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Abstract Incompatibility is a fundamental feature of the quantum world, with the incompatibility of observables famously

captured by the Heisenberg uncertainty principle. As a matter of fact, the quantum channel incompatibility (QCI) renders a

more valuable insight and wider scope into the incompatibility, in the light that the incompatibility essentially originates from

the disturbance of the eigenstates imposed by a quantum channel. However, characterizing QCI remains challenging since it

is intractable to apply two channels in alternative orders simultaneously on the same quantum system. A recent theoretical

proposal [Phys. Rev. Lett. 130, 170201 (2023)] introduced a general definition of QCI based on measurement processes

and showed that a quantum switch (QS), an implementation of indefinite causal order (ICO), can enable direct estimation

of QCI. The quantum switch, already known for its applications in quantum communication, metrology, and quantum

thermodynamics, offers a powerful tool for probing such process-level incompatibilities. In this work, we experimentally

measure the incompatibility of several quantum noise channels, including depolarizing, bit-flip, and phase-flip channels,

using a Sagnac-type quantum switch. Furthermore, we demonstrate that estimating QCI via ICO provides substantial

improvements in resource efficiency over traditional process tomography approaches. Our results demonstrate that the

quantum switch not only offers quantum advantages in information processing but also serves as a versatile platform for

investigating fundamental aspects of quantum mechanics.
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1 Introduction

Observables form the foundation of physics, and in quantum mechanics, the concept of incompatible ob-
servables plays a fundamental role. The inability to precisely measure certain observables simultaneously
is a defining feature that sets quantum mechanics apart from classical physics. This so-called incompati-
bility underpins essential quantum phenomena, including complementarity [1], quantum nonlocality [2–4],
and contextuality [5–7]. Beyond its foundational significance, incompatibility is also a crucial resource
in quantum information science, influencing applications such as quantum cryptography and quantum
metrology. At the heart of observable incompatibility lies the non-commutativity of quantum opera-
tors (Â and B̂), expressed as [Â, B̂] 6= 0. This algebraic structure enforces the Heisenberg uncertainty
principle [8], which places a lower bound on the measurement precision of two noncommuting observ-
ables that σ(A)σ(B) > ~

2 〈[Â, B̂]〉, where σ represents the standard deviation. This principle quantifies
the fundamental limitation in simultaneously measuring two observables. Later, in an effort to account
for measurement-induced disturbance, rigorous and general theoretical treatments of quantum measure-
ments revealed the limitations of Heisenberg’s original relation. As a result, a new, universally valid
uncertainty relation was derived [9–12], which refines the uncertainty principle by incorporating both the
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measurement error and the corresponding disturbance. While the incompatibility of observables primar-
ily concerns changes in expectation values, specifically, the changes in the projection probabilities. These
changes ultimately originate from deeper structural transformations—the disturbance of the system’s
eigenstates after passing a quantum channel. In this sense, quantum channel incompatibility (QCI) rep-
resents a more fundamental layer of quantum incompatibility, serving as the underlying source from which
observable incompatibility emerges. Various theoretical measures for the incompatibility of channels have
been proposed, including robustness to noise [13–16] and the influence of incompatible channels in spe-
cific quantum tasks or processes [17–19]. Although previous studies have significantly advanced the study
of incompatibility, they still face two main limitations. First, they often involve complex optimization
procedures [13–21], which are difficult to implement in practical experimental settings. Second, due to
the fundamental impossibility of applying two quantum channels simultaneously to the same system and
directly observing their mutual disturbance, there exists no straightforward method to directly quantify
the incompatibility of quantum channels [22–27]. A promising solution to this problem emerges from
the framework of indefinite causal order (ICO). This structure enables a form of superposition of causal
orders, offering advantages in computational complexity and information processing [28–33]. Based on
this idea, Gao et al. [34] proposed a method to estimate QCI by leveraging the quantum switch. Their
approach allows for the simultaneous evaluation of how one channel A affects an observable B̂ and how
another channel B affects an observable Â. This method extends beyond unitary channels and can be
applied to general quantum processes, including the quantum noise channels. In this study, we first give
an introduction to the incompatibility of quantum channels and then present an experimental demonstra-
tion of direct QCI estimation using the quantum switch. We apply this method to fundamental quantum
noise channels, such as depolarization, bit-flip, and phase-flip channels, providing a practical approach to
assessing incompatibility without relying on indirect statistical reconstructions. Furthermore, we demon-
strate that, compared to process tomography, our ICO-based method provides a more efficient and direct
means of probing QCI. Our implementation is based on a Sagnac-type quantum switch, which ensures
high coherence and spatial mode stability, allowing for precise measurements.

2 Review of indefinite causal order

In quantum information science, the standard circuit model is characterized by the assumption that quan-
tum gates are applied in a fixed sequence. In contrast, the concept of ICO introduces a different paradigm
in which the order of quantum operations is not predetermined. This novel approach enables quantum
systems to exhibit advantages over classical and even conventional quantum circuits. Specifically, it fa-
cilitates an exponential reduction in communication complexity [35], achieves a super-Heisenberg limit
in metrology [36], and enhances refrigeration cycles [37].

The notion of indefinite causal order was first introduced through the quantum switch [28, 29], as
defined by

QS(|ψ〉 ⊗ |+〉) = 1√
2

(

BA|ψ〉|0〉+AB|ψ〉|1〉
)

=eiφAB|ψ〉 ⊗ 1√
2
(eiφ|0〉+ e−iφ|1〉)

=eiφAB|ψ〉 ⊗ (cosφ|+〉+ i sinφ|−〉),

(1)

where A and B are unitary operations satisfying AB = e−2iφBA. Here, QS(·) represents the quantum
switch, |ψ〉 is the input state, and the control qubit is prepared in the superposition state |+〉 = 1√

2
(|0〉+

|1〉). Measuring the control qubit in the basis of {|+〉, |−〉} allows one to determine whether the unitaries
commute (φ = 0) or anti-commute (φ = π/2). The quantum switch can be generalized to non-unitary
quantum channels [38]. Suppose the input state ρ has dimension d, and the quantum channels A,B :

Hd → Hd are described by their Kraus representations A(·) =
∑

iAi(·)A†
i and B(·) =

∑

j Bj(·)B†
j with

constraints of
∑

iA
†
iAi = I and

∑

j B
†
jBj = I. For a control qubit initialized as ω = |+〉〈+|, the output

state after the quantum switch is given by

QS(ρ⊗ ω) =
(

B ◦ A⊗ |0〉〈0|+A ◦ B ⊗ |1〉〈1|
)

(ρ⊗ ω). (2)
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Here, A ◦ B(·) = A(B(·)). Using the Kraus decomposition, this expression can be rewritten as

QS(ρ⊗ ω) =
1

4

∑

ij

(

{Ai, Bj}ρ{Ai, Bj}† ⊗ ω + {Ai, Bj}ρ[Ai, Bj ]
† ⊗ ωZ

+ [Ai, Bj]ρ{Ai, Bj}† ⊗ Zω + [Ai, Bj ]ρ[Ai, Bj ]
† ⊗ ZωZ

)

.

(3)

Here Z = |0〉〈0| − |1〉〈1| is the Pauli Z operator, and [A,B] = AB −BA, {A,B} = AB +BA. Notably,
when all Kraus operators of A and B commute, the ZωZ term vanishes, indicating perfect compatibility
between the channels.

3 Incompatibility of quantum channels

Suppose we have two observables, Â and B̂, each composed of eigenvalues and eigenspaces: Â =
∑

i aiAi, B̂ =
∑

j bjBj . Here, ai and bj are eigenvalues, while Ai and Bj represent the corresponding
projection spaces. If the projection spaces satisfy rank(Ai) = 1, then Ai = |ai〉〈ai|, and the measurement
is a projective measurement. The same applies to B̂. Each observable corresponds to a measurement
process. For projective measurements of Â and B̂, the measurement processes on an input state ρ are
given by A(ρ) =

∑

i〈ai|ρ|ai〉|ai〉〈ai| and B(ρ) = ∑

j〈bj |ρ|bj〉|bj〉〈bj |.
More generally, for the cases with rank(Ai) > 1 and rank(Bj) > 1, the measurement processes for Â

and B̂ can be expressed as
{

A(ρ) =
∑

iAiρA
†
i ,

B(ρ) =
∑

j BjρB
†
j .

(4)

These measurement processes satisfy the Kraus representation of a general quantum channel. Hereafter,
we will not distinguish the measurement process A and the general quantum channel A.

If the two processes commute with each other, each pair of Kraus operators must also commute, i.e.,
[A,B] = 0 ⇒ [Ai, Bj ] = 0, ∀i, j. Any two of the Kraus operators that are not commuting indicate the
incompatibility between these two quantum channels. To quantify the incompatibility, we focus on how
much the state remains within the original subspace, as characterized by the overlap between the states
before and after the channel.

Now, consider that the system is initially in an eigenstate of Â, defined as |αi〉, selected uniformly at
random from the ith eigenspace. The index i follows the probability distribution pi := dA,i/d, where dA,i

is the dimension of the eigenspace and d is the dimension of the entire space. The system then undergoes
a measurement process associated with B̂. Given an outcome j, the probability is pb(j) = 〈αi|Bj |αi〉, and
the system collapses into the state Bj |αi〉/‖Bj|αi〉‖. Averaging over all outcomes, the post-measurement
system state becomes

∑

j

pb(j)
Bj |αi〉〈αi|Bj

‖Bj |αi〉‖2
. (5)

With the definition of the quantum channel B(ρ) := ∑

j BjρBj , the corresponding state can be rewritten

as B(|αi〉〈αi|). Finally, performing a measurement of Â, the probability of obtaining outcome i is given
by Tr[AiB(|αi〉〈αi|)]. Averaging over all possible initial states, the probability that the system remains
in the original eigenspace is

Prob(Â,B) :=
∑

i

pi

∫

πi(dαi)Tr[AiB(|αi〉〈αi|)]

=
1

d

∑

ij

Tr[AiBjAiBj ].
(6)

Here, πi(dαi) represents the uniform probability distribution over pure states in the ith subspace. The
initial system state is given by ρ =

∑

i pi
∫

πi(dαi)|αi〉〈αi|.
It can be proven that this probability is symmetric,

Prob(Â,B) = Prob(A, B̂). (7)
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Based on this, Ref. [34] introduces a measure of QCI defined as QCI(A,B) :=

√

1− Prob(Â,B) =
√

1− Prob(B̂,A), i.e.,

QCI(A,B) =
√

1− 1

d

∑

ij

Tr[AiBjAiBj ]. (8)

This definition extends naturally from the measurement processes for observables Â and B̂ to general
quantum channels A and B through their Kraus representations.

Such measure satisfies several key properties [34]: (1) symmetry, i.e., QCI(A,B) = QCI(B,A); (2) non-
negativity, i.e., QCI(A,B) > 0; (3) it is a a metric on von Neumann measurements; (4) it is maximal for
maximally complementary measurement, such as mutually unbiased bases.

However, in an experimental setting, directly obtaining Prob(Â,B) is challenging, as the eigenspaces
{Ai} and {Bj} may be unknown. Similarly, measuring QCI(A,B) directly is infeasible due to the non-
symmetric ordering in Tr[AiBjAiBj ].

Nevertheless, if these two processes occur within a quantum switch, the two possible orderings, B(A(ρ))
andA(B(ρ)), take place simultaneously on the input state ρ. According to (3), the probability of obtaining
an outcome projecting the control qubit onto |−〉 is given by the ZωZ term, i.e.,

p− =
1

4

∑

ij

Tr
(

ρ
∣

∣[Ai, Bj ]
∣

∣

2)
, (9)

where
∣

∣[Ai, Bj]
∣

∣

2
= [Ai, Bj ]

†[Ai, Bj ]. When the two processes are nearly identical, the ‘−’ state also
corresponds to the dark port, where destructive interference occurs.

A key observation is that, for an input state ρ = 1
d
I, the QCI can be directly inferred from the

measurement of the control qubit as
QCI(A,B) =

√

2p−. (10)

This result highlights an important application of the quantum switch: beyond demonstrating compu-
tational advantages for unitary quantum channels, control qubit measurements also provide a practical
method for characterizing the QCI.

From a statistical perspective, using indefinite causal order to estimate QCI offers significant advantages
in scalability. This is because QCI can be directly extracted from the measurement statistics of the control
qubit. Specifically, if let p̂− denote the empirical estimate of the control qubit probability, it follows a
binomial distribution. By applying Hoeffding’s inequality, we find that to ensure the estimated probability
deviates from the true value by no more than ǫ with confidence at least 1 − δ, the required number of
experimental shots satisfies

n > − 1

2ǫ
log

δ

2
. (11)

Notably, Eq. (11) reveals that the required sample size is independent of the system’s Hilbert space
dimension d, making this approach especially advantageous for high-dimensional systems. Furthermore,
we show that even in the simplest case with d = 2, the ICO-based method outperforms indirect approaches
such as full process tomography in terms of efficiency and accuracy for estimating QCI.

4 Experimental setup

The experimental setup used for measuring the QCI is illustrated in Figure 1. Single photons are generated
via spontaneous parametric down-conversion (SPDC) in a periodically poled KTP (ppKTP) crystal. The
SPDC process produces a pair of entangled photons, one signal photon, and one idler photon. The
signal photon is sent directly to a single-photon detector (SPD) for detection, while the idler photon
travels through the experimental setup via fiber optics. Initially, the idler photon passes through a fiber
circulator and is then injected into a 2 × 2 fiber beam splitter (FBS). This FBS applies a Hadamard
operation on the path degree of freedom (DOF), which is essential for preparing the state of the system.
Specifically, the Hadamard operation on the path DOF of the idler photon creates an equal superposition
of the control qubit (C) states, |0〉C and |1〉C . The state is then described as

|φ〉T ⊗ 1√
2
(|0〉C + |1〉C), (12)
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Figure 1 (Color online) Experimental setup. Single photons are generated via type-II spontaneous parametric down-conversion

(SPDC) using a periodically poled KTP (ppKTP) crystal, as highlighted by the blue region. This crystal, pumped by a laser

at a wavelength of λp = 404 nm, produced photon pairs with a wavelength of λs = λi = 808 nm. The pump beam and the

down-converted photons are separated by using a dual-wavelength polarizing beam splitter (DPBS) and a dichroic mirror (DM).

The signal photon heralds the idler photon, which propagates through the quantum switch. Photon detection is performed by using

single-photon detectors (SPDs). The idler photon successively passes through a circulator, a fiber beam splitter (FBS), and two

reciprocal unitaries (highlighted by the green region). The output ports of FBS in the backward direction are connected to two

SPDs, while the photons exiting through the outputs overlapping with the input port are separated by the fiber circulator.

where the target qubit (T ) corresponds to the polarization DOF of the photon, and |φ〉T denotes the
polarization state. After the initial superposition state is prepared, the photon enters a free-space optical
loop containing polarization devices that implement two reciprocal unitary operations (which will be
detailed in the Supplementary File), labeled A and B. The polarization devices were placed between
two couplers. As the photon traverses the loop, it undergoes both sequences AB and BA in a coherent
superposition, effectively correlating the operation order with the control qubit state. After passing
through the polarization devices, the photon returns to the FBS, where resulting states at two outputs
are given by

|Φ+〉 =
1

2
(AB +BA) |φT 〉 ,

|Φ−〉 =
1

2
(AB −BA) |φT 〉 .

(13)

These two output states correspond to the constructive and destructive interference patterns arising from
the commutation or anti-commutation of the operations A and B. Their respective probabilities are
measured by SPDs connected to the output ports of the FBS, allowing for the evaluation of the QCI.

5 Experimental results

In this section, we analyze the behavior of QCI under various quantum channels, specifically focusing on
depolarizing, bit-flip, and phase-flip channels, as well as unitary operations such as the Pauli operators
X , Y , Z, and the identity I. The QCI for two unknown observables can be directly estimated from
experimental data, in particular from the probability distribution of the ‘−’ outcome. Prior to performing
the QCI measurement tasks, our experimental setup achieved high interferometric visibility, exceeding
0.9972. At the end of this section, we present a comparative analysis between our proposed scheme and
the conventional process tomography approach. The results clearly demonstrate that our method offers
substantial advantages in resource efficiency, achieving comparable accuracy in QCI estimation while
requiring significantly fewer photons.
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Figure 2 (Color online) Probabilities of photon detection at the commutator and anti-commutator ports of the quantum switch

for each pair of unitary operators (A,B) from the set {X, Y,Z, I}. Theoretical probabilities take values p ∈ {0, 1}, while the

experimentally observed probabilities are shown as bars in the figure. The x-axis labels indicate the specific pair of unitary

operators (A,B). Green bars represent the probability of detecting output ‘+’ from the FBS, and yellow bars represent the

probability of detecting output ‘−’.

5.1 Both channels are unitary channels

To certify that our experimental platform is capable of realizing indefinite causal order in the Sagnac
configuration, we first analyze the behavior of QCI when both channels are unitary operations. We select
A and B such that each represents one of the Pauli operators, i.e., {A,B} ∈ {X,Y, Z, I}. According
to (1), we can determine whether the gates (A,B) commute or anti-commute for several different input
states by measuring the photon’s exit port. We then analyze the probability distribution of photon
counts at the two output ports of the FBS. The corresponding results are shown in Figure 2. If the
gates commute, the photon is ideally expected to exit port ‘−’ of the FBS, while if they anti-commute, it
should exit port ‘+’. The average success rate (i.e., the probability of the photon exiting the theoretically
correct port) across all tested operator pairs is 0.981± 0.016.

5.2 Both channels are noise channels

We now analyze the behavior of QCI when both channels are noisy. We consider three types of noise
channels: depolarizing, bit-flip, and phase-flip. Each channel is characterized by a noise probability
p, with corresponding Kraus representations. The Kraus representation for the depolarizing channel is
provided in the following form:

K0 =
√

1− pI,K1 =

√

p

3
X,K2 =

√

p

3
Y,K3 =

√

p

3
Z. (14)

The Kraus representation for the bit-flip channel is provided in the following form:

K0 =
√

1− pI,K1 =
√
pX. (15)

The Kraus representation for the phase-flip channel is provided in the following form:

K0 =
√

1− pI,K1 =
√
pZ. (16)

Here, X,Y , and Z denote the standard Pauli matrices, respectively, and I denotes the identity operator.
Specifically, the Pauli operators are given by X = |0〉 〈1| + |1〉 〈0|, Y = i(|1〉 〈0| − |0〉 〈1|), and Z =
|0〉 〈0| − |1〉 〈1|.

Consider the case where both channel A and channel B are depolarizing channels. Let the parameters
pa and pb denote the depolarizing probabilities for channel A and channel B, respectively. At this stage,
the value of QCI(A,B) assumes the following form (more details are shown in the Supplementary File):

QCI(A,B) =
√

2p− =

√

4

3
papb, (17)

where p− represents the probability of the outcome ‘−’. When pa and pb are different values, the
theoretical and experimental values of QCI are shown in Figure 3(a). Theoretical predictions are depicted
as solid lines, while experimental data are represented by discrete dots. Each colored line indicates the
variation of QCI as a function of pa (x-axis) for a fixed value of pb. Notably, when pb = 0 (or pa = 0), the
corresponding channel B (or A) effectively becomes an identity channel. An identity channel preserves
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Figure 3 (Color online) Theoretical and experimental results of the QCI under combinations when both A and B channels are

both noisy quantum channels. Parameters pa and pb denote the noise probabilities of channels A and B, respectively. The x-axis

represents pa, and each curve corresponds to a different fixed value of pb as indicated by the different colors. Solid lines represent

theoretical predictions; experimental data points are shown as dots with error bars representing standard uncertainties. (a) The

variation of QCI when channel A and channel B are both depolarizing channels; (b) the variation of QCI when channel A is the

depolarizing channel and channel B is the bit-flip channel; (c) the variation of QCI when channel A is the depolarizing channel and

channel B is the phase-flip channel; (d) the variation of QCI when channel A is the bit-flip channel and channel B is the phase-flip

channel.

the eigenstates associated with the observable of the other channel, thereby avoiding any disturbance or
collapse of the quantum state. In such cases, the observables of channels A and B are compatible, and
thus, the theoretical value of QCI remains zero. Experimentally, when pa = pb = 0, the measured value
of QCI is 0.031, which is close to the expected theoretical value of zero. Conversely, when both pa and pb
equal 1, the channels A and B function as fully depolarizing channels, and the QCI reaches its theoretical

maximum value of
√

4
3 ≈ 1.1547. The corresponding experimental value is 1.149, demonstrating strong

agreement with theoretical predictions.
Consider the scenario where both channel A and channel B are either bit-flip channels or phase-flip

channels. The detailed procedure for calculating QCI is provided in the Supplementary File. In this case,
the value of QCI(A,B) satisfies the following equation:

QCI(A,B) =
√

2p− = 0. (18)

The vanishing value of p− arises from the fact that the commutation relation [Ai, Bj] = 0 holds for
all i, j. This indicates that the observables associated with channels A and B commute, and hence,
no measurement-induced disturbance is introduced by either channel. Consequently, the value of QCI
remains identically zero for all combinations of bit-flip (or phase-flip) probabilities in channels A and B.
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Figure 4 (Color online) Theoretical and experimental results of the QCI under combinations of quantum channels, with one

channel being a Pauli operation. In each subfigure, the horizontal axis indicates the noise strength pa of channel A, while channel

B is fixed as a unitary channel corresponding to a Pauli operator: (a) X, (b) Y , and (c) Z. For each plot, channel A is implemented

as a depolarizing channel (blue), a bit-flip channel (red), or a phase-flip channel (green). Solid lines represent theoretical predictions;

dots correspond to experimental data. Error bars indicate the standard deviation of the measured QCI values. The results illustrate

how QCI varies with pa under different noise models for channel A and fixed unitary operations in channel B.

In the scenario where one channel is a depolarizing channel and the other is either a bit-flip or phase-flip
channel, the QCI values for these configurations are given by

QCI(A,B) =
√

2p− =

√

4

3
papb. (19)

As seen in Figures 3(b) and (c), the QCI values increase with both pa and pb, reaching a maximum
value when both channels are fully depolarizing and flipping. The experimental data aligns well with the
theoretical predictions, further validating the model.

In the scenario where one of the channels is a bit-flip channel and the other is a phase-flip channel, the
QCI expression is

QCI(A,B) =
√

2p− =
√

2papb. (20)

This configuration is illustrated in Figure 3(d). Without loss of generality, let channel A be the bit-flip
channel and channel B be the phase-flip channel. In this setting, pa and pb denote the bit-flip probability
of channel A and the phase-flip probability of channel B, respectively. A similar trend is demonstrated in
that QCI reaches its theoretical maximum when both probabilities are set to 1, with experimental results
matching theoretical expectations.

Overall, the experimental results exhibit strong consistency with the theoretical predictions across the
entire range of tested parameters.

5.3 Unitary channel and noise channels

In this section, we investigate the theoretical and experimental behavior of the QCI when one of the
channels is a noisy quantum channel, such as a depolarizing, bit-flip, or phase-flip channel, and the
other is a unitary channel corresponding to one of the Pauli operators X,Y, Z. These Pauli operations
represent fundamental types of unitary transformations and play a central role in quantum information
theory. Specifically, we analyze the variation of the QCI as a function of the noise strength of channel A,
denoted by the parameter pa, while fixing channel B as a unitary channel that applies one of the Pauli
operators X,Y, Z. As shown in Figure 4, we examine the following cases. In Figure 4(a), Channel B
is fixed as the X operator, while channel A takes on different forms: depolarizing (blue), bit-flip (red),
and phase-flip (green) channels. The horizontal axis represents the noise parameter pa of channel A, and
the vertical axis indicates the corresponding QCI value. Theoretical predictions are shown as solid lines,
and experimental results are plotted as discrete points with error bars representing standard deviations.
In Figures 4(b) and (c), these subfigures present analogous results for channel B fixed as the Y and Z
operators, respectively. Again, channel A is varied among depolarizing, bit-flip, and phase-flip channels,
and the QCI is presented using the same color scheme. The results reveal that the QCI increases with the
noise strength pa, and the nature of this increase depends on both the type of noise introduced by channel
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Figure 5 (Color online) Comparison of the estimation error between ICO-based method vs. QPT-based method. Comparison of

the estimation error of QCI between identity channel and Pauli-X channel, as a function of photon consumption. The horizontal axis

shows the number of photons used, while the vertical axis indicates the absolute estimation error. Red points represent our ICO-

based method, while blue points represent the conventional QPT-based approach. The ICO-based method achieves approximately

18 dB lower estimation error for the same number of photons, corresponding to a nearly 50-fold improvement in accuracy. This

demonstrates the significant resource efficiency of our approach, especially in the low-photon regime.

A and the specific unitary transformation applied by channel B. Since depolarizing noise affects any state
on the Bloch sphere isotropically, the resulting QCI exhibits similar trends for all three Pauli operators.
In contrast, the bit-flip (red) and phase-flip (green) channels introduce direction-dependent decoherence.
As a result, the QCI is more sensitive to the commutation relations between the Pauli operator of channel
B and the Kraus operators of channel A. As expected, when the observables associated with the two
channels commute, for example, the Z operator and the phase-flip channel, the QCI remains close to
zero due to the absence of measurement-induced disturbance. Conversely, when the observables do not
commute, the QCI assumes larger values, reflecting the incompatibility between measurements associated
with the two channels. Across all configurations, the experimental results are in strong agreement with
theoretical predictions, thereby validating the theoretical framework and confirming the accuracy of our
experimental implementation.

5.4 Convergence advantage over conventional methods

In this section, we compare the convergence behavior of our ICO-based approach with that of the con-
ventional estimation method based on quantum process tomography (QPT). Specifically, we demonstrate
that our scheme achieves significantly lower estimation error with substantially fewer resources.

The conventional QPT-based method refers to the standard two-step procedure: first reconstructing
the process matrices of the quantum channels via tomography, and then computing the degree of non-
commutativity between the reconstructed channels to estimate the QCI. In contrast, our method extracts
the QCI directly from control qubit measurements in an indefinite causal order setup, bypassing full
process reconstruction.

To quantitatively illustrate the advantage, we consider a representative scenario involving two qubit
channels: the identity channel I and the Pauli-X channel, acting on a two-dimensional Hilbert space
(d = 2). The estimation performance is compared in Figure 5, where the horizontal axis denotes the
number of photons used (i.e., the number of experimental shots), and the vertical axis indicates the
absolute estimation error of the QCI.

Our results reveal a clear advantage for the ICO-based scheme. While both methods follow a power-law
scaling with respect to the number of photons, fitting the error data in a log-log plot yields the following
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relations:
{

log10(Err.) = −0.5 log10(N) + 0.708, (QPT),

log10(Err.) = −0.5 log10(N)− 1.093, (ICO).
(21)

This corresponds to an error reduction of approximately 18 dB in favor of our ICO-based method,
meaning that for the same photon count, our scheme achieves nearly 50 times lower estimation error.

This substantial improvement highlights the efficiency and scalability of our protocol, particularly in
resource-constrained scenarios. The ability to directly access QCI from control qubit statistics, without
the need for full process tomography, demonstrates the practical benefits of indefinite causal order for
quantum channel characterization.

6 Discussion

Our work presents an experimental realization of measuring QCI within a Sagnac-interferometer-based
quantum switch. By leveraging indefinite causal order, we demonstrate an approach that surpasses
conventional methods relying solely on sequential applications of channels. The results confirm the
ability of the quantum switch to distinguish incompatible channels effectively, offering a practical tool
for investigating quantum channel properties.

This experiment not only introduces a new technique for quantifying QCI but also showcases how the
quantum switch can serve as a powerful tool for probing fundamental quantum properties. The ability to
exploit indefinite causal order for measuring incompatibility may have profound implications for quantum
information science, particularly in areas such as quantum communication and resource characterization.

Future work may extend this protocol to higher-dimensional systems and other physical platforms,
broadening the scope of quantum technologies that can benefit from this approach. Our findings reinforce
the significance of the quantum switch in unlocking novel functionalities that may be instrumental in
next-generation quantum applications.
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