
SCIENCE CHINA
Information Sciences

July 2025, Vol. 68, Iss. 7, 170308:1–170308:16

https://doi.org/10.1007/s11432-024-4463-0

c© Science China Press 2025 info.scichina.com link.springer.com

. RESEARCH PAPER .

Special Topic: Integration of Large AI Model and 6G

Let RFF do the talking: large language model
enabled lightweight RFFI for 6G edge intelligence†

Ning GAO1, Yi LIU1, Qifan ZHANG1, Xiao LI2 & Shi JIN2*

1School of Cyber Science and Engineering, Southeast University, Nanjing 210096, China
2National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China

Received 1 November 2024/Revised 23 February 2025/Accepted 30 May 2025/Published online 23 June 2025

Abstract With the evolution of sixth-generation (6G) wireless networks, a large number of edge intelligent devices are now

connected to the Internet of Things (IoT). Owing to the open nature of wireless networks, the massive edge IoT devices need

to continuously prevent spoofing and the intrusion of malicious IoT devices. The deep learning (DL)-based radio frequency

fingerprint identification (RFFI) provides a promising zero-trust edge IoT security scheme by automatically extracting the

radio frequency fingerprint (RFF) feature from the intrinsic hardware imperfections. To address the problems in the training

overhead, data limitation, and scalability for the current DL-based RFFI, we considered an outdoor long-range (LoRa) edge

intelligent network, where we combined the large language model (LLM) for the first time and proposed a BERT-LightRFFI

framework to enhance zero-trust edge IoT security. Specifically, we pre-trained a BERT model with the unlabeled data via

self-supervised learning and obtained a powerful RFF feature extractor. Then, we used the knowledge distillation to inherit

the BERT learn-gene to the small BERT-Light model and then fine-tuned a classifier of the pre-trained BERT-Light model

by using few-shot labeled wireless data. The time complexity, parameter quantities, and computational complexity were

analyzed. In the experiments, we used a large-scale real-world LoRa dataset to evaluate the performance of the proposed

framework and suggest some interesting insights. The results prove the proposed framework’s effectiveness, achieving an

accuracy of 97.52% in the presence of multipath fading and Doppler shift, which is better than the previous benchmark

methods.
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1 Introduction

The next generation of wireless networks, i.e., the sixth-generation (6G), can provide a worldwide wireless
coverage with exceptional speed, near-zero latency, and access by a massive number of devices, which is
regarded as a promising technology that would bring people into the era of the Internet of Everything
(IoE) [1]. According to a Cisco research report, the Internet of Things (IoT) had connected to 28 billion
devices by the year 2022, and by 2030, it is estimated that the number will be 500 billion [2]. These
connections have greatly promoted the development of edge intelligence, which can be found in areas such
as health monitoring, intelligent driving, and smart homes. However, owing to the open nature of wireless
networks, frequent access by massive edge IoT devices to the network can cause serious security risks. For
instance, malicious IoT devices can access the network by monitoring and tampering with the legitimate
media access control address and then launch a series of malicious attacks, i.e., a denial of service and
man-in-the-middle attacks [3]. Although such threats can be mitigated by upper-layer encryption and
authentication, but to a large extent, they cannot satisfy the requirements of edge intelligent applications
for low latency and low power consumption [4].

Radio frequency fingerprint identification (RFFI) provides feasible zero-trust IoT security via a light-
weight and low-latency approach, which provides an effective response to two adversarial scenarios:
spoofing and reply attacks [5]. The radio frequency fingerprint (RFF) comes from the intrinsic hard-
ware imperfections during the manufacturing process. As far as the radio frequency (RF) components
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are concerned, RFF can be classified into frequency offset, inphase/quadrature (I/Q) imbalance, and
power amplifier nonlinearity [6]. These unpredictable random variations make the RFF unique and un-
clonable, which thereby endows IoT devices access with security and reliability. RFFI can be formulated
as a multi-class problem, where the standard RFFI process can be divided into three steps, namely,
RFF pre-processing, classifier training, and classification. In recent years, with the development of deep
learning (DL), the impact of DL on the wireless communications field is significant, and the RFFI field is
no exception [7–9]. Compared with the traditional feature engineering-based RFFI, the DL-based RFFI
can extract the fine-grained RFF feature automatically for identification without entirely considering the
communication technology and protocol, thereby achieving great attention [10]. Nevertheless, most DL
solutions in the wireless communications field are developed for specific tasks, and there have also been
several problems with the DL-based RFFI. (1) The training overhead is large; it takes a considerable
amount of time and computing power to train a high-performance deep neural network (DNN) for the
RFFI. (2) The data are limited; in practice, most of the data acquired are inadequate and unlabeled,
which cannot guarantee RFFI generalization. (3) The scalability is limited; the trained RFFI model is
usually used for a specific classification task that requires a unique DNN structure.

Recently, the large language model (LLM), which is the foundational model built on natural language
understanding, is regarded as the change maker for the next wave of artificial intelligence (AI) [11]. To
name a few, OpenAI’s ChatGPT uses the Transformer architecture with powerful natural language gen-
eration and understanding capabilities, and Google’s BERT is a Transformer-based bidirectional encoder
representation with rich language representations by pre-training on large-scale text data. The LLM is
pre-trained on extremely large amounts of unlabeled data over millions of iterations using self-supervision
techniques [12]. As a result, the LLM is highly generalizable and can be fine-tuned for specific tasks with
few-shot or zero-shot learning, which has achieved significant success in terms of AI assistants, soft-
ware development, and healthcare. Thanks to the LLM’s versatile and powerful foundation for various
tasks, researchers have gradually begun to explore the application of LLM in wireless communication
fields [12–14]. However, the wireless LLM is still in its infancy, and how to apply the LLM to RFFI
and the benefits that the LLM can bring to RFFI are still unknown. In this paper, we attempted to
combine the LLM with the RFFI for the first time. Specifically, we considered an outdoor long-range
(LoRa) edge intelligent network, where the RFFI model must be lightweight and the edge data inade-
quate and limitedly labeled. To deal with the above problems, we propose a BERT-enabled lightweight
RFFI framework, namely, the BERT-LightRFFI framework, to enhance the zero-trust edge IoT security.
The BERT-LightRFFI framework contains three models, which are the BERT model, the BERT-Light
model, and the LightRFFI model. The main contributions of this paper are summarized as follows.

• As a first attempt, we combined the LLM with the RFFI and proposed a novel BERT-LightRFFI
framework. Therein, the BERTmodel was pre-trained with the I/Q dataset via self-supervised contrastive
learning; then, the knowledge distillation was used to inherit the BERT learn-gene to the BERT-Light
model for high-performance RFF feature extraction. This proves the effectiveness of knowledge distillation
in compressing the LLM and inheriting core knowledge.

• To match the wireless signal with the LLM and consider the model response time, we divided the
I/Q data directly into the word vectors and extracted the semantic feature for BERT pre-training, which
built a novel pre-processing path from wireless signals to semantics. To mitigate the influence of the
channel effect on RFFI, i.e., the fading and Doppler shift, we used a cross-modal I/Q dataset to train the
BERT model for the RFF feature extraction, where the unlabeled wired and wireless signals were used.

• The LightRFFI model constructed for the edge IoT devices is model-agnostic, requires no unique
structure, and can adapt flexibly to various environments via a few-shot fine-tuning. The potential of the
proposed BERT-LightRFFI was validated by using the real-world LoRa dataset, achieving an accuracy
of 97.52% in the presence of multipath fading and Doppler shift, which is better than the previous
state-of-the-art methods.

2 Related work

The RFFI has different categories of schedules. Based on the identification position of the signal seg-
ment, the RFFI can be classified into transient-based and steady-state-based methods. According to the
transformation domain of the signal, the RFFI can be classified into time and transformation domains,
i.e., the frequency and wavelet domains. As per the artificial feature injection, the RFFI can be divided
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into passive identification and active identification [15]. In light of the feature extraction approach, the
RFFI can be categorized as the feature engineering-based RFFI and the DL-based automatic extraction
RFFI [16]. Here, we focused primarily on the last classification to discuss the related work. In the earlier
study, the RFF was extracted by feature engineering, which depended on wireless expert knowledge.
The widely used RFFs are the frequency offset, I/Q imbalance, power amplifier (PA) nonlinearity, phase
errors, time-frequency spectrum, and the Hilbert–Huang spectrum [6]. Based on the feature engineering,
identification performance can be further improved by machine learning such as random forest, or support
vector machine. However, the feature engineering-based method usually requires accurate signal repre-
sentation, which is difficult to achieve in complex communication scenarios. In the real world, different
RFFs often couple with each other, and extracting one individual can compromise the correlation infor-
mation between the various RFFs. Moreover, feature engineering usually takes a long time to conduct
the feature extraction, which is a challenge for low latency and low power consumption scenarios.

Although training the DL-based RFFI model takes a considerable amount of time, identification with
the trained model can typically be conducted in a few milliseconds. Meanwhile, the DL-based RFFI need
not consider an accurate signal representation and the coupling relationship between different RFFs; thus,
it has attracted extensive attention in recent years [17–19]. As one of the early studies, a convolutional
neural network (CNN)-based RFFI has been proposed using the steady-state signal segment, which has
shown that the DL-based approach outperforms the existing bispectrum and Hilbert-Huang spectrum-
based methods [18]. Some subsequent studies are based on CNN, where Ref. [10] developed a spectrogram-
CNN model to identify the 25 LoRa devices with an accuracy of 96.4%; however, it eliminates the channel
effect by a wired attenuator. The authors in [19] proposed the AlexNet CNN architecture to explore the
identification performance with the I/Q imbalance and the PA nonlinearity. Compared with the real-
valued neural network, the complex-valued neural network (CVNN) can reserve the correlation between
I/Q imbalance, which can bring about performance improvements [20–22]. Ref. [21] has shown the
outstanding performance of CVNN for RFFI; however, these studies have high computing complexity
or large model sizes. Model compression is a lightweight network technology that reduces computing
complexity and model size, including knowledge distillation, neuron pruning, and quantization. The
effectiveness of the model compression has been shown in different wireless communication applications,
i.e., the CSI feedback and the semantic communications [23–25]. The authors in [26] have proposed a
knowledge distillation-based CVNN compression to address the RFFI problem, which showed that there
is almost no performance gap between the compressed CVNN and the original CVNN.

The channel effect is one of the crucial factors affecting RFFI accuracy, which results in the well-
known problem of low RFFI accuracy in the “train on one day, test on another day” scenario. The
authors in [27] showed that the wireless channel impacts identification accuracy significantly, i.e., from
85% to 9% and from 30% to 17% in the self-organizing dataset and the DARPA dataset, respectively.
Some existing studies focus on eliminating the influence of the channel effect for RFFI [28–35]. Ref. [28]
showed that the temporal variability of the wireless channel has a negative impact on the RFFI. A
high-efficiency DeepFIR framework has been proposed to counteract the channel effect in wireless DL
algorithms without retraining the underlying DL model [29]. The authors in [32] proposed a multisource
feature fusion network to achieve excellent identification performance, where the original signal, the
signal after demodulation, and the signal after channel equalization were considered; however, it was
still sensitive to the various environments. To address the wireless channel impacts on the RFFI, the
channel-independent features and the data augmentation have been investigated [34]. Furthermore, by
adding an independent module at the front of the CNN classifier, the RFF filters have been studied to
mitigate the channel effect; however, they introduce additional computational overhead and processing
latency [33]. Few studies focus on the end-to-end channel effect mitigation for RFFI by using the LLM
enabled lightweight network model. Therefore, in this paper, we attempt to mitigate the channel effect
influence on the RFFI with the LLM and transfer the LLM learn-gene to the lightweight model for edge
IoT devices.

3 System model

In this section, we first give the signal representation and then formulate the problem, the main symbols
used in this paper are explained in Table 1.
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Table 1 Symbol explanation.

Symbol Meaning

Italic letter Scalar

Bold lowercase letter Vector

Bold uppercase letter Matrix

| · | Vector size

L(·) Loss function

f(·) Mapping function

log(·) Logarithm

A
⊤ Matrix transpose

x̃ Estimation value of x

ŷ Prediction value of y

Figure 1 (Color online) Schematic of an outdoor star LoRa network.

3.1 Signal representation

As shown in Figure 1, we consider an outdoor LoRa network with a star topology that includes a series
of fixed LoRa devices, such as various environmental sensors and a LoRa gateway that access the LoRa
devices to the core networks, as well as mobile LoRa devices, each of which communicates wirelessly with
the gateway.

Specifically, the LoRa employs the chirp spread spectrum (CSS) modulation technique, where the
signal frequency linearly varies over time, the baseband frequency-modulated signal can be represented
as [10]

s (t) = Aej(−πBt+π
B

T
t2), (1)

where A represents the amplitude, B represents the bandwidth, and T represents the duration. The
duration can be expressed by using the spreading factor (SF) and the bandwidth, i.e.,

T =
2β

B
, (2)

where β indicates the number of the chip bits that can represent one information symbol. Since each
signal component arrives at the receiver at different times, thus, with the superposition of the multipath
fading, the received signal can be mathematically expressed as

r(t) =
N∑

i=0

αi(t)si(t− τi(t)), (3)

where N is the number of paths, αi(t) is the attenuation coefficient of the ith path, τi(t) is the delay
of the ith transmission path. With the LoRa device moving during signal transmission, the signal can
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Figure 2 (Color online) Proposed BERT-LightRFFI framework.

experience a Doppler shift, which is given by

f ′ =

(
v ± v0
v ∓ vs

)
f, (4)

where f ′ is the received frequency, f is the original frequency sent by the transmitter, v is the propagation
speed of the signal in the current environment, v0 is the moving speed of the receiver (if it is close to
the transmitter, it is +, otherwise it is −), vs is the moving speed of the transmitter (if it is close to the
receiver, it is −, otherwise it is +).

In this case, the received signal can be expressed as

r (t) = h (t) ∗ fRFF

(
s (t)

)
+ n (t) , (5)

where h(t) is the channel effect including the multipath fading and the Doppler shift, the symbol ∗
denotes convolution operation, the function fRFF(·) denotes the impact caused by the device hardware
defects. The received signal will also introduce the RFF of the receiver, but the RFF is stable and unique
due to only one receive gateway, so it will not disrupt the RF fingerprint feature of the transmitter
and will not affect the identification, so the RFF of the receiver is not considered. The symbol n(t)
represents the additive white Gaussian noise (AWGN) within the wireless channel, which is stochastic
and signal independent interference following a zero-mean complex Gaussian distribution with variance
σ2. In particular, the received signal can be rewritten as

rI (t) = r (t) cos (2πfct) , (6)

and
rQ (t) = r (t) sin (2πfct) . (7)

Therein, the symbols rI(t) and rQ(t) represent the I/Q signal, respectively, and fc denotes the carrier
frequency of the I/Q demodulation.

3.2 Problem formulation

The proposed BERT-LightRFFI framework is generally divided into three steps: the pre-training of the
BERT model and the BERT-Light model, the fine-tuning of the LightRFFI model, and the deployment
of the LightRFFI model, as shown in Figure 2. Considering the large amount of data and the training
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overhead, the pre-training can be carried out by a professional on the cloud server. Due to the difficulty
of obtaining enough labeled data in real-world, only a few-shot labeled wireless data are used for the
LightRFFI fine-tuning. In the fine-tuning step, the individual user downloads the pre-trained BERT-
Light model to local and fine-tunes its classifier, and then constructs the LightRFFI model. In the
identification step, the well trained LightRFFI model is deployed on the edge IoT devices. When the
edge IoT device receives the wireless signal, it processes the data and inputs it into the trained LightRFFI
for RFF feature extraction and classification, thereby realizing the device identification.

We define x as a received signal, X (x ∈ X ) as the sample space of all the received signal, y as the
true device category corresponding to x, and Y (y ∈ Y) as the category space. Then, the dataset is

represented by Dunlabeled = (xj , x̃j)
K

j =1 and Dlabeled = (x̃i, yi)
M

i =1, where Dunlabeled represents the

dataset for pre-training stage, xj represents the jth wired signal, x̃j represents the signal of xj after data
augmentation, and K represents the number of sample in Dunlabeled. Dlabeled represents the dataset in
fine-tuning stage, x̃i represents the ith wireless signal, yi represents the label corresponding to xi, and
M represents the number of sample in Dlabeled (K ≫ M). In this case, the optimization problem of the
pre-training stage can be represented as

min
WBERT∈W

E(x,x̃)∼Dunlabeled
LSCL(fBERT(x;WBERT), fBERT(x̃;WBERT)), WBERT : Ws1 → Wop1, (8)

and
min

WBERTLight∈W
E(x̃)∼Dunlabeled

LMSE(fBERTLight(x̃;WBERTLight), fBERT(x̃;WBERT)),

WBERTLight : Ws2 → Wop2,
(9)

where W is the parameter set, Ws1 and Ws2 represents the initial parameters of BERT and BERTLight
respectively, Wop1 and Wop2 represents the optimal parameters of BERT and BERTLight, respectively,
LSCL and LMSE represents the supervised contrastive loss (SCL) and the mean squared error (MSE),
respectively, and fBERT(·) and fBERTLight(·) represents the mapping of the feature extractor to the data,
respectively. Meanwhile, the optimization problem of the fine-tuning stage can be expressed as

min
Wc∈W

E(x̃,y)∼Dlabeled
LCE(fclassifier(fBERTLight(x̃;WBERTLight);Wc), y), Wc : Ws3 → Wop3, (10)

where Wc is the parameters of the classifier, Ws3 represents the initial parameters of the classifier in
the fine-tuning stage, Wop3 represents the optimal parameters of the model in this stage, LCE represents
the loss function in fine-tuning stage, constraining the model prediction results to be close to y, and
fclassifier(·) represents the mapping of the classifier to the data.

4 Methods

In this section, we first introduce the architectures of the model in the proposed framework, give the
methods of the data processing and the embedding, then explain the details of pre-training and fine-
tuning, and finally analyze the complexity of the proposed framework.

4.1 Model architecture

The proposed framework contains three models, one is an LLM, namely the BERTmodel, which is trained
using self-supervised contrastive learning to extract the fine-grained feature, and the other two are the
BERT-Light model and the LightRFFI model, which are trained using the supervised learning.

BERT. The BERT model is based on the classic BERT model, which is an LLM containing 6 Trans-
former encoders and a multi-head attention mechanism with 8 attention heads, as shown in Figure 3.
The specific calculation process of the model is that the input data query Q, key K, and value V are
first transformed three times linearly through the fully connected layer, and mapped to a matrix of word
vectors. Then, the three matrices are used to calculate the attention score, which can be written as [36]

A(Q,K,V ) = softmax

(
QK⊤√

ds

)
V , (11)

where A(·) is the attention score operation, ds represents the vector dimension corresponding to each
attention head. In our model settings, the value of ds is 64, so that each self-attention module can learn
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Figure 3 (Color online) BERT model architecture based on the classic BERT model.

different semantic features of the input data. The matrices calculated by the eight attention heads are
concatenated to restore the shape to the same shape as the original input, and finally the calculation is
completed through the fully connected layer. The multi-head attention mechanism enhances the model’s
ability to capture semantic information from different representation subspaces and splits the data into
multiple attention heads for calculation, which improves the stability of training and reduces the risk of
overfitting.

Next, the original data is added to the output of the multi-head attention to obtain an effective feature
representation containing the relationship between the words, which fully explores the impact of the
RFF on different locations in the wireless signal. Finally, the input data passes through a feedforward
neural network consisting of two fully connected layers and a ReLU activation function. The output
and input form a residual connection, and the output is normalized. The feedforward neural network
introduces nonlinear changes to improve the expressiveness of the model and further learn the feature
representation. Through the above architecture, the model can directly capture the global dependencies
between any positions, avoiding the shortcomings of many current deep learning methods that focus on
local features and have difficulty capturing long-distance dependencies. Therefore, it is more robust to
environmental changes and has better generalization capabilities.

BERT-Light and LightRFFI. Comparing the two models, the LightRFFI model has only one more
classifier than the BERT-Light model. Due to the unique residual connection structure, the ResNet has
an excellent feature extraction capability with a small number of convolutional layers, which is suitable
for deploying on the edge IoT device1). Therefore, the LightRFFI model deployed on the edge IoT device
is implemented based on the ResNet and a classifier, which includes 8 convolutional layers, 1 pooling
layer, and 1 fully connected layer. The specific structure is shown in Figure 4. All convolutional layers
are 1-dimensional to adapt to the input of wireless data. Specifically, the first layer of the model uses
a convolutional layer with a convolution kernel size of 1 × 7, followed by a ReLU activation function, a
batch normalization layer, and a maximum pooling layer of 2× 2. The model is subsequently composed
of 4 residual blocks, each of which includes 1 convolutional layer with a convolution kernel size of 1 × 3
and a stride of 2, which are also followed by an ReLU activation function and a batch normalization
layer. The input and output form a residual connection. In particular, before the final output of the 2nd,
3rd, and 4th residual blocks, they are downsampled by a convolutional layer with a convolution kernel
size of 1× 1 and a stride of 2. The final data are downsampled three times, and the output data length
is reduced from 4096 to 512.

4.2 Data processing

Since the received signal is in a complex form, the data slicing and data augmentation are required before
the model training.

Data slicing. The signal received by the receiver has a large number of sampling points, which is
difficult to calculate directly for the model, so it is necessary to slice the data to speed up the training.
We set the window size to 4096 sampling points, the step size is the same as the window size, and the
signal is divided into a series of slices without overlapping. In the dataset, the wired signal of each device
is divided into 400 slices, and a total of 25 devices generate a total of 10000 data fragments.

1) The BERT-Light in the proposed framework includes but not limited to the ResNet; many classic CNN models and self-

constructed models can also work, i.e., the VGG, the MobileNet, and the GoogLeNet, etc.
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Figure 4 (Color online) BERT-Light architecture based on the ResNet.

Algorithm 1 Data processing procedure.

Input: Wired signal xorigin, window size w;

Output: Wired signal slice x and wireless signal slice x̃ that match the model input;

1: Initialize the channel model, set maximum number, start index st and end index ed = st + w − 1;

2: for i = 1 to maximum number do

3: Take out the signal slice in the window: xi = xorigin[st : ed];

4: Move the window backward with a step size of w: st = st + w, ed = ed + w;

5: Take out the real part x
i

I and imaginary part x
i

Q of the signal slice, separately;

6: The signal slice xi passes through the wireless channel and add noise, get x̃i;

7: Take out the real x̃i

I part and imaginary part x̃
i

Q of the signal slice, separately;

8: end for

9: Cross-permutate each element in the real and imaginary parts of the wired signal slice x and wireless signal slice x̃ as input to

the BERT model;

10: Concatenate the real and imaginary parts of the wireless signal slice x̃ as input to the BERT-Light model.

Data augmentation. Data augmentation completes the task of generating a rich wireless signal by
passing the wired signal through the wireless channel with different channel parameters. For the data
augmentation, it should be ensured that the wired signal and the wireless signal are essentially the same,
and there is only a difference in the channel effect. The goal is to ensure that the data alignment problem
cannot affect the model training, which is conducive to the model learning channel-independent RFF
feature. The simulation of the wireless channel can be implemented using Matlab.

The input data of the BERT are wired and wireless signals, which are divided into two parts, the real
part I and the imaginary part Q, with a length of 4096. Each element in the two parts is cross-arranged
to form new data in the shape of IQIQIQ· · · , with a length of 8192. Using sequence data composed of
alternating I/Q pairs can avoid information loss caused by I/Q separation, which is conducive to the LLM
model learning the coupling relationship between them. At the same time, it simulates the characteristics
of natural language and regards an I/Q pair as a minimum unit of language, so as to better adapt to the
model architecture and improve the model’s ability to capture signal features. In addition, directly using
I/Q pairs reduces the overhead caused by the domain transformation of the signal in the air interface,
thereby improving the system response speed. In this case, the wired signal and the wireless signal are
used as two independent inputs of the BERT model, and the data shape is [batchsize, 8192]. On the hand,
the wireless signal is used as the input data of the BERT-Light model, which is also divided into the real
part I and the imaginary part Q, but it should be pointed out that the I/Q pairs are not cross-arranged
and directly input to the BERT-Light model as two channels, which further compresses the processing
time. Thus, the shape of the input data is [batchsize, 2, 4096]. The details are shown in Algorithm 1.

4.3 Embedding

As mentioned in Subsection 4.1, the Transformer encoder calculates the relationship between the words
and the input data, so its input data should be in a form similar to natural language, but the received
signal after data processing is still a string of numbers and cannot be used directly for calculation. Thus,
before inputting the data into the Transformer encoder, it should be embedded.
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The input signal data of the LLM are sliced into signal segments of 8192 sampling points. We take
every 128 sampling points as a word and regard the segment as a whole sentence of 64 words. The
classification (CLS) tag is inserted at the beginning of the sentence as the vector representation of the
entire sentence. The CLS tag is initially set to all zeros and the length is the same as that of a single
word, so a sentence of 65 words is finally obtained. After the word segmentation operation is completed,
we use a single fully connected layer to map each word to a vector of length 512. The fully connected
layer is followed by a ReLU activation function to introduce nonlinearity and improve the representation
ability of the word vector. Embedding is the first part of the model and is continuously optimized through
backward propagation during the training process. The learnable word embedding operation helps the
model capture complex language patterns and the key connections between words.

Particularly, compared with the embedding operation of the classic BERT, the used BERT model
discards the two operations of segment embedding and position embedding. The reasons are that segment
embedding is utilized to distinguish different sentences in the input, but our input only has one sentence,
so sentence embedding is not required, and solubility enhancing peptide (SEP) tags are not used for
sentence spacing. Meanwhile, position embedding introduces additional word position information to the
input data, which can help the model understand the order relationship between words. However, the
hardware imperfections mainly come from defects in the manufacturing process, which can be regarded
as stable for a long time after the device is manufactured. Furthermore, the temperature and humidity
of the environment do not change significantly over a period of time, which guarantees the RFF stability.
Therefore, the order of the impact on the data in the time dimension can be ignored for our considered
scenario.

4.4 Pre-training and fine-tuning

The purpose of the pre-training phase is to train the BERT model for RFF feature extraction and
inherit its learn-gene to the BERT-Light model. First, the BERT model is trained to obtain a powerful
RFF feature extractor, and then the BERT-Light model is trained to obtain a lightweight RFF feature
extractor. Then, based on the pre-trained BERT-Light model, the fine-tuning is implemented by freezing
the BERT-Light model parameters and training a classifier with a few-shot labeled wireless data.

BERT training. Considering the data limited labeled, the BERT model is first trained through
unlabeled self-supervised contrastive learning to obtain a powerful RFF feature extractor. Specifically,
the information noise contrastive estimation (infoNCE) loss is used, which is calculated by using cosine
similarity and can be written as

Sc =
F · F̃

max(||F ||2, ǫ) ·max(||F̃ ||2, ǫ)
, (12)

where F and F̃ represent the two data for the cosine similarity calculation, ǫ is a very small positive
number, here it is 1E−8 to avoid division by zero. Before calculating cosine similarity, the data are
normalized, and mathematically expressed as

F =
F

max(||F ||2, ǫ)
, (13)

and

F̃ =
F̃

max(||F̃ ||2, ǫ)
. (14)

Therefore, the loss function LSCL can be written as

LSCL = − 1

K

K∑

i=1

log
exp(Sii

c /T )
∑K

j = 1 exp(S
ij
c /T )

, (15)

where K represents the number of samples, T is the temperature scaling factor used to control the
sharpness of the cosine similarity Sc, Sij

c represents the cosine similarity between the ith data and the
jth data. When i is not equal to j, it represents the cosine similarity of the negative sample pair, and
when i is equal to j, it represents the cosine similarity between the positive samples.
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Specifically, the feature extracted by the model is first normalized, then the cosine similarity is calcu-
lated, and then temperature scaling is performed. Finally, the feature similarity between positive samples
is maximized and the feature similarity between negative samples is minimized based on the cross en-
tropy loss. In this case, the model can learn to shorten the distance between the wired signal and wireless
signal feature of the same device. As a result, amplifying the distance between the signal feature of
different devices, and promoting the model to extract RFF feature that is independent of the channel
effect. Therein, the positive sample pair is the wired data and its corresponding augmented data, and
the negative sample pair is the other data in the same batch.

BERT-Light training. The BERT-Light model is trained by knowledge distillation under the super-
vision of the RFF feature extracted by the BERT. The goal is to guide the BERT-Light model to achieve
an RFF feature extraction capability as excellent as the BERT model. Meanwhile, it generates a small
model to increase the inference speed and reduce the computational overhead. The loss function is based
on the MSE loss. The MSE loss can be given by [37, 38]

LMSE =
1

K

K∑

i=1

(
F i
BERTLight − F i

BERT

)2
, (16)

where the symbol F i
BERTLight is the ith RFF feature of the BERT-Light, and F i

BERT is the ith RFF feature
of the BERT. The MSE loss LMSE optimizes the model so that the distance of the feature extracted by
the BERT-Light model and the BERT model is as small as possible. Thus, the BERT-Light model can
extract features related to the relationship between the words without using the self-attention mechanism.
It is worth mentioning that the input of the model is universal and does not target any signal form specific
to any communication protocol, so it can be applied to many wireless networks such as the LoRa and
the WiFi.

LightRFFI fine-tuning. The classifier is implemented using a single fully connected layer, with an
input feature dimension of 512 and an output dimension of 252). The cross entropy loss is used as the
loss function, which is expressed as

LCE = − 1

M

M∑

i=1

L∑

j=1

yij log (ŷij), (17)

where M is the number of samples in fine-tuning, |Y| = L is the number of classifications, yij denotes
the true label of the ith sample belonging to the jth classification, while ŷij denotes the probability that
the network predicts that the ith sample belongs to the jth classification.

Due to the difficulty in obtaining the adequate labeled dataset in real-world environments, the labeled
data used for the classifier training only account for 20% of the total dataset. The LightRFFI model is
trained with a few-shot labeled wireless data of specific wireless environments, which are in accordance
with the edge intelligence scenarios. Thanks to the easily distinguishable feature extracted by the BERT
model, the BERT-Light model also achieves high-quality feature extraction in supervised learning train-
ing. Thus, fine-tuning the LightRFFI model with a small amount of labeled data can achieve excellent
performance. The complete training process is presented in Algorithm 2.

4.5 Complexity analysis

We first analyze the time complexity of the BERT-LightRFFI framework by splitting it into two parts.
The time complexity of the BERT model mainly comes from the embedding operation and the six
Transformer encoders. The embedding operation is completed by the fully connected layer, and the time
complexity can be expressed as O(ℓ × dori × d), where ℓ represents the length of the input sequence,
dori represents the length of the original word, and d represents the length of the word vector after
mapping. The complexity of the Transformer encoder mainly comes from the matrix operation between
linear transformation and query Q, key K, and value V . The time complexity of linear transformation
can be expressed as O(ℓ× d2); the time complexity of matrix operations can be expressed as O(ℓ2 × d).
Therefore, the overall time complexity of the Transformer encoder can be expressed as

O(ℓ × d2 + ℓ2 × d). (18)

2) Here, the output dimension can be arbitrarily set according to the specific task of the edge IoT device.
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Algorithm 2 Pre-training and fine-tuning process.

Require: Wired signal x, wireless signal x̃, and label y;

PRE-TRAINING BERT&BERT-Light:

1: Initialize: Set learning rate η, maximum epochs;

Training on the dataset Dunlabeled:

2: for epoch = 1 to maximum epochs do

3: for ∀{x, x̃} in Dunlabeled do

4: Embedding data;

5: Forward propagation: FBERT = fBERT(x;WBERT); F̃BERT = fBERT(x̃;WBERT);

6: Calculate the loss: LBERT = LSCL(FBERT, F̃BERT) as (15);

7: Backward propagation: Update model weights WBERT by Adam, WBERT ←WBERT − η
∂LBERT
∂WBERT

;

8: end for

9: end for

10: for epoch = 1 to maximum epochs do

11: for ∀{x̃} in Dunlabeled do

12: Load and freeze BERT parameters WBERT;

13: Forward propagation: F̃BERTLight = fBERTLight(x̃;WBERTLight); F̃BERT = fBERT(x̃;WBERT);

14: Calculate the loss: LBERTLight = LMSE(F̃BERTLight, F̃BERT) as (16);

15: Backward propagation: Update model weights WBERTLight by Adam, WBERTLight ←WBERTLight − η
∂LBERTLight
∂WBERTLight

.

16: end for

17: end for

FINE-TUNING LightRFFI:

18: Initialize: Set learning rate η, maximum epochs;

Training on Dlabeled:

19: for epoch = 1 to maximum epochs do

20: Load and freeze BERT parameters WBERT and BERT-Light parameters WBERTLight;

21: for ∀{x̃, y} in Dlabeled do

22: Forward propagation: ŷ = fClassifier(fBERTLight(x̃;WBERTLight);Wc);

23: Calculate the loss: Lc = LCE(ŷ, y) as (17);

24: Backward propagation: Update model weights Wc by Adam, Wc ←Wc − η
∂Lc

∂Wc
;

25: end for

26: end for

Table 2 Model parameters and calculation amount.

Model Total params Params size (MB) Estimated total size (MB) MFLOPs

BERT-RFFI 18968064 72.36 14156.85 1231.09

BERT-LightRFFI 705280 (↓ 96.3%) 2.69 (↓ 96.3%) 13.73 (↓ 99.9%) 133.5 (↓ 89.2%)

The overall time complexity of the BERT model can be given by

O(ℓ × dori × d) +O(ℓ× d2 + ℓ2 × d). (19)

The time complexity of the BERT-Light model and LightRFFI model are mainly composed of convo-
lutional layers, two pooling layers, and a fully connected layer. We assume that the input sample length
is |x| = V , the convolution kernel size is Kconv, the max pooling layer window size is Kmax, the average
pooling layer window size is Kavg, the number of input channels is Cin, the number of output channels is
Cout, and the number of the convolutional layer is U . Then, the time complexity of a convolutional layer
is O(Cin × Cout × Kconv × V ), the max pooling layer is O(Cin × Kmax × V ), the average pooling layer
is O(Cin ×Kavg × V ), and the fully connected layer is O(Fin × Fout), where Fin is the number of input
feature and Fout is the number of output feature. The overall time complexity can be defined as

O
(

U∑

u=1

Cu
in × Cu

out ×Ku
conv × V

)
+O (Cin ×Kmax × V ) +O (Cin ×Kavg × V ) +O (Fin × Fout) . (20)

The parameter quantities and computational complexity of the BERT-LightRFFI framework are cal-
culated via a quantitative analysis, which is shown in Table 2. We can find that the total parameter
number has decreased by 96.3%, the parameter size has reduced by 96.3%, the estimated total size has
reduced by 99.9% and the mega floating-point operations per second (MFLOPs) has decreased by 89.2%,
respectively.
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Table 3 Training parameters.

Parameter Pre-training Fine-tuning

Batchsize 128 32

Learning rate 0.0001 0.0001

Maximum epoches 200 100

Number of data in each category 400 80

Data size 1 × 8192 2 × 4096

5 Experimental results

5.1 Experimental setup

All the experiments are carried out on a server configured with NVIDIA Tesla V100 (32 GB) GPU, Intel
Xeon E5-2698 CPU, and 512 GB of RAM. We construct the DNN based on the PyTorch framework. The
wired dataset used is from the publicly available LoRa dataset collected by Elmaghbub et al. [5], which
includes the time-domain I/Q signal along with their frequency-domain signal through the fast Fourier
transform (FFT). Specifically, the datasets are collected using an IoT device testing platform. The
testing platform consists of 25 identical Pycom IoT devices and a USRP B210 receiver, which operates
at a center frequency of 915 MHz with a sampling rate of 1 MS/s. The dataset encompasses a variety of
scenarios, including wired, wireless, indoor, and outdoor environments. In particular, the wired datasets
are collected over five days and each device performs 10 transmissions per day. To ensure the fairness of
the dataset, we select five transmissions per device per day to train and test the model. We use 80% of
the entire data as a training set, 10% as a validation set, and 10% as a test set. The training parameters
are shown in Table 3.

5.2 Performance metrics

The confusion matrix is an important method in machine learning for evaluating the performance of
classification, which is often used in RFFI. It is an n×n matrix, where n is the number of classifications.
The sum of each row in the confusion matrix represents the actual sample count for the classification
represented by that row, while the sum of each column represents the predicted sample count for the
classification represented by that column. The diagonal elements of the matrix represent the samples that
are predicted correctly, indicating that the predicted classification matches the true classification. On the
other hand, the accuracy represents the proportion of correctly classified samples among all the predicted
samples, and it is one of the most intuitive and commonly used evaluation metrics for the RFFI. The
calculation involves dividing the number of correct classifications by the total number of classifications.

5.3 Feasibility analysis

To explore the RFFI performance of the BERTmodel, we train the same classifier according to the method
in Subsection 4.4 and obtain the BERT-RFFI model. The confusion matrices of the training results of the
BERT-RFFI model and the LightRFFI model are shown in Figure 5, respectively. Comparing Figures
5(a) and (b), it can be seen that the BERT-RFFI model and the LightRFFI model can achieve an excellent
performance. It is interesting to find that the performance of the LightRFFI model even exceeds that of
the BERT-RFFI model with a few-shot fine-tuning. Figure 5(c) is the accuracy of a LightRFFI model
without the knowledge distillation (LightRFFI-NKD). Compared Figure 5(b) with Figure 5(c), it can be
observed that without relying on the knowledge of the BERT model, it is difficult to effectively extract
RFF features from the wireless data. This suggests that the knowledge distillation achieves effective learn-
gene transfer, and the RFF feature representation of the BERT model is obtained with the architecture
of the ResNet, which is an effective model compression.

To further analyze the insightful mechanism of the BERT-LightRFFI framework, we visualize the high-
dimensional RFF feature using the t-distributed stochastic neighbor embedding (t-SNE) technique and
then explore the RFF feature variation. Figure 6(a) is the feature visualization of the LightRFFI-NKD
model, which shows that there are no clear boundaries between the 25 categories and they are almost
completely overlapped together. In Figure 6(b), by a few-shot fine-tuning, the RFF features gradually
become clear between 25 categories, but a few-shot sample training is not enough for the LightRFFI-NKD
model to obtain a satisfactory performance. From Figure 6(c), we can observe that the boundary between
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Figure 5 (Color online) Confusion matrix of model. (a) BERT-RFFI, ACC = 96.89%; (b) LightRFFI, ACC = 97.52%;

(c) LightRFFI-NKD, ACC = 76.57%.

Figure 6 (Color online) Feature visualization. (a) LightRFFI-NKD model without a few-shot training; (b) LightRFFI-NKD

model with a few-shot training; (c) LightRFFI model.

Table 4 Datasets under different channel environments.

Parameter Value

Number of samples 4096

SNR {5, 10, 15, 20, 25, 30}

Path delays
{
{0, 1E−6, 2E−6}, {0, 1E−6, 2E−6, 3E−6}, {0, 1E−6, 2E−6, 3E−6, 4E−6}

}

Average path gains
{
{0, −3, −5}, {0, −3, −5, −7}, {0, −3, −5, −7, −10}

}

Doppler shift {0, 5, 10, 15, 20, 25}

the features of each category is relatively clear for the LightRFFI model, which also explains the reason
of 97.52% accuracy in Figure 5(b).

5.4 Impact of channel effect

The multipath fading and Doppler shift on the signal are described in (3) and (4). To more intuitively
see the impact of the channel effect on the signal, we take a fragment of the wired signal from the dataset
and pass it through a channel simulation with five propagation paths. The generated wireless signal is
compared with the original signal as shown in Figure 7(a). Next, we use the same fragment of the wired
signal and pass it through a simulated channel with a 20 Hz Doppler shift and five propagation paths.
The generated wireless signal is compared with the original signal, which is shown in Figure 7(b). The
results show that the multipath fading seriously distorts the signal waveform, and this phenomenon is
more obvious when the Doppler shift is added. In order to explore the impact of different channel effects
on model performance, we generate multiple datasets through simulation, and the specific details are
shown in Table 4.

The accuracies of the LightRFFI model in different channel environments are shown in Figure 8.
According to the results shown in Figure 8(a), different SNRs can have a great impact on the accuracy of
the model. It can be found that the LightRFFI model is difficult to perform an accurate RFFI in a low
SNR environment, but in the medium and high SNR environments, the LightRFFI model can achieve
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Figure 7 (Color online) Wireless signals vs. wired signals. (a) Wireless signals containing only multipath fading; (b) wireless

signals including the multipath fading and the Doppler shift.

Figure 8 (Color online) Accuracy of the BERT-Light in different channel environments. (a) Multipath with different SNRs;

(b) multipath with different Doppler shifts.

extremely high identification accuracy. As per the results in Figure 8(b), we can see that the difficulty
of identifying a device in a mobile environment is higher than that in a stationary wireless environment,
but in most of the outdoor low speed scenarios, the accuracy of the LightRFFI model can be maintained
at a relatively high level. In addition, both Figures 8(a) and (b) show the influence of multipath fading
on accuracy. As the number of propagation paths increases, the signal distortion becomes increasingly
serious, and the difficulty of RFF feature extraction increases, resulting in a certain decrease in accuracy.

5.5 Comparison of different models

In this section, we compare the proposed framework with the recent state-of-the-art methods that ap-
ply contrastive learning and few-shot learning, including SA2SEI [39], CVNN [26], and MAT-CL [40].
Specifically, SA2SEI uses a novel adversarial enhancement-driven self-supervised learning and knowledge
transfer framework, and fine-tunes the feature extractor and classifier using a small amount of labeled
data. CVNN uses complex-valued neural networks for feature extraction and knowledge distillation for
model compression. MAT-CL introduces pseudo labels in metric learning for semi-supervised metric
learning, and uses an objective function regularized alternately by SSML and virtual adversarial training
(VAT) to extract generalized semantic features of wireless signal. The accuracy of the four methods can
be found in Table 5.

Compared with the three benchmark methods, our proposed LightRFFI model outperforms the other
three methods in terms of parameter quantity and accuracy. This is attributed to the fine grained RFF
feature extracted by the BERT model and the knowledge distillation to inherit the BERT learn-gene
to the BERT-Light model. The extracted features of the three benchmark methods are visualized after
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Table 5 Model parameters and calculation amount. The best results are in bold.

Model Total params MFLOPs Accuracy (%)

SA2SEI [39] 1908864 138.2 94.16

CVNN [26] 1071367 114.63 95.4

MAT-CL [40] 859274 206.79 92.81

LightRFFI 705280 133.5 97.52

Figure 9 (Color online) Feature visualization. (a) SA2SEI; (b) CVNN; (c) MAT-CL.

t-SNE, which is shown in Figure 9. Compared Figures 9(a)–(c) with Figure 6(c), the results show that
the boundary between the feature of each category is the clearest for the proposed LightRFFI model,
almost equivalent for the SA2SEI and the CVNN, and the worst for the MAT-CL.

6 Conclusion

In this paper, we combined the LLM and proposed a BERT-LightRFFI framework to enhance zero-trust
edge IoT security. Specifically, we considered an outdoor LoRa edge intelligent network, where the RFFI
model can be deployed on edge IoT devices with limited resources. We pre-trained a BERTmodel with the
unlabeled data via self-supervised learning and obtained a powerful RFF feature extractor. Subsequently,
we used the knowledge distillation to inherit the BERT learn-gene to the BERT-Light model for the
lightweight, and then fine-tuned the BERT-Light model and a classifier using a few-shot labeled wireless
data. The time complexity, parameter quantities, and computational complexity were analyzed. In the
experiments, we used a large-scale real world LoRa dataset to evaluate the performance of the proposed
framework and found the interesting insights. The results proved the proposed framework’s effectiveness
in LLM compression and core knowledge inheritance, achieving an accuracy of 97.52% in the presence
of multipath fading and Doppler shift, which is better than the previous benchmark methods. It found
that in most of the outdoor low speed scenarios, the accuracy of the proposed LightRFFI model can be
maintained at a relatively high level. Moreover, it was found that the accuracy of the LightRFFI model
even exceeds that of the BERT-RFFI model with a few-shot fine-tuning.
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