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Abstract Spectrally multiplexed quantum elementary link is an important building block for quantum networks. Towards

long distance quantum communication, such multiplexed elementary links should be connected via the Bell state measurement

(BSM). In this work, we propose and demonstrate a scheme for connecting two adjacent elementary links with frequency

shifting. In our proof-of-principle demonstration, each elementary link has two spectral channels with a channel spacing of

16 GHz, and the photonic quantum information is encoded in the temporal mode. A projection fidelity of BSM reaches

>95% between different spectral channels with decoy-state analysis. We also evaluate the performance of our demonstration

by calculating the secret key rate of spectrally multiplexed measurement-device-independent quantum key distribution. Our

results could pave the way for developing long distance quantum networks.
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1 Introduction

Towards a scalable quantum network, the rate of photonic quantum entanglement distribution is inher-
ently limited by the optical loss of the channel [1–3]. Quantum repeater provides a promising solution,
which plays a pivotal role in developing scalable quantum network [4–10]. With the quantum repeater,
long-distance quantum entanglement distribution can be divided into several elementary links, which are
then connected by quantum entanglement swapping via the BSM [11, 12]. In parallel with developing
quantum repeaters, the rate of such distribution can be further improved by multiplexing [13, 14] in dif-
ferent degrees of freedom of photons, such as in spectral [15–17], temporal [18, 19], and spatial [20, 21]
domains. Among these methods, multiplexing in the spectral domain attracts great interest for its promis-
ing scalability as well as fixed losses and the requirement of resources [22,23]. However, the demonstration
of connecting two adjacent elementary links with spectral multiplexing via the BSM remains challeng-
ing [24], due to the intrinsic distinguishability of photonic qubits from different spectral channels [6]. To
achieve perfect entanglement swapping between spectral multiplexing elementary links, frequency shifting
for photonic qubits is required.
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Figure 1 (Color online) Conceptual illustration of connecting two adjacent elementary links using spectral multiplexed BSM. In

each elementary link N/M , the entanglement swapped photons are respectively stored in the quantum memories (QMs) located

at the ends of elementary links, with spectral modes depicted in different colors. The heralding signals AN/M generated by

the successful entanglement swapping in each elementary link are sent over a classical channel (CC) to the local BSM station.

Simultaneously, photons A and B are recalled from the adjacent elementary links, and transmitted to the local BSM station via

quantum channels (QCs). The heralding signals AN/M then trigger the frequency shifters (FSs) to map photons onto the desired

spectral mode. Conditioned on a successful measurement in the local BSM, elementary links N and M are connected, generating

the herald signal BN for the next stage of link connection.

Here, we design and realize frequency shifting of photonic time-bin qubits within a temporal aperture
defined by the ramp voltage signal on an electro-optical phase modulator, and the time-bin qubits are
prepared with a weak coherent state. We further perform a proof-of-principle demonstration of the con-
nection between two adjacent spectrally multiplexed elementary links. In our experiment, two individual
spectral channels with a channel separation of 16 GHz are mapped onto a common spectral channel with
the frequency shifting of the single-photon wavepacket. After erasing the distinguishability of photonic
qubits in the spectral domain, we achieve the BSM with fidelities exceeding >95% between different spec-
tral channels with decoy-state analysis. The performance of the system is also analyzed by calculating
the secret key rate of a spectrally multiplexed measurement-device-independent quantum key distribu-
tion (MDI-QKD). Our result establishes an important foundation for the development of long-distance
spectrally multiplexed quantum networks.

2 Experimental demonstration and results

A conceptual scheme for connecting adjacent spectrally multiplexed elementary links with frequency
shifting is shown in Figure 1. In this scheme, both the Nth and the Mth elementary links, where
M = N+1, have two spectrally multiplexed quantum memories (QMs) entangled via spectrally resolving
entanglement swapping at the middle point of each link [24, 25]. Spectrally multiplexed photonic qubits
A/B are stored in different spectral channels of the QMs. When the entanglement between two spectrally
multiplexed QMs in the Nth elementary link is successfully established, a heralding signal, labeled as AN ,
is generated. Suppose that the same process happens in the Mth elementary link with the corresponding
heralded signal AM generated. The qubit A and qubit B, respectively from the Nth andMth elementary
links, are then recalled and transmitted over their own quantum channels (QCs) to a local BSM station
for entanglement swapping. The heralding signals AN and AM , which contain the information of the
spectral modes for qubit A and qubit B, then trigger the frequency shifters (FSs) to respectively map
their corresponding qubits onto the previously agreed-upon spectral channel. Once the BSM is successful
and the entanglement between the two adjacent elementary links is established, the local BSM station
generates a heralding signal BN , which is then used for the next stage BSM and entanglement swapping.
By repeating the procedure with other links, entanglement can be established between two distant nodes
across the entire quantum channel.

To demonstrate the feasibility of frequency shifting in the local BSM station, we experimentally char-
acterize the performance of the frequency shifter using the time-bin encoded single-photon qubits and
demonstrate the BSM between different spectral channels. The schematic of our experimental setup is
shown in Figure 2. The node A/B is employed to simulate the recalled photons from adjacent QMs. In
order to simulate the different spectral modes for each node, we used an attenuated dual-pulse laser to
prepare the time-bin qubits (|ψ〉A/B) with different frequency settings (see the lower left inset of Figure 2

marked “Node A/B”). The qubit (|ψ〉B) from node B passes through an FS to eliminate the frequency
distinguishability. The FS is based on a phase modulator (PM) (see the lower right inset of Figure 2
marked “FS”) and allows the single-photon frequency shifting with the magnitude from −40 to 20 GHz
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Figure 2 (Color online) Experimental setup. Qubits (|ψ〉A/B) from node A/B (shown in the lower left inset marked “Node A/B”)

are sent to the measurement station to perform the BSM. The time-bin single-photon qubits are prepared by modulating a stable

continuous-wave (CW) laser using an intensity modulator (IM) followed by a phase modulator (PM). The electronic signals for

driving the modulators are generated by an arbitrary waveform generator (AWG) and have a repetition rate of 5 MHz. The full

width at half maximum (FWHM) of the pulse duration and the separation of the two temporal modes are 40 and 400 ps, respectively.

The output dual-pulse train from the modulators is then attenuated to a single-photon level using a variable optical attenuator

(VOA). The measurement station contains a 50/50 polarization-maintained beam splitter (50/50 PMBS) followed by two SNSPDs.

The polarization controller (PC), polarization beam splitter (PBS), and FS are employed to maintain the indistinguishability of

the photons upon arrival at the measurement station. The illustration on the lower right inset marked “FS” shows that the FS is

realized by a PM driven by a ramp generator (RG) synchronized with the qubits. The trigger signal comes from the same AWG.

To compensate the delay caused by the FS, an optical variable delay line (OVDL) with a maximum delay of 560 ps is inserted for

node A. The illustration on the lower right inset marked “QST” shows that the path time delay of the unbalanced Mach-Zehnder

interferometer (UMZI) used for quantum state tomography measurement matches the interval between the two temporal modes of

the time-bin qubits.

(see Appendix A). Subsequently, the frequency-shifted qubits are sent to the local measurement station
to perform the BSM using a 50/50 polarization-maintained beam splitter (50/50 PMBS) followed with
two superconductor nanowire single photon detectors (SNSPDs). A variable optical delay line (VODL)
for node A is employed to match the arrival time of qubits |ψ〉A and |ψ〉B. Two polarization controllers
combined with polarization beam splitters (PBSs) are utilized to align polarizations of the input photons
from nodes A and B, respectively. The qubits before and after the frequency shift are measured using
quantum state tomography (QST) with the same unbalanced Mach-Zehnder interferometer (UMZI) (see
the lower right inset of Figure 2 marked “QST”).

We first characterize the time-bin qubits |ψ〉B before and after the frequency-shifting using QST [26,27].

The qubit |ψ〉B is encoded in the states of |e〉, |l〉, and |±〉 = (|e〉±|l〉)/
√
2, forming two mutually unbiased

bases, i.e., the Z -basis (|e〉 and |l〉) and the X -basis (|±〉). The qubit with a central frequency of fB =
193.414 THz is sent to the FS for frequency shifting at three magnitudes of fs = 0 GHz (the FS is turned
off), 11 GHz, and 16 GHz. Figure 3 shows the reconstructed density matrices of the quantum states of
|e〉 and |+〉 (see Appendix B for more details as well as results for the quantum states of |l〉 and |−〉).
We calculated the fidelities of those quantum states after the frequency-shifting by comparing them with
the non-frequency-shifted (i.e., fs = 0 GHz) case. At fs = 11 GHz, the fidelities are 99.96%±0.01% for
the state |e〉 and 22.53%±0.20% for |+〉, while at fs = 16 GHz, the fidelities are 99.98% and 99.60%,
respectively. Although the |e〉 states maintain high fidelities (>99%), the fidelity of |+〉 state is far away
from unity for the case of fs = 11.0 GHz, during the quantum state evolution caused by FS. When the
time-bin qubits pass through the FS based on the phase modulator, the time-varying phase response
will result in an additional phase difference ∆ϕ between the earlier and the later temporal modes. The
magnitude of frequency-shifting (fs) for the time-bin qubits thus comes along with a rotation of an angle
∆ϕ in the equatorial plane, as shown in Figure 3(d). For fs = 16 GHz, the additional phase difference
is close to 0 (2π) and the evolved qubit returns to its original position. For fs = 11 GHz, the evolved
qubit cannot return back to the pre-position on the Bloch sphere, which will introduce bit errors in the
time-bin qubit decoding (as detailed in Appendix C).

Next, we measure the indistinguishability between the time-bin qubits |ψ〉A and |ψ〉B by performing
the Hong-Ou-Mandel (HOM) interference. As shown in Figure 2, two time-bin qubits |ψ〉A/B are si-

multaneously prepared by an AWG with identical electrical signals, where the frequencies of |ψ〉A and
|ψ〉B are set to f A = 193.414 THz and f B. We adjust the time delay between the qubits with 10 ps
accuracy and perform HOM interference with |ψ〉B undergoing frequency shifts of fs = 0 GHz (the FS
is turned off), 11.0 GHz, and 16.0 GHz, respectively. Figure 4(a) shows the results of HOM interference
with both time-bin qubits in states |e〉. When the frequency difference (∆f = f A − f B) between qubits
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Figure 3 (Color online) Results of the density matrices. (a), (b) and (c) are the reconstructed density matrices of qubits from

node B with a frequency shift of 0, 11, and 16 GHz, respectively. The central frequency of time-bin qubits |ψ〉B is set to 193.414 THz.

(d) Quantum state evolution of time-bin qubits on the Bloch sphere.

Figure 4 (Color online) HOM interference experiment results. (a) and (b) are results of HOM interference measurement between

qubits of |e〉 and |+〉, respectively. In the notation (∆f ; fs), ∆f represents the frequency difference between time-bin qubits |ψ〉A
and |ψ〉B, and fs represents the frequency shift. In (a) ((b)), the visibilities of the red, blue, green, yellow, and purple curves

are 47.37%±0.03% (45.08%±0.05%), 45.63%±0.03% (43.41%±0.06%), 45.07%±0.05% (10.69%±0.11%), close to 0, and close to

0, respectively. Experimental points are fitted with Gaussian functions. All error bars are calculated by Monte Carlo simulation

assuming Poissonian detection statistics.

is set to 11 GHz (16 GHz) and FS is off, the HOM dip disappeared as shown by the yellow (purple)
curve, indicating that the two qubits are distinguishable in terms of frequency. When ∆f is set to match
the frequency shift, (∆f = fs = 11 GHz and 16 GHz, respectively, corresponding to the green and blue
curves) clear HOM dips are observed, with visibilities both exceed 45%, nearly reaching the visibility at
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Table 1 Fidelities (%) of BSMs. F(e/l), F(+/−) represent the average fidelities of BSM. Test qubits are encoded as weak coherent

states with an average number of photons µ, and the lower bounds of fidelities for BSM are derived for qubits encoded into

single-photon states (n = 1) using decoy state analysis. One standard deviation uncertainties are calculated from the statistical

uncertainties of photon counts.

Mean photon number
0 GHz; 0 GHz 16 GHz; 16 GHz 11 GHz; 11 GHz

Fe/l F+/− Fe/l F+/− Fe/l F+/−

µs = 0.0703 98.17±0.03 72.23±0.06 97.87±0.03 76.62±0.06 98.26±0.04 33.10±0.08

µd = 0.0070 99.37±0.12 72.18±0.47 98.54±0.22 73.47±0.52 98.80±0.29 32.60±0.68

n = 1 99.52±0.16 97.40±1.39 99.17±0.27 95.13±1.65 99.05±0.35 50.00±0.00

the same frequency setting of |ψ〉A and |ψ〉B (red curves for ∆f = fs = 0 GHz, 47.37%±0.03% in our
setup) without subtracting any noise counts. This result clearly indicates that the FS could effectively
eliminate the frequency distinguishability between qubits with a single temporal mode (both for the cases
of |e〉 and |l〉). We then perform the HOM interference with time-bin qubits |ψ〉A and |ψ〉B both encoded
onto states |+〉, as shown in Figure 4(b). At ∆f = fs = 16 GHz, the HOM interference visibility is
43.41%±0.06% as shown by the blue curve, close to the unshifted case (red curves, 45.08%±0.05% in our
setup). This means that if the phase shift brings |ψ〉B back to its original position on the Bloch sphere,
the indistinguishability of the time-bin qubits could be preserved. However, in the case of ∆f = fs = 11
GHz, the HOM dip decreases to 10.69%±0.11%, which is attributed to the decoherence caused by the
additional phase introduced by the FS.

Finally, we performed the BSMs on different spectral channels incorporating the decoy state analysis
[28], with the FS activated to eliminate frequency distinguishability. We prepared time-bin qubits with
all combinations of |ψ〉A/B ∈ [|e〉 , |l〉] and |ψ〉A/B ∈ [|+〉 , |−〉]. For each of the combinations of qubits,

we measure nine combinations among three intensities (signal, decoy, and vacuum intensity). The mean
photon numbers per qubit of the signal intensity and decoy intensity are µs = 0.0703 and µd = 0.0070,
respectively. We record the coincidence events corresponding to projection onto one of the four Bell
states |ψ−〉. In particular, one detector clicks in the early time bin and the other detector clicks in the
late time bin or vice versa [29]. The results are shown in Table 1. The fidelity of the BSM listed in
Table 1 refers to the measurement discrimination fidelity, which denotes the percentage of all correct
labels within the subset of all unambiguous results (as detailed in Appendix D) [30]. The fidelities Fe/l,

F+/− are averaged over the measurement result of each set of basis vectors (e.g., Fe/l =
1
2 (Fe+Fl)) for

the mean photon numbers of µs and µd, respectively. In addition, Table 1 shows the lower bounds on
the fidelity that we would obtain if we performed our experiments with qubits encoded into individual
photons (labelled as n = 1 in Table 1) without making any other changes. These bounds, denoted by
n = 1, are derived using the decoy state analysis that underpins the security of quantum key distribution
based on attenuated laser pulses (see Appendix D for further details of this method). For the qubits
with a single temporal mode (|ψ〉A/B ∈ [|e〉 , |l〉]), the fidelity Fe/l exceeds 99% after frequency shift.

For the qubits with two temporal modes (|ψ〉A/B ∈ [|+〉 , |−〉]), the fidelity F+/− exceeds 0.95 when the

qubit returns to the initial position on the Bloch sphere after frequency shifting (i.e., for the cases of
∆f = fs = 0 GHz, 16 GHz). Otherwise, for the case of ∆f = fs = 11 GHz, the fidelity decreases to
F+/− = 0.50. Therefore, the phase compensation should be taken into account when the FS is applied
to the quantum systems with photons containing multiple temporal modes. Our results indicate that
the single-photon FS could enable the successful connection between spectrally multiplexed elementary
links. Besides the connection of spectrally multiplexed quantum elementary links, our work on spectrally
multiplexed BSM can also be applied to spectrally multiplexed quantum information systems, such as
MDI-QKD (see Appendix E for details).

3 Discussion and conclusion

In this paper, we propose a scheme for connecting spectrally multiplexed quantum elementary links
using frequency shifting and demonstrate a proof-of-principle experiment for enabling the interconnection
between adjacent elementary links with different frequencies. By using a PM driven by a ramp signal,
we demonstrate frequency shifting of time-bin qubits at the single-photon level with near unity efficiency.
After erasing the distinguishability of photonic qubits in the spectral domain, a projection fidelity of
BSM reaches >95% between different spectral channels with decoy-state analysis. Our results show the
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great application potential in building long-distance quantum networks.
In our demonstration, we use a circuit to generate the ramp voltage signal. Though the ramp voltage

signal has realized a near unity frequency shifting efficiency, the imperfect frequency response of electronic
devices results in the slight difference in both the HOM visibilities and the BSM fidelities between the
cases of non-frequency-shifting and 16 GHz frequency shifting. Meanwhile, the quantum state evolution
caused by phase modulation should be taken into account, especially when the qubit is encoded onto
time bins. In previous studies, photons with coherence times significantly longer than the RF modulation
period have been utilized for the spectrum manipulation of time-bin qubits using PMs [31]. In contrast,
our FS is designed to ensure that the entire duration of time-bin qubits is shorter than the ramp signal.
This condition defines the temporal aperture of the frequency shifting [32], which thus guarantees that
only linear phase modulation is applied to the qubits as well as minimizing the generation of noise photons
at the operation wavelength.

Our proposed spectrally multiplexed BSM with frequency shifting shows potential for scalability if a
larger frequency shift is applied. Recently developed integrated lithium niobate PMs with low π-voltage
(Vπ = 1.4 V, or 2.3 V for our setup) and ultra-low loss of 0.5 dB [33,34] can achieve a maximum frequency
shift of 119.2 GHz through cascading. This enables access to more spectral channels and improves the
efficiency of spectrally multiplexed quantum repeaters. Another approach to increase the magnitude of
the frequency shift is to utilize a faster ramp generator (RG) with a higher slew-rate [35]. In the current
spectrally multiplexed architecture, the frequency shift can reach ∆f ≈ 40 GHz with the slew-rate of
157 V/ns. The GaN-based high-voltage capacitive coupled gate driver can make the slew-rate exceeding
1000 V/ns [36], which will give the FS over a six-fold improvement. When the state-of-the-art FS is
integrated into node A/B, the selectable frequency channel range can extend to more than 400 GHz. This
capability enables effective utilization of the bandwidth available in multimode quantum memory (e.g.,
180 GHz in [37]) and enhances the efficiency of successful entanglement swapping in quantum repeaters.
Furthermore, the spectral multiplexing connection scheme based on frequency shifting does not affect its
compatibility with multiplexing using other degrees of freedom. Note that for other multiplexing degrees
of freedom, they can be manipulated to keep the indistinguishability of the photons. It is also worth
noting that the spectral steering scheme in our system is applicable to spectral multiplexing in recent
demonstrations of frequency-bin-encoded quantum key distribution [38, 39], quantum radio-frequency-
over-light communication [40,41], quantum teleportation [27,42–44], and quantum secret sharing [45,46]
for spectral multiplexing.

In summary, we have demonstrated connection spectrally multiplexed quantum elementary links via
BSM. By defining the frequency shifting temporal aperture with a ramp voltage, we design and implement
frequency shifting of the photonic time-bin. Each elementary link has spectral channels with a channel
spacing of 16 GHz, and the feasibility of frequency shifting is characterized by QST, HOM interference,
and BSM. Using two time-bin qubit generators within different spectral channels, a fidelity >95% is
achieved for BSM projection between spectrally multiplexed elementary links. Our results thus pave the
way for a future spectrally multiplexed quantum network.
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