0iF1j . with F01 = I

and F02 = 0 being the Kraus operators for the identity operator (where a zero operator has been added).
Here wij is the ij-th entry of the 2× 2 matrix W satisfying ‖W‖ 6 1. Then

KW +K†
W =

[

a c

c∗ b

]

=

[

2R(w11) w12

√

1− P (t)

− 2R(w11)
√

P (t)

]

, (9)

where R(·) denotes the real part of a number. The minimum eigenvalue of KW +K†
W can thus be given

by λmin(KW + K†
W ) = 1

2 (a+ b−
√

(a− b)2 + 4|c|2). To maximize the minimum eigenvalue, c should
be set to 0. More precisely, by choosing w12 = 0, the expression for the minimum eigenvalue becomes
λmin(KW + K†

W ) = b = 2R(w11)
√

P (t) which reaches its maximum value when w11 = 1. Therefore,

cos d(I,Kt) = max‖W‖61
1
2λmin(KW +K†

W ) =
√

P (t). As θ 6 d(I,Kt), we have cos θ > cos d(I,Kt) =
√

P (t), which gives t > 2
γ ln sec θ. This provides a lower bound for the minimum time needed to rotate

any state with the angle θ, and it is consistent with the previous results (see, e.g., [19]). Please note that
in this scenario, to rotate a state to its orthogonal state, infinite time is needed as ln sec π

2 → ∞. In fact,
this corresponds to the case where the initial state is the excited state |1〉 and only completely decays to
the ground state |0〉 in an infinite amount of time.

For non-Markovian dynamics, due to strong couplings with the environment, the decay rate γnM (t),
which is usually time-dependent, can be greater than the decay rate in the Markovian regime [21].

Therefore, in such a case P (t) = e−
∫

t
0
γnM(τ)dτ where

∫ t

0 γnM (τ)dτ is usually larger than γt in the

Markovian regime, thus for the same time duration the maximum angle d(I,Kt) = arccos
√

P (t) can be
bigger in the non-Markovian regime than in the Markovian regime. This was explored in previous studies
showing that non-Markovian dynamics can contribute to quantum speed up [21,58,59]. Please note that
even in the non-Markovian regime, as long as γnM (t) is finite, it always takes an infinite amount of time
for P (t) to reach 0. Thus, an infinite amount of time is needed to achieve a π/2-rotation.

2.2 Dynamics with dephasing noise

Let Kt(ρ) = F11(t)ρF
†
11(t)+F12(t)ρF

†
12(t) describe the dynamics in the presence of dephasing noise, with

the Kraus operators

F11(t) =

√

1 + P (t)

2

[

e−iωt/2 0

0 eiωt/2

]

, F12(t) =

√

1− P (t)

2

[

e−iωt/2 0

0 −eiωt/2

]

. (10)

Here, P (t) = e−γt and γ denote the dephasing rate. We similarly suppose that it takes t units of time
for the dynamics to rotate the quantum state ρSA with the angle θ ∈ [0, π

2 ], and thus θ 6 d(I,Kt). In

this scenario, we have that KW +K†
W = diag[a, b] with























a = 2R

(

√

1 + P (t)

2
w11e

−iωt/2 +

√

1− P (t)

2
w12e

−iωt/2

)

,

b = 2R

(

√

1 + P (t)

2
w11e

iωt/2 −
√

1− P (t)

2
w12e

iωt/2

)

.

(11)
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Figure 1 (Color online) Maximum angles that can be rotated at different values of the time t in the presence of dephasing noise,

with γ = 0.1 GHz and ω = 1 GHz.

By using |w11|2 + |w12|2 6 1 for any ‖W‖ 6 1 together with the Cauchy-Schwarz inequality, one can
obtain that

λmin(KW +K†
W ) 6

1

2
tr(KW +K†

W )

=2R

(
√

1 + P (t)

2
w11cos(ωt/2)− i

√

1− P (t)

2
w12 sin(ωt/2)

)

62

(∣

∣

∣

∣

∣

√

1 + P (t)

2
w11 cos(ωt/2)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

√

1− P (t)

2
w12 sin(ωt/2)

∣

∣

∣

∣

∣

)

62

√

1 + P (t)

2
cos2(ωt/2) +

1− P (t)

2
sin2(ωt/2)

√

|w11|2 + |w12|2

62

√

1 + P (t) cos(ωt)

2
.

(12)

It is not difficult to verify that the equality is saturated when

W =







√

1 + P (t) cos(ωt/2)
√

1 + P (t) cos(ωt)

i
√

1− P (t) sin(ωt/2)
√

1 + P (t) cos(ωt)

0 0






. (13)

Then it can be concluded that cos d(I,Kt) =
√

1+P (t) cos(ωt)
2 . And since cos θ > cos d(I,Kt), the

minimum time needed to rotate a state with the angle θ can be obtained, as illustrated in Figure 1.

It is worth noting that cos d(I,Kt) =
√

1+e−γt cos(ωt)
2 > 0 for P (t) = e−γt as long as γ > 0. Hence

d(I,Kt) < π/2; that is, the dynamics cannot rotate any state to its orthogonal state. This is a much
stronger statement than the previous result in [19], where it was stated that only when ω

γ > rcrit ≈ 2.6 the
dynamics could not rotate any state to its orthogonal state. This difference arises because the previous
bound is obtained by integrating the quantum Fisher metric along the path ρt = Kt ⊗ IA(ρSA). This
path is fixed by the dynamics, which is usually not the geodesic between the initial state and the final
state. Consequently, the integration of the quantum Fisher metric along the path is in general larger than
the actual distance between the initial state and the final state. This in turn leads to a looser bound and
inaccurate classification for noisy dynamics. The bound obtained in [20] for dynamics with dephasing
noise is also not tight, which resulted in a finite orthogonalization time. In contrast, the bound obtained
here is tight and can be saturated with the input state |+〉 = (|0〉 + |1〉)/

√
2. In addition, an ancillary

system is not needed to saturate the bound we have obtained in the presence of dephasing noise.
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2.3 Generic noisy dynamics

We will show that for generic noisy dynamicsKt(ρ) =
∑D

i=1 Fi(t)ρF
†
i (t), if the identity operator I belongs

to the space spanned by the Kraus operators, then Kt cannot rotate any state to its orthogonal state, or
equivalently, d(I,Kt) is always smaller than π/2.

The reason lies in the fact that if I ∈ span{F1(t), F2(t), . . . , FD(t)}, then there exists w1i such that

I =
∑D

i=1 w1iFi(t). Now, let α = 1/
√

∑D
i=1 |w1i|2 > 0, then αI =

∑D
i=1 w

′
1iFi(t) with w′

1i = αw1i.

Define W ′ as a matrix D×D with the entries of the first row equal to w′
1i and the other entries equal to

0. It is then obvious that ‖W ′‖ = 1, and thus

cosd(I,Kt) = max
‖W‖61

1

2
λmin(KW +K†

W )

>
1

2
λmin(KW ′ +K†

W ′)

=
1

2
λmin





D
∑

i=1

w′
1iFi(t) +

(

D
∑

i=1

w′
1iFi(t)

)†




= α > 0.

(14)

Hence d(I,Kt) 6 arccosα < π/2. That is, the dynamics cannot rotate any state to its orthogonal state.

For example, in the case of dephasing noise as indicated in (10), I =
√

2
1+P (t) cos(ωt/2)F11(t) +

i
√

2
1−P (t) sin(ωt/2)F12(t), and then

α =
1

√

2
1+P (t) cos

2(ωt/2) + 2
1−P (t) sin

2(ωt/2)
=

√

1− P 2(t)
√

2− 2P (t) cos(ωt)
, (15)

which is positive for any P (t) < 1. Hence, in the presence of dephasing noise, d(I,Kt) 6 arccosα < π/2.

This fact can also be easily seen from the equivalent representations of the Kraus operators. More
precisely, when I ∈ span{F1(t), F2(t), . . . , FD(t)}, there exists an equivalent representation of Kraus
operators such that αI is one of them. Then the fidelity between the initial and final states will be at
least α, and thus this dynamics cannot rotate any state to its orthogonal state. The bound proposed by
us can not only reflect this fact, but can also provide a tighter bound by exploring different choices of W .
Taking dynamics with dephasing noise, for example, the choice of W in (13) can lead to a tight bound.
In addition, it is not difficult to observe that if the span of Kraus operators contains any matrix M such
that λmin(M + M †) > 0, the above argument holds. Thus, the dynamics cannot rotate any state to
its orthogonal state. Taking dynamics with amplitude damping for example, the span of the associated
Kraus operators contains M = diag[1,

√

P (t)] which satisfies the condition λmin(M+M †) = 2
√

P (t) > 0
except for P (∞) = 0.

An immediate implication is that all dynamics with the associated Kraus operators that span the entire
space (or equivalently, the number of linearly independent Kraus operators is d = n2, where n denotes
the dimension of the quantum system) cannot rotate any state to its orthogonal state. Such dynamics
are indeed generic among all completely positive trace-preserving maps, therefore generic noisy dynamics
cannot rotate any state to its orthogonal state.

3 QSL for composite systems

As discussed in Subsection 2.3, we now assume that there are N numbers of such dynamics, denoted by
K⊗N

t , acting independently in a composite system. The representation of the Kraus operators for K⊗N
t

can be written as F̃i1,i2,...,iN (t) = Fi1(t) ⊗ Fi2 (t)⊗ · · · ⊗ FiN (t). For the matrix W ′ already discussed in
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Figure 2 (Color online) Maximum angles that can be rotated in composite systems in the presence of dephasing noise, with the

bounds at different values of ω
γ

plotted. These curves are obtained by figuring out the optimal time spot t that gives the maximum

angle for the separable state, d(I⊗N ,K⊗N
t ) and arccos(αN ), with (a) N = 2 and (b) N = 5, respectively. It can be seen that

maxt θsep and maxt arccos(α
N ) provides tight bounds for maxt d(I

⊗N ,K⊗N
t ). The maximum angle that can be achieved with the

GHZ state is also plotted for comparison.

Subsection 2.3, let W̃ = W ′⊗N , then K⊗N

W̃
= (KW ′)⊗N = αN I⊗N . One can thus have that

cos d(I⊗N ,K⊗N
t ) = max

‖W‖61

1

2
λmin(K

⊗N
W + (K⊗N

W )†)

>
1

2
λmin

(

K⊗N

W̃
+ (K⊗N

W̃
)†
)

= λmin(α
NI⊗N )

= αN > 0,

(16)

which implies d(I⊗N ,K⊗N
t ) 6 arccos(αN ) < π/2. It can then be concluded that in this case any state of

the composite system cannot be rotated to its orthogonal state.

In fact, in the presence of dephasing noise, substituting the value of α into (15), one can obtain an
upper bound for d(I⊗N ,K⊗N

t ) straightforwardly. A lower bound for d(I⊗N ,K⊗N
t ) can also be obtained

by taking the input state as the separable state | + · · ·+〉, where |+〉 = (|0〉 + |1〉)/
√
2. It is then not

difficult to calculate the rotated angle with respect to this separable state, which is θsep = arccos(βN )

with β =
√

1+e−γt cos(ωt)
2 , and thus arccos(βN ) 6 d(I⊗N ,K⊗N

t ) 6 arccos(αN ). Then the inequality

maxt arccos(β
N ) 6 maxt d(I

⊗N ,K⊗N
t ) 6 maxt arccos(α

N ) limits the maximum angle that can be rotated
for composite systems. In Figure 2, we plot these bounds and the exact maximum angle for composite
systems in the presence of dephasing noise for N = 2 and N = 5. It can be seen that these bounds are
quite tight.

On the other hand, for composite systems, the GHZ state (that is, (|0 · · · 0〉+ |1 · · · 1〉)/
√
2) is usually

used as a benchmark for the QSL [19,20]. The rotation angle on the GHZ state can be explicitly computed

as cos θGHZ =
√

1+e−Nγt cos(Nωt)
2 . It can be seen from Figure 3(a) that for small values of t (i.e., when

the noise influence is still not strong), the GHZ state can help achieve the maximal speed of evolution.
However, for high values of t, the GHZ state is no longer the optimal state that achieves the maximum
angle d(I⊗N ,K⊗N

t ). More precisely, the GHZ state can be even worse than the separable state. This
can be clearly observed in Figure 3(b), where we quantify the entanglement for the optimal state that

saturates d(I⊗
2

,K⊗2
t ).

The maximally entangled state is optimal only when t is below the threshold (e.g., t < 1.5). When t
is above the threshold, the optimal state that achieves the maximum rotation angle gradually changes
from the maximum entangled state to the separable state. Moreover, it can be seen that the maximum
angle on the GHZ state is much smaller than the maximum angle on the separable state. This is because
the maximum angle on the GHZ state does not change with N , which can be observed from Figure
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Figure 3 (Color online) Understanding QSL under the noisy dynamics for composite systems in the presence dephasing noise

with the parameters chosen as γ = 0.1 GHz, ω = 1 GHz, N = 2. (a) Rotation angles on the GHZ and separable states respectively,

compared with the maximum angles; (b) quantified entanglement of the optimal input state, which achieves the maximum rotation

angle.

2 (it only shortens the optimal time consumed to obtain the maximum angle by N times). That is,

maxt θGHZ = maxt arccosβ with β =
√

1+e−γt cos(ωt)
2 , while maxt θsep = maxt arccos(β

N ) increases with

N . From another perspective, if we take the rotated angle as the degenerate effect under noisy dynamics,
it indicates that although the GHZ state deteriorates fast in the presence of dephasing noise in a short
period of time, in the long run, the entanglement in the GHZ state mitigates the maximal degeneration.

4 Conclusion and future work

We provide a new framework to calculate tight bounds for QSL quantified by the exact maximum rotation
angles under generic noisy dynamics (including non-Markovian dynamics). In particular, for arbitrary
finite-dimensional quantum systems, the Kraus operators can be substituted in (7) to compute the max-
imum rotation angle. Similarly, composite systems of N -qudits or hybrid systems can be accommodated
by the tensor products of Kraus operators. This generality ensures that our results are not restricted to
specific dimensions or noise types. The maximum rotation angles and the corresponding bounds given
in this paper clearly show that the commonly used concept for QSL, i.e., the orthogonalization time, is
in general not applicable to noisy dynamics. The derived bounds obtained through semi-definite pro-
gramming are achievable by the optimal input state, quantifying the fundamental limit imposed by the
dynamics itself, which is critical for assessing the intrinsic capabilities of quantum processes. It is also
shown that although maximally entangled states, such as the GHZ state, evolve faster in a short period
of time, they are not optimal states, giving rise to maximum rotation angles under noisy dynamics in the
long run.

Furthermore, our work has significant implications for quantum computing, since the state transfor-
mation time bounds the speed of computation. Additionally, the amount of state degradation is bounded
by the storage time, which in turn enhances our understanding of quantum memory.
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