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Abstract Federated learning is a powerful machine learning framework that enables collaborative model training while

preserving data privacy. Blockchain-based federated learning has emerged as a decentralized solution to enhance system

verifiability and security. However, existing blockchain-based federated learning approaches suffer from limited fault tolerance

and high communication overhead, posing significant challenges for large-scale deployment. To address these issues, we

propose a quantum-enhanced blockchain federated learning framework. It integrates quantum Byzantine agreement, enabling

consensus even when nearly 50% of clients are malicious, significantly improving fault tolerance. Additionally, we leverage

matrix product operators for model compression, reducing communication overhead by up to 90% while maintaining model

accuracy. We design a Byzantine-resilient aggregation algorithm that effectively mitigates adversarial attacks and enhances

privacy protection. Experimental results on two benchmark datasets show that even with 40% of clients being malicious,

the proposed method maintains strong performance, significantly surpassing traditional approaches in terms of effectiveness,

robustness, and security.
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1 Introduction

Federated learning is a distributed machine learning paradigm designed to address privacy concerns [1].
This approach has been widely adopted in various domains, including healthcare [2], vehicular net-
works [3], and the Internet of Things [4]. In federated learning, clients collaboratively train a shared
model by periodically downloading the global model from a central server and uploading locally com-
puted updates based on their private datasets. This decentralized learning mechanism ensures that raw
data remain on local devices, thereby preserving user privacy while enabling effective model training.

In federated learning model aggregation, federated averaging (FedAvg) [1] remains the dominant ap-
proach, but its reliance on unverified client updates makes it vulnerable to adversarial threats, such as
model poisoning attacks [5–7]. Malicious participants can manipulate model updates during training,
compromising the integrity and performance of the global model while undermining trust among collabo-
rating entities. Blockchain-based federated learning has been explored as a promising solution to enhance
security and trust [8, 9]. By leveraging blockchain’s decentralized nature, the training process becomes
more transparent and verifiable [10]. However, existing blockchain consensus mechanisms, such as practi-
cal Byzantine fault tolerance (PBFT) [11], can tolerate only up to one-third of malicious nodes, limiting
their fault tolerance. Furthermore, the substantial storage and communication overhead of blockchain
present scalability challenges in large-scale federated learning applications [12, 13].

To address these limitations, quantum-driven innovations are urgently needed for federated learn-
ing [14–26]. The rapid advancement of quantum technology [27, 28] presents new opportunities for fed-
erated learning, with various quantum techniques expected to significantly enhance its performance,
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resilience, and trustworthiness. For instance, quantum consensus algorithms, such as quantum Byzantine
agreement protocols, can significantly improve blockchain system resilience against adversarial attacks,
ensuring robust and secure operations even in highly compromised environments [29–32]. Additionally,
quantum-inspired compression techniques can drastically reduce blockchain’s storage and computational
overhead, optimizing data transmission efficiency [33, 34]. However, despite their promising capabilities,
these quantum consensus algorithms and compression techniques have not yet been effectively integrated
into federated learning frameworks.

To fill this gap, we propose a quantum-enhanced blockchain federated learning framework to address
the fundamental limitations of existing blockchain-based federated learning systems. First, to tackle the
Byzantine consensus problem while providing information-theoretic security guarantees, we incorporate
a novel quantum Byzantine agreement (QBA) protocol [31]. This protocol leverages quantum crypto-
graphic techniques to improve fault tolerance from 1/3 to 1/2, significantly enhancing system security and
stability, even in adversarial environments with a high proportion of malicious nodes. Furthermore, to
mitigate the substantial communication overhead of federated learning, we introduce quantum-inspired
model compression techniques, specifically utilizing the matrix product operator (MPO) approach [33].
This technique enables efficient model compression while maintaining training accuracy, reducing both
communication costs for model uploads and downloads.

The key contributions of this work are summarized as follows.

• We introduce QBA into federated learning, enabling honest participants to reach consensus even
with up to 50% of nodes being malicious. This significantly enhances fault tolerance compared to PBFT,
which requires at least 3f + 1 nodes to tolerate f Byzantine faults.

• We employ an MPO-based compression technique, achieving over a 90% reduction in model size
while effectively reducing communication costs and maintaining training accuracy. To the best of our
knowledge, this marks the first application of MPO in federated learning.

• We develop a blockchain-enhanced federated learning framework that remains resilient against high
proportions of malicious clients while preserving model accuracy. Additionally, we incorporate post-
quantum cryptography, differential privacy, and QBA to strengthen security and privacy. Experimental
results demonstrate that even with 40% of clients being malicious, our framework maintains strong
performance.

This work is organized as follows. We provide some relevant background for this paper in Section 2.
In Section 3, we show the assumptions and threat model in our framework. The detailed framework is
shown in Section 4. The experimental results are presented in Section 5. Section 6 concludes the paper.

2 Preliminaries

2.1 Federated learning

Federated learning enables clients to collaboratively train a shared global model while preserving the
privacy of their local data. In a typical federated learning setup, a central server coordinates N clients,
each owning a local dataset Di, where i = 1, 2, . . . , N . The training process is conducted iteratively over
multiple communication rounds.

During round t, each client i downloads the global model parameters wt−1 from the central server.
The client then performs local training on its respective dataset using stochastic gradient descent (SGD),
obtaining an updated local model wi

t. The model update, defined as the difference between the new and
previous model parameters, is given by

dt
i = wi

t −wt−1. (1)

After local training, each client transmits its update dt
i back to the server. Upon receiving updates from

all participating clients, the server aggregates them using the FedAvg algorithm, formulated as

wt = wt−1 +
1

N

N∑

i=1

dt
i. (2)

This aggregation mechanism ensures that the global model is updated to reflect the collective contribu-
tions of all clients. The process repeats for multiple communication rounds until a predefined convergence
criterion is met or the maximum number of iterations is reached.
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2.2 Differential privacy

Differential privacy is a mathematical framework designed to protect data privacy while still enabling
meaningful data analysis [35]. It achieves this by introducing random noise to mask individual data
points, ensuring that the inclusion or exclusion of any single data point does not significantly affect the
results of statistical analyses. This property makes it difficult for an attacker, even with access to the
entire dataset, to infer private information about any specific user.

The privacy guarantee of differential privacy is controlled by a parameter ǫ. A smaller ǫ value cor-
responds to a higher level of added noise, thereby enhancing privacy protection at the cost of reduced
utility [36]. Formally, differential privacy is defined as follows. A randomized mechanism F : D → R is
said to be (ǫ, δ)-differentially private if, for any two neighboring datasets D,D′ ∈ D differing in at most
one sample and for any subset of outputs R ⊂ R, the following holds:

P (F (D) ∈ R) 6 eǫP (F (D′) ∈ R) + δ, (3)

where ǫ is the privacy budget, controlling the level of privacy protection, and δ represents the probability
of the condition failing. A smaller ǫ enforces stronger privacy by adding more noise but may reduce the
accuracy of data analysis. The parameter δ accounts for the probability that ǫ-differential privacy is not
strictly satisfied.

To integrate differential privacy into model training, differentially private stochastic gradient de-
scent [37, 38] modifies the standard stochastic gradient descent algorithm by incorporating privacy-
preserving mechanisms. Instead of directly averaging the gradients of a batch of samples, it first computes
per-sample gradients, clips them to a predefined threshold, aggregates them into a batch gradient, and
then adds Gaussian noise to the aggregated gradient. This process ensures that individual contributions
remain obscured, thereby safeguarding the privacy of individual data points in the training dataset.

2.3 Tensor network

For high-order tensors, the number of elements grows exponentially with increasing dimensions, leading
to the well-known “Curse of Dimensionality” [39]. Tensor networks provide a powerful computational
framework widely used in physics, particularly in quantum many-body systems [40–42], and have found
applications in fields such as machine learning [43] and computational biology [44]. These networks offer
a structured approach to representing and manipulating large, complex quantum states by decomposing
them into simpler, interconnected components called tensors.

Vectors and matrices can be regarded as special cases of tensors: a rank-0 tensor is a scalar, a rank-1
tensor is a vector, and a rank-2 tensor is a matrix. More generally, a rank-K tensor can be represented
as Ti1,i2,...,iK . Tensor networks can be visualized using diagrammatic representations, illustrating how
tensors are contracted into a single structure.

The MPO is an efficient method for factorizing a high-dimensional tensor into several smaller, localized
tensors [45]. Given a tensor M with 2n indices [I1, I2, . . . , In, J1, J2, . . . , Jn], its MPO decomposition is
expressed as

MPO(M) =
∑

d1,d2,...,dn−1

Aj1d1

i1d0
Aj2d2

i2d1
· · ·Ajndn

indn−1
, (4)

where each tensor Ajkdk

ikdk−1
is a rank-4 tensor with dimensions Dk−1 × Ik × Jk × Dk. Here, the indices

ik and jk correspond to the physical dimensions Ik and Jk, respectively, while Dk−1 and Dk represent
the bond dimensions that connect adjacent tensors. These bond dimensions, also known as MPO bond
indices [46], establish interconnections between different layers in the tensor network.

As shown in Figure 1, each tensor in the decomposition is visually represented, with connecting legs
indicating shared indices between tensors. By truncating the bond dimensions, one can obtain a low-rank
approximation of the original tensor, significantly reducing computational complexity while preserving
essential data features [33].

2.4 Quantum Byzantine agreement

The Byzantine agreement remains a fundamental challenge in distributed systems [47]. Classical Byzan-
tine consensus protocols like PBFT exhibit inherent fault-tolerance limitations. Specifically, these pro-
tocols require a minimum of 3f + 1 nodes to tolerate f Byzantine faults, rendering them inapplicable in
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Figure 1 Diagram of MPO decomposition, illustrating the process of factorizing a large tensor into a product of five rank-4

tensors. Each tensor is graphically represented as a circle with four connecting legs.

scenarios with 3 participants where one of them is malicious. Furthermore, their reliance on classical cryp-
tographic assumptions makes them vulnerable to quantum attacks. QBA overcomes these constraints by
employing quantum cryptographic techniques to enhance both security and fault tolerance. Recent stud-
ies [31,32] demonstrate that QBA can surpass the classical 1

3 fault-tolerance bound, achieving thresholds
approaching 1

2 .

QBA provides two critical improvements compared to traditional Byzantine protocols. First, it achieves
significantly higher fault tolerance through quantum digital signatures, extending the threshold to nearly
1
2 . This breakthrough ensures system consistency even when malicious nodes constitute almost half
of the network. Second, the protocol enhances security via quantum digital signatures that guarantee
anti-counterfeiting and non-repudiation properties. These features prevent message tampering or forgery
by malicious clients, substantially strengthening the consensus process’s resilience and reliability. The
complete QBA protocol specification is detailed in Appendix A.

3 System design

3.1 Model assumptions

To ensure the robustness and efficiency of our proposed federated learning system, we establish the
following assumptions.

Network structure. All clients form a fully connected network, allowing direct communication
between any two participants. Each client not only serves as a model trainer but also functions as a
blockchain node, responsible for maintaining blockchain data and actively participating in the consensus
process. We assume that all clients possess sufficient quantum resources to engage in the consensus
protocol effectively.

Clients. Participants in the federated learning framework exhibit diverse behaviors. Some clients are
classified as honest-but-curious, meaning they adhere to the federated learning protocol while potentially
attempting to infer private data. Conversely, certain clients may act maliciously, seeking to disrupt the
system by submitting incorrect model updates or launching attacks during the consensus process.

Data distribution. The data held by clients are assumed to be non-independent and non-identically
distributed (non-IID), reflecting real-world scenarios where variations arise due to differences in data
collection methods, environments, or client behaviors [48, 49]. This heterogeneity presents challenges for
model convergence, necessitating the development of robust aggregation mechanisms.

3.2 Threat model

Our federated learning system is exposed to the following primary threats.

Data leakage. Malicious clients may attempt to infer private data from other participants by ana-
lyzing model updates, potentially exposing sensitive information about their training data.
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Figure 2 (Color online) Detailed workflow of the quantum-enhanced blockchain federated learning framework for each training

round. After initialization, the system iterates through the four illustrated steps in a continuous loop until the predefined number

of training rounds is reached. Some icons used in this figure are gratefully acknowledged from www.flaticon.com.

Model attacks. Adversarial clients may seek to compromise the training process by submitting
manipulated model updates, including Bit-Flipping attacks and Label-Flipping attacks. Such adversarial
behavior can degrade the accuracy and reliability of the aggregated global model.

Consensus manipulation. During the blockchain consensus process, malicious entities may inject
false information or cast conflicting votes with the intent of disrupting consensus. These actions can
undermine the integrity of the federated learning workflow and degrade overall system performance.

Quantum threat. The emergence of quantum algorithms presents a significant threat to conventional
cryptographic systems. Encryption schemes commonly employed in blockchain-based federated learning,
such as ECDSA and RSA, are highly vulnerable to quantum attacks [50–52]. A successful quantum
attack could compromise security by enabling identity forgery and the manipulation of blockchain records,
undermining the integrity and trustworthiness of the system.

4 System model

System overview. In this section, we present the general workflow of our proposed framework. Our
protocol involves N clients, among which f may be malicious. The training process begins with the task
publisher initializing the system by releasing the learning task along with a genesis block that contains
the initial model parameters. After initialization, the system proceeds with multiple training rounds,
each comprising four key steps, as illustrated in Figure 2.

(1) Committee selection. At the beginning of each training round, a consensus committee is selected
from the participants to oversee the generation of a new block.

(2) Local training. Clients perform local training using model parameters derived from the most
recent block. Upon completing their updates, they submit their locally trained models to the consensus
committee for aggregation.

(3) Model aggregation. The leader aggregates the submitted model updates from the participants
using a predefined aggregation algorithm to generate new global model parameters.

(4) Consensus and block generation. A consensus message is disseminated among committee
members via QBA. A block that secures valid signatures from the majority of the committee members
is considered legitimate and is subsequently broadcast to all blockchain participants.

Each block in the blockchain comprises several essential components, including global model updates,
participant IDs contributing to the global model, committee member signatures, the previous block’s hash

file:www.flaticon.com.
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Algorithm 1 Stake-based committee selection algorithm.

Require: Hash of the latest block h, stake values s(i) for each client i.

Ensure: Elected committee members ‘committee’.

Client execution:

1: Sort all clients by their stake values s(i) to generate the candidate list C = {c1, c2, . . . , cM};

2: Compute the weight wi for each candidate using (5);

3: Initialize an empty committee;

4: while len(committee) < k do

5: Update the block hash: h← hash(h);

6: Generate a pseudorandom value v = h

2len(h) ∈ (0, 1];

7: for each candidate ci ∈ C do

8: if wi−1 < v 6 wi and ci /∈ committee then

9: Add ci to committee;

10: end if

11: end for

12: end while

13: return committee.

linking it to its predecessor, and the hash of the current block. This structured design ensures model
integrity and traceability throughout the training process. To mitigate quantum threats, our system
integrates post-quantum cryptographic techniques. Specifically, we employ Blake3 as the blockchain’s
hashing algorithm and Dilithium [53] for hash-based identity authentication and digital signatures, pro-
viding robust resistance against quantum attacks.

4.1 Initialization

Before training begins, the task publisher releases the genesis block along with relevant information for
model training. Each client generates its own public-private key pair for signing model updates and
broadcasts the generated public key to the network. Each pair of clients performs key agreement through
the quantum key distribution protocol to generate keys for the QBA protocol.

4.2 Committee selection

To enhance the efficiency, security, and fairness of federated learning, we propose a dynamic client role
allocation protocol. In each training round, a committee consisting of Nc clients is elected. One member
of the committee is designated as the leader, responsible for model aggregation and the generation of new
blocks. The remaining committee members participate in the consensus process, overseeing the leader’s
aggregation to ensure correctness and integrity.

The committee election process is based on the stake held by each client. As shown in Algorithm 1,
in each round, the top 2Nc clients ranked by stake are eligible for selection. If multiple clients have the
same stake and this tie results in more than 2Nc clients being eligible, all tied clients will be included
in the election process. Suppose there are a total of M clients, defined as c1, c2, . . . , cM , sorted by their
IDs. The election weight of client i in the current round is computed as

wi =

∑i
j=1 s(j)∑M
j=1 s(j)

, (5)

where s(j) represents the stake of the j-th client. The computed weight wi falls within the range [0, 1],
and we assume that w0 = 0. A hash operation is applied to the hash of the latest block to generate
a pseudorandom number v within the interval (0, 1]. The client i satisfying wi−1 < v 6 wi is selected
as the leader. This process is iteratively executed using hash operations to select additional committee
members. The first selected client will serve as the leader for this round.

During the system initialization phase, all clients begin with equal stake values. As training progresses,
the system dynamically adjusts each client’s stake based on their contributions: whenever a client’s model
is selected for global aggregation and recorded on the blockchain, their stake value increases. Since the
blockchain maintains a transparent and immutable record of each aggregation, client contributions can
be reliably tracked, eliminating the possibility of tampering or falsifying stake values. Honest clients
will gradually accumulate higher stake values as their contributions increase, thereby gaining a dominant
position in the committee.
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4.3 Local training

In this work, we propose using a compressed model based on matrix product operator decomposition to re-
duce communication costs. Consider the weight parameterw of a linear layer with input size Nin and out-
put size Nout. We first reshape w into a 2n-dimensional tensor with shape [I1, I2, . . . , In, J1, J2, . . . , Jn],
where

∏n
i=1 Ii = Nin and

∏n
i=1 Ji = Nout. By setting the MPO bond dimensions as D0 = Dn = 1

and D1 = · · · = Dn−1 = χ, we perform MPO decomposition on this tensor to obtain its compressed
representation, as shown in (4). This transformation allows the original linear layer to be replaced with
an MPO layer, significantly reducing the number of trainable parameters.

Given an input x ∈ R
Nin , we reshape it into a tensor xI1,I2,...,In with shape [I1, I2, . . . , In]. This

reshaped input is then contracted with the MPO tensor to produce an intermediate output yJ1,J2,...,Jn

of shape [J1, J2, . . . , Jn]. When compressing the linear layer into an MPO layer, the bias term is retained
due to its relatively small number of parameters. Moreover, retaining the bias can help maintain or
even improve model performance. After contraction, the bias is added to the output tensor, which is
then passed to the subsequent layers. The parameters of the compressed MPO model are trained using
standard optimization procedures via backpropagation. For convenience, let T J1,J2,...,Jn

I1,I2,...,In
(χ) denote such

an MPO layer.
The total number of trainable parameters in an MPO layer is given by

NMPO =

n−1∏

k=1

IkJkχ
2 + (I0J0 + InJn)χ+Nout. (6)

Compared to the original parameter size ofNori = (Nin+1)×Nout, this formulation enables efficient model
compression. For instance, the original LeNet-5 model contains over 60000 parameters. By compressing
the last three layers, we can obtain a reduced model with fewer than 5000 parameters, thereby significantly
lowering communication costs.

To safeguard data privacy, each client incorporates differential privacy during training. Specifically,
Gaussian noise is added to ensure (ǫ, δ)-differential privacy [54]. After completing the training process,
the client signs the updated model parameters with its private key and submits them to the consensus
committee for the current training round.

4.4 Model aggregation

The committee aggregates the model updates submitted by participating clients only after verifying their
cryptographic signatures. To evaluate the quality of each local update, we employ a comprehensive metric
that incorporates two critical factors: (1) the degree of alignment with the global update direction derived
from the previous aggregation round and (2) the level of consistency with updates contributed by other
clients in the current round [55, 56].

Suppose that in round t, the model update provided by client i is defined as dt
i. The first factor is

quantified as

v1(i) = cos(dt
i,d

t−1) =
dt
i · d

t−1

‖dt
i‖‖d

t−1‖
, (7)

which measures the alignment between the gradient update dt
i and the global update direction dt−1 from

the previous round.
For the second factor, we define

v2(i) =
∑

k→i

‖dt
i − dt

k‖, (8)

where k → i represents the set of the N − f − 1 closest model updates to i [56]. Honest model updates
typically exhibit relatively small values for this metric, indicating their consistency with other reliable
models.

The final weight of each model is determined by combining these two factors:

v(i) = ṽ1(i)− ṽ2(i), (9)
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Algorithm 2 Aggregation algorithm.

Require: Received local updates {dt
1,d

t
2, . . . ,d

t
N} at round t, fault tolerance f , stake weights s(i) for each client i, and the

previous global direction dt−1.

Ensure: Global aggregated model dt.

1: for each update d
t
i do

2: v1(i)← cos(dt
i,d

t−1) =
d
t
i
·dt−1

‖dt
i
‖‖dt−1‖

;

3: v2(i)←
∑

k→i
‖dt

i − d
t
k‖;

4: end for

5: Calculate the value of each update using (9);

6: Select S = {i | v(i) is among the largest N − f − 2};

7: Compute the aggregated model as a weighted average:

dt ←

∑
i∈S s(i)dt

i
∑

i∈S
s(i)

;

8: return dt.

where ṽ1(i) =
v1(i)−µv1

σv1
and ṽ2(i) =

v2(i)−µv2

σv2
are the normalized values of the two metrics, with

µv1 , σv1 , µv2 , σv2 denoting the means and standard deviations across all candidates.
After computing v(i) for each client’s update, we select the N − f − 2 updates with the highest

evaluation scores to form the aggregation set S. This strategy ensures that both the alignment of each
client’s update with the global direction and the consistency among client updates are considered, thereby
enhancing the model’s robustness in Byzantine settings.

As shown in Algorithm 2, the final aggregation of the selected updates is performed using a stake-based
weighted scheme. Let s(i) denote the stake of client i. The aggregated global update dt is then computed
as

dt =

∑
i∈S s(i)d

t
i∑

i∈S s(i)
. (10)

4.5 Consensus and block generation

The QBA is primarily composed of two phases: the broadcasting phase and the gathering phase. In a
committee comprising a total of Nc clients, with at most fc malicious actors, the broadcasting phase
consists of fc rounds of multicasts, during which committee members communicate multiple times using
a quantum digital signature to exchange messages. In the gathering phase, committee members analyze
the received messages to extract the consensus information intended to be broadcast by the leader or to
determine if the broadcast has failed.

The leader is responsible for generating the consensus information based on the aggregation results.
This consensus information includes the IDs of the selected clients and the hash of the aggregated update.
The leader then initiates a consensus process on this information using the QBA protocol.

As shown in Algorithm 3, committee members can verify the consensus information provided by the
leader using the updated parameters they have received. Here, we assume that all members of the
committee receive consistent model updates. If the verification is successful, the member signs the
message with their private key and broadcasts it. Conversely, if the QBA fails, the member takes no
action, effectively rejecting the current round of consensus.

Eventually, the leader collects all signatures, and if more than half of the committee members provide
valid signatures, the leader can issue a new candidate block, recording these signatures in the block.
Once all clients verify the block, they update their local model weights and proceed to the next round of
training. If a block fails to gain sufficient approval votes or if no valid block is received within a certain
timeframe, honest clients will penalize the committee members for the current round by reducing their
stake. Subsequently, a new committee will be selected, and the aggregation protocol will be reinitiated.

5 Results

5.1 Simulation setup

We implement our framework using Python 3.11, leveraging PyTorch for model training. To simulate
communication between clients, we employ gRPC. We assume that clients have prepared the necessary
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Algorithm 3 Consensus and block generation algorithm.

Require: Aggregated message ‘msg’, committee members ‘committee’, communication channel QBA.

Ensure: New block.

1: Leader executes:

2: Broadcast ‘msg’ to committee members via QBA;

3: Wait and collect signatures σi from committee members;

4: if |{σi}| >
Nc
2 then

5: Package all {σi} into a new block;

6: Broadcast the new block to all clients;

7: end if

8: Committee member executes:

9: for each committee member i do

10: Generate msgi based on Algorithm 2;

11: if msgi == msgrec then

12: σi ← Sign(msgi, i);

13: Send back σi;

14: end if

15: end for

16: Client executes:

17: for each i ∈ clients do

18: if valid signatures > Nc
2 then

19: s(j) ← s(j) + 1 for each j participating in model aggregation;

20: Accept new block;

21: else

22: s(j) ← s(j) − 1 for j in consensus committee;

23: Perform committee reconstruction;

24: end if

25: end for

keys for QBA through a quantum key distribution protocol [57, 58]. Our experiments are conducted on
an RTX 2080 Ti GPU.

Datasets. We utilize two widely recognized datasets in the field of federated learning: MNIST [59],
a benchmark dataset for handwritten digit classification, and Fashion-MNIST [60], which consists of
grayscale images of various clothing items. These datasets provide a comprehensive evaluation framework
for assessing model performance across diverse visual recognition tasks.

To evaluate model accuracy in a non-IID setting, we simulate a scenario involving 50 clients by parti-
tioning the data according to the methodology outlined in LotteryFL [61]. Each client is assigned data
from all 10 classes, with 100 samples per class. The data is distributed in an unbalanced manner, main-
taining an imbalance degree of 0.75. This partitioning strategy effectively captures realistic heterogeneity,
closely resembling the conditions found in practical federated learning environments.

Models. To evaluate the generalizability and performance of our framework, we utilize two distinct
model architectures. For the MNIST dataset, we use a fully connected neural network (FCNN), which
is a simple two-layer architecture with a hidden layer containing 256 neurons. In contrast, for the
Fashion-MNIST dataset, we adopt a more complex convolutional neural network (CNN) architecture
that comprises two convolutional layers followed by three fully connected layers.

Malicious behavior. During the training process, malicious clients may engage in one of the following
types of adversarial behavior.

• Label-Flipping attack. This attack involves intentionally altering the labels of training sam-
ples. Specifically, in the MNIST and Fashion-MNIST datasets, samples originally labeled as class i are
maliciously reassigned to class 9− i.

• Bit-Flipping attack. In this attack, clients upload gradients with inverted signs, thereby trans-
mitting updates that are deliberately opposed to the direction of correct gradient descent.

• Gaussian attack. Malicious clients add stochastic perturbations to their gradient updates by
injecting Gaussian noise. In this study, the noise is sampled from a normal distribution with zero mean
and a standard deviation of 0.1.

Additionally, malicious clients may target the consensus phase of model aggregation by casting opposing
votes or generating incorrect aggregation results if they are selected as committee members or leaders.

5.2 Evaluation results

Compression efficiency. In this section, we evaluate the impact of the proposed model compression
technique on test accuracy. We apply the MPO structure to compress the fully connected layers of the
two models mentioned earlier, as these layers typically account for the majority of the model parameters.
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Table 1 Detailed information on MPO-based model compression.

Model Original layer Nori MPO layer NMPO
Compression ratio

η = NMPO/Nori (%)

FCNN
Linear(784, 256) 200960 T 4,4,4,4

4,7,7,4 (8) 4096 2.0

Linear(256, 10) 2570 T 1,1,10,1
4,4,4,4 (4) 746 29.0

CNN

Linear(400, 120) 48120 T 2,2,5,3,2
2,2,5,10,2(4) 1096 2.3

Linear(120, 84) 10164 T 1,2,3,7,2
2,2,5,3,2 (4) 748 7.4

Linear(84, 10) 850 T 1,1,2,5,1
1,2,3,7,2 (2) 188 22.1

Table 2 Accuracy (%) comparison of two models in different settings.

Dataset Scenario Original MPO

MNIST
Centralized 98.15 97.92

Distributed 97.87 97.47

Fashion-MNIST
Centralized 89.20 88.92

Distributed 89.18 88.55

Since the convolutional layers have relatively fewer parameters, we retain the original convolutional layers
in the CNN model. Table 1 presents the compression results for the fully connected layers across different
model architectures. Here, the compression ratio is defined as the number of parameters in the compressed
MPO layer divided by the number of parameters in the original uncompressed layer. For example, in the
FCNN model, a linear layer of size [784, 256] is replaced by an MPO layer, T 4,4,4,4

4,7,7,4 (8), which contains
only 4096 parameters, achieving a compression ratio of 2.0%. Similarly, in the CNN model, the largest
linear layer is compressed into an MPO layer T 2,2,5,3,2

2,2,5,10,2(4), achieving a compression ratio of 2.3%. Overall,
the MPO structure reduces the total number of model parameters by 97.6% for the FCNN model and
92.5% for the CNN model, significantly decreasing the communication overhead among clients. The
MPO framework also allows flexible tuning of the MPO layer parameters based on specific requirements,
enabling a balance between compression efficiency and model accuracy. For large convolutional layers,
MPO layers can be directly applied to replace them, or alternative tensor network methods can be used
for parameter compression [62].

Table 2 compares the performance of the original and MPO-compressed models on the MNIST and
Fashion-MNIST datasets under both centralized and distributed training scenarios. Despite the signifi-
cant reduction in model parameters, the MPO-compressed models demonstrate only a slight decrease in
accuracy. In the centralized scenario, the compressed model achieves an accuracy of 97.92% on MNIST,
compared to 98.15% for the original model, reflecting a decrease of just 0.23%. A similar trend is ob-
served for the Fashion-MNIST dataset, where the MPO-compressed model attains an accuracy of 88.92%,
slightly lower than the 89.20% achieved by the original model. Under the distributed scenario, where the
data distribution is non-IID across 50 clients, the performance of the MPO-compressed models remains
competitive. For MNIST, the compressed model achieves an accuracy of 97.47%, only 0.40% lower than
the original model. Similarly, on Fashion-MNIST, the compressed model attains an accuracy of 88.55%,
reflecting a decrease of 0.63% compared to the original model. These results highlight the potential of
MPO-based tensor networks as an effective compression technique for federated learning frameworks. By
reducing communication burdens and computational costs, MPO compression facilitates the deployment
of resource-efficient machine learning models on edge devices while maintaining high levels of accuracy.

Byzantine robustness. To evaluate the robustness of our model against Byzantine attacks, we test
its accuracy under varying proportions of malicious clients. Specifically, the experiment involves a total
of 50 clients, with the number of malicious clients gradually increasing from 10 to 20. The data allocated
to each client is non-IID, and the configuration is consistent with that of the previous experiment.

We set the learning rate to 0.05 for the MNIST dataset and 0.02 for the Fashion-MNIST dataset. The
optimizer used is SGD with a momentum of 0.9 and a weight decay of 1 × 10−4. The batch size is set
to 50. Each client trains for 1 epoch per round, with a total of 200 communication rounds for MNIST
and 300 rounds for Fashion-MNIST. We compare our proposed method with several commonly used
Byzantine-robust algorithms, including FedAvg, Trimmed-Mean, Median, and Krum. In all experiments,
the compressed model based on the MPO is utilized. Notably, differential privacy mechanisms are not
introduced during training to isolate and analyze the robustness of the compressed model under different
attack scenarios.
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Table 3 Average test accuracy (%) of the model under varying proportions of malicious clients. Compared to all other Byzantine-

resilient algorithms, our model demonstrates the highest accuracy across both datasets. The best results are in bold.

Dataset Method

Label-Flipping attack Bit-Flipping attack Gaussian attack

Malicious number Malicious number Malicious number

10 15 20 10 15 20 10 15 20

MNIST

FedAvg 88.09 76.67 58.57 95.60 92.94 75.25 95.60 92.73 92.42

Trimmed-Mean 95.54 87.64 78.67 96.08 93.41 80.90 97.05 96.72 95.77

Median 96.34 96.48 90.11 95.98 93.78 84.67 96.90 96.73 96.72

Krum 78.60 82.72 88.72 73.35 85.26 78.70 78.58 79.96 81.15

This work 97.21 96.79 96.52 96.44 95.16 94.84 97.26 97.39 96.74

Fashion-MNIST

FedAvg 80.59 64.56 52.32 84.18 78.69 62.13 83.00 80.21 73.78

Trimmed-Mean 84.76 78.80 58.01 84.67 81.03 73.87 87.19 77.33 61.18

Median 86.52 84.78 81.92 84.44 81.34 74.62 87.30 86.21 86.70

Krum 76.78 77.67 73.85 68.52 64.83 70.11 76.25 76.38 77.17

This work 86.65 86.61 86.46 85.62 84.51 83.99 87.22 86.83 86.94

Figure 3 (Color online) Accuracy curves over the last 30 rounds under a 30% label-flipping attack for different methods:

(a) MNIST; (b) Fashion MNIST. Our method demonstrates superior stability and robustness compared to the baselines.

As shown in Table 3, our proposed model demonstrates strong robustness against various types of
adversarial attacks, as reflected by the average accuracy over the final 20 training rounds. Even when
the proportion of malicious clients is relatively high, our approach consistently maintains high accuracy,
significantly outperforming existing aggregation methods. Under Label-Flipping and Gaussian attacks,
the model’s accuracy declines by less than one percentage point as the number of malicious clients
increases. Even under the more severe Bit-Flipping attack, the accuracy is reduced by only approximately
two percentage points, further highlighting the robustness of our approach. In contrast, conventional
approaches such as FedAvg, Median, and Trimmed-Mean perform reasonably well when the number of
malicious clients is low but suffer a substantial decline in accuracy as the number of adversaries increases,
with some methods even failing entirely under certain attack scenarios.

Figure 3 illustrates the performance of various aggregation methods over the final 30 training rounds
under a Label-Flipping attack launched by 15 malicious clients. It can be observed that our proposed
method demonstrates stable and superior robustness on both MNIST and Fashion-MNIST, maintaining
high and consistent accuracy throughout the last 30 rounds. In contrast, FedAvg and Trimmed Mean
exhibit significant instability under attack, with multiple sharp drops in accuracy. Although the Krum
method remains stable, its overall accuracy is relatively low, indicating a substantial performance trade-
off under high attack rates. The Median method shows moderate performance on both datasets but still
falls short of ours in terms of stability and effectiveness.

Experimental results demonstrate that our method experiences only minimal accuracy degradation
across all attack scenarios on both the MNIST and Fashion-MNIST datasets. By jointly considering
two key factors the alignment between a client update and the previous global update, as well as the
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Figure 4 (Color online) Performance of the global model under differential privacy is evaluated by adding Gaussian noise during

the training process to ensure privacy preservation. Our framework demonstrates strong accuracy and convergence across different

proportions of malicious clients. (a) Accuracy training curves for the MNIST dataset; (b) corresponding results for the Fashion-

MNIST dataset. Both highlight the model’s robustness and effectiveness in maintaining high performance under varying levels of

malicious interference.

consistency among clients our model effectively mitigates the influence of malicious actors through a
stake-based weighted aggregation mechanism. This approach significantly enhances its ability to identify
and counteract adversarial behavior.

Accuracy under differential privacy. To evaluate the robustness and convergence properties of
our proposed model under differential privacy, we systematically analyze its performance with varying
proportions of malicious clients. In each training round, Gaussian noise satisfying (ε = 4, δ = 10−5)-
differential privacy is added to protect the uploaded data. Malicious clients randomly select an attack
strategy in each round, simulating diverse real-world adversarial scenarios. Additionally, to further assess
the model’s resilience to interference in distributed environments, malicious clients engage in adversarial
behaviors during the consensus phase. As illustrated in Figure 4, the experimental results demonstrate
that the model maintains strong convergence and robustness across different datasets, even in the pres-
ence of a high proportion of malicious clients. By introducing noise, client data privacy is effectively
safeguarded. Despite increasing numbers of malicious clients and intensified differential privacy noise,
the model consistently achieves high accuracy, validating the effectiveness of our approach in balancing
privacy protection and model performance.

On the MNIST dataset, in the absence of malicious clients, the model attains a final accuracy of
95.59% after 200 training rounds. When the proportion of malicious clients increases to 40%, the final
accuracy slightly decreases to 93.20%. A closer examination of the training process reveals that while a
higher proportion of malicious clients marginally slows down convergence, the overall accuracy remains
stable. Similarly, on the Fashion-MNIST dataset, the model demonstrates robust performance, achieving
86.96% accuracy in the absence of malicious clients and maintaining an accuracy of 83.68% even with
40% adversarial participants. Notably, across all scenarios, the model exhibits a consistent upward
trend in accuracy during the initial training phase, followed by gradual convergence in later stages.
The introduction of DP noise ensures a strong balance between data privacy protection and model
performance, further demonstrating the model’s ability to withstand complex attacks in distributed
environments.

Time needed for consensus. In our protocol, the consensus message generated by the leader in
each round comprises two key components: the hash of the aggregated model and the IDs of clients
participating in the aggregation. The total size of this information is approximately 500 bits. The time
required for each round of QBA depends on multiple factors, including message length, committee size,
and the number of multicast rounds in the protocol.

To evaluate the efficiency and scalability of our approach, we measure the time required to complete
a single round of QBA. Specifically, we conduct experiments to assess the average consensus time for
message lengths of 500 and 1000 bits under different committee configurations, providing insights into
the protocol’s performance under varying conditions.



Liu H-W, et al. Sci China Inf Sci August 2025, Vol. 68, Iss. 8, 180503:13

Figure 5 (Color online) Time consumption of QBA under different committee sizes. The horizontal axis represents the size of

the consensus committee and the number of multicast rounds. The vertical axis indicates the average time required to complete a

single QBA consensus instance.

As illustrated in Figure 5, the average time required to reach Byzantine consensus increases significantly
with system size. For instance, with 5 clients and 2 malicious actors, the protocol requires an average
of 0.51 s for a 500-bit message and 0.87 s for a 1000-bit message. However, as the system scales to
9 clients and 4 malicious participants, the consensus time rises sharply to 123.87 s for a 500-bit message
and 220.86 s for a 1000-bit message. These results highlight the scalability challenges associated with
the increased communication and computational complexity in quantum protocols. While the protocol
remains efficient for smaller system sizes, the exponential growth in required quantum communication
significantly extends the time needed to reach consensus in larger settings, a limitation we leave for future
work to address.

6 Conclusion

In this work, we propose a quantum-enhanced blockchain federated learning framework that integrates
a stake-based Byzantine-robust aggregation algorithm with the quantum Byzantine agreement protocol.
This integration enables a federated learning system with high fault tolerance, maintaining high accu-
racy even in the presence of up to 40% malicious clients. Additionally, we employ a quantum-inspired
tensor network structure to compress the model using matrix product operators, significantly reducing
communication and computational costs. Experimental results demonstrate that our protocol is well-
suited for distributed learning scenarios that involve adversarial clients and stringent privacy protection
requirements.

However, our findings indicate that in multi-client scenarios, the quantum Byzantine agreement pro-
tocol incurs substantial computational overhead. This trade-off between efficiency and system scalabil-
ity offers valuable insights into the limitations of quantum Byzantine agreement protocol in practical
distributed systems and underscores the need for further optimization to enhance its applicability in
large-scale deployments.
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Appendix A Quantum Byzantine agreement

In this section, we present the brief procedure of the quantum Byzantine agreement [31]. First, we present the protocol

process of the three-party quantum digital signature, followed by an overview of the quantum Byzantine agreement protocol.

Appendix A.1 Quantum digital signature

Quantum digital signature (QDS)1)2)3) achieves its quantum advantage by utilizing a highly secure method based on

principles of quantum mechanics, providing robust authentication resistant to quantum attacks. The QDS protocol typically

involves three parties: the signer (Alice), the receiver (Bob), and the verifier (Charlie). In this protocol, Alice signs an

m-bit document denoted as Doc, which Bob receives, and Charlie verifies to ensure its authenticity and integrity. The QDS

process follows several crucial steps to secure the message and prevent both forgery and repudiation.

Pre-distribution state. Alice, Bob, and Charlie generate and share asymmetric quantum keys to ensure secure

communication. They each have two key bit strings {Xa, Xb, Xc} with n bits and {Ya, Yb, Yc} with 2n bits, where Xa =

Xb ⊕Xc and Ya = Yb ⊕ Yc, respectively.

Signing by Alice. Alice uses a quantum random number generator to produce a unique n-bit sequence pa, where the

polynomial representation of this sequence is an irreducible polynomial. She then uses the bit string Xa and pa to generate

a random linear feedback shift register-based Toeplitz matrix Hnm
4). Next, she computes an n-bit hash value of the m-bit

document by calculating Hash = Hnm · Doc. Following this, she constructs the 2n-bit digest Dig = (Hash‖pa) using the

hash value and the irreducible polynomial. Finally, she masks the digest with the bit string Ya to create the signature:

Sig = Dig⊕ Ya, and sends the message {Sig,Doc} to Bob.

Verification by Bob. Bob sends the received message {Sig,Doc} along with his message bits {Xb, Yb} to Charlie.

Charlie then sends his key bit strings Xc, Yc back to Bob. Bob can reconstruct the keys that Alice owns using KXb
= Xb⊕Xc

and KYb
= Yb⊕Yc. Bob utilizes KYb

to obtain the digest message received from Alice. Using pa, KXb
, and Doc, he repeats

the operations that Alice performed to obtain a 2n-bit actual digest. If the two digests match, he informs Charlie of the

result; if not, he rejects the signature and aborts the protocol.

Verification by Charlie. If Bob announces his acceptance of the result, Charlie initiates the verification procedure.

Similar to Bob, she reconstructs the key bit strings using KXc
= Xb ⊕Xc and KYc

= Yb ⊕ Yc. Charlie then uses the keys

she received to reconstruct the digest and checks if it matches the digest sent from Bob. If the two digests are identical,

she accepts the signature.

Appendix A.2 Procedure of the quantum Byzantine agreement

The quantum Byzantine agreement mainly consists of two phases. The first phase is the broadcasting phase, where messages

are passed among the clients through QDS. The second phase is the gathering phase, where committee members collect the

messages received and derive the consensus message. Suppose there are N total members in the committee and f represents

the number of malicious clients.

Broadcasting phase. The broadcasting phase consists of f rounds of multicast, corresponding to the number of

malicious members. In the first multicast round, the leader acts as primary, and sequentially selects committee members

i and j to act as forwarder and verifier, respectively, performing three-party QDS operations. During this round, a total
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2023, 10: nwac228.
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3) Cao X Y, Li B H, Wang Y, et al. Experimental quantum e-commerce. Sci Adv, 2024, 10: eadk3258.
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N−1 QDS operations are performed. If the signature protocol is successfully verified, the forwarder and verifier record

the received information from the primary.

In subsequent multicast rounds, each forwarder initiates its own multicast process, acting as the primary node and

conducting QDS operations with those nodes that have not acted as primary in the message propagation path to propagate

the message received from the primary node in the previous round. During this phase, the forwarder performs a consistency

check to verify that the message received from the current primary matches the message received from the primary at the

previous depth d− 1. This iterative process continues for f rounds.

To achieve a higher fault tolerance limit, our protocol requires an increased number of three-party QDS operations.

Specifically, for a system with N clients and f malicious clients, the total number of QDS operations is given by

NQDS =

f−1∑

m=0

A2+m
N−1, (A1)

where Ab
a = a!

(a−b)!
represents the number of b-permutations of a. This approach ensures robust consensus even in the

presence of up to f malicious clients.

Gathering phase. The gathering phase begins once the broadcasting phase is complete. The derivation of messages is

performed in reverse order. Assume that in the last multicast round, client j receives a list of messages from the primary

path

jp1 → jp2 → · · · → jpf ,

defined as Ljp1 ,...,jpf
. The consensus message for this round is computed using the majority function:

mjp1 ,...,jpf
= majority(Ljp1 ,...,jpf

), (A2)

where the majority function selects the content that appears most frequently in the list.

For client j, different primary sequences may result in different messages. Here, we consider sequences where the first

f − 1 primary nodes are identical. In the f -th round, node j receives a series of messages from different primaries, denoted

as mjp1 ,...,jk , where jk iterates over all nodes satisfying jk 6= j and jk /∈ {jp1 , jp2 , . . . , jpf−1}. Additionally, client j records

the message he sends when acting as the primary in the f round as mjp1 ,...,jpf−1
,j . These messages form the list:

Ljp1 ,...,jpf−1
= {mjp1 ,...,jpf−1

,jk | jk ∈ J \ {jp1 , . . . , jpf−1} }, (A3)

where J represents the set of all committee members.

This process is applied recursively until a final list Ljp1
is obtained. The final QBA message is then determined by

m = majority(Ljp1
). (A4)
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