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Abstract Research on leveraging big artificial intelligence model (BAIM) technology to drive the intelligent evolution of

wireless networks is emerging. However, breakthroughs in generalization brought about by BAIM techniques mainly occur

in natural language processing. There is a lack of a clear technical direction on how to efficiently apply BAIM techniques

to wireless systems, which typically have many additional peculiarities. To this end, this paper reviews recent research

on BAIM for wireless systems and assesses the current state of the field. It then analyzes and compares the differences

between language intelligence and wireless intelligence on multiple levels, including scientific foundations, core usages, and

technical details. It highlights the necessity and scientific significance of developing wireless native BAIM technologies, as

well as specific issues that need to be considered for technical implementation. Finally, by synthesizing the evolutionary

laws of language models with the particularities of wireless systems, this paper provides several instructive methodologies

for developing wireless native BAIM.
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1 Introduction

Given the outstanding potential of artificial intelligence (AI) technologies in complex feature extraction,
high-dimensional data representation, and adaptive decision-making, the application of AI technology
to resolving problems in wireless systems has been a critical topic in wireless technology research [1–
6]. However, simple migrating or reusing successful approaches from computer vision (CV) or natural
language processing (NLP) to wireless systems tends to create serious bottlenecks in terms of performance
and generalizability [7]. This “incompatibility” is because AI for wireless is not directly equivalent to AI
for NLP or CV. Indeed, it is necessary to incorporate electromagnetic physics and engineering methods,
which makes modeling wireless AI substantially different from modeling human cognition and interaction
capabilities in NLP and CV. High-quality wireless AI technologies must adapt to the characteristics of
wireless data and the unique requirements of wireless systems, a concept known as becoming “wireless
native.” In recent years, the incorporation of wireless native methods like physics-inspired structures [7–12]
and cross-module combination [13, 14] has significantly improved the performance and generalization of
wireless AI. Meanwhile, the introduction of prior information and advanced learning architectures can
reduce the demand for training data and computational resources. These fundamental advantages are of
great significance for advancing the usability of wireless AI, whether in centralized or distributed usage
scenarios [2].

Although much progress has been made in wireless AI research, advancements have still only produced
intelligence limited to specific tasks and scenarios, which creates obvious weaknesses in generalizability
and stability. Meanwhile, in the NLP field, recent large language models (LLMs) have demonstrated the
outstanding potential of big AI models (BAIMs) in broad generalization and high reliability. With the

*Corresponding author (email: ning ming@zju.edu.cn)

†Special Topic: The 27th Annual Meeting of the China Association for Science and Technology

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-024-4464-8&domain=pdf&date_stamp=2025-6-23
https://doi.org/10.1007/s11432-024-4464-8
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-024-4464-8
https://doi.org/10.1007/s11432-024-4464-8


Chen Z R, et al. Sci China Inf Sci July 2025, Vol. 68, Iss. 7, 170303:2

Figure 1 Research backgrounds and critical questions of ‘BAIM for wireless’.

help of a pre-trained LLM, numerous language tasks like translation, question answering (Q&A), and
summarization can be accomplished with state-of-the-art performance [15]. Moreover, the emergence
of advanced LLMs like DeepSeek has significantly reduced the training and deployment costs of such
large-scale AI models [16–18], further expanding the applicability of this cross-task general intelligence.
Wireless AI desperately needs similar advancements in generalization. Researchers in [19] first defined
wireless BAIM (wBAIM) as having the typical features of integrating multitasks, unifying multiscenarios,
and all-in-one scheduling. This definition emphasizes the development of a BAIM that focuses on the
physical nature of wireless data and the fundamental requirements of wireless systems. Realizing these
promising visions would represent a quantum leap in functionality, universality, and reliability for wireless
AI, but it requires the support of comprehensive, in-depth technical exploration. Although Ref. [19] has
summarized the technical challenges and potential solutions of wBAIM, several issues almost immediately
emerged with wBAIM that still require clarification and supplementation. These issues informed the
research questions (RQs) for this study (see Figure 1).

• RQ 1: What are the most necessary and significant aspects when investigating wBAIM in the context
of powerful LLMs and their transferability?

• RQ 2: What are the technical peculiarities of wBAIM, especially in comparison to conventional
wireless models and existing LLMs?

• RQ 3: What methodologies for developing wBAIM can be derived by synthesizing the evolutionary
laws of language models and the peculiarities revealed by RQ 2?

To answer these RQs, this paper is organized as follows. Section 2 provides an overview of the current
research landscape and recent advancements in the field. Next, in Section 3, the fundamental differences
between language and wireless are analyzed, highlighting the necessity, challenges, and value of studying
wBAIM. Section 4 then examines, from a system-level perspective, the unique technical considerations
essential for wBAIM research. Section 5 presents several forward-looking insights into how to develop
wBAIM. Finally, the conclusion is drawn in Section 6.

2 Literature review

The success of LLMs has motivated numerous studies on BAIM for wireless to accelerate wireless systems
towards ubiquitous intelligence. Existing studies can be generally categorized into the following three
research paradigms: wireless LLM, LLM-based wireless agent, and wBAIM. The overall architectures of
these three paradigms are shown in Figure 2.
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Figure 2 Common research paradigms on ‘BAIM for wireless’. (a) Wireless LLM; (b) LLM-based wireless agent; (c) wBAIM.

2.1 Wireless LLM

Wireless LLM refers to applying existing LLMs to wireless problems through reuse, fine-tuning, retrieval
augmented generation (RAG) techniques, and so on. These methods translate wireless system require-
ments into language-based descriptions, positioning them within (or approximately within) LLMs’ gener-
alization capabilities. Leveraging LLMs’ advanced information comprehension and vast knowledge base,
initial successes have been achieved in wireless systems with protocol understanding, command inter-
action, and resource allocation [20, 21]. Moreover, some researchers have applied LLMs to NLP-related
tasks in wireless systems, such as text categorization [22], text summarization, and Q&A [23, 24], with
specific applications including the creation of AI platforms for customer interaction, virtual assistants
for technicians, network diagnostic management, and telecom-standard Q&A bots [25–27]. While these
studies have demonstrated the value of LLMs in wireless systems, they primarily remain within the scope
of traditional NLP. Furthermore, LLMs have been applied to practical requirements in wireless systems
such as power control, intrusion detection, resource allocation, and symbol demodulation [28–31]. By
constructing appropriate prompts, LLMs based on in-context learning can understand wireless prob-
lems to a certain extent, thus enabling initial wireless-specific functions without the need for parameter
adjustments.

Meanwhile, to further enhance the applicability of LLMs in wireless communications, some researchers
have begun exploring the integration of wireless domain knowledge into LLMs while focusing on the
role of multimodal information [32]. These researchers have first pre-trained generative models on spe-
cific telecom knowledge datasets, followed by supervised fine-tuning (SFT) of the models with telecom
instruction sets [33], and aligning the model’s outputs with human preferences through reinforcement
learning from human feedback (RLHF) [34–36]. In addition to direct retraining, the RAG mechanism
and the LangChain framework have also been identified as important supplements for a telecom knowl-
edge base [37–41]. Additionally, some researchers have constructed foundational telecom text datasets to
serve as material for expanding LLMs’ wireless knowledge. These include SPEC5G, a text categorization
dataset derived from 3rd Generation Partnership Project (3GPP) technical reports [42]; TeleQnA, a Q&A
dataset extracted from technical documents and research materials [43]; TSpec-LLM, a dataset based on
3GPP specifications that preserves table formulas [44]; Tele-Data, a LaTeX-formatted dataset obtained
from sources like arXiv, 3GPP standards, and Wikipedia; and Tele-Eval, a Q&A evaluation dataset [45].

2.2 LLM-based wireless agent

From the perspective of model architecture, LLMs are primarily designed to meet the requirements of
language tasks. As a result, they have inherent limitations in data representation, inference patterns,
and other aspects when applied to wireless systems. To address these shortcomings, some researchers
have begun integrating AI agent technology with wireless LLMs, exploring the concept of LLM-based
wireless agents [46]. Unlike traditional wireless LLM, an LLM-based wireless agent uses LLM as a
core component, combined with various functional modules to form a complete wireless agent. In [47],
the authors proposed a 6G LLM agent, which utilizes an LLM pre-trained on a wireless text dataset
as its “brain” for environment perception and action planning, and retrieves available tool libraries to
accomplish wireless tasks. Ref. [48] further introduced the experience accumulation module to enable the
continuous evolution of the AI agent. Additionally, in [49,50], researchers further analyze the significance
of multi-agent collaboration in wireless systems. It is important to note that, by invoking external tools,
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LLM-based agents can potentially outperform wireless LLMs in terms of functionality. However, the
upper limits of their understanding and decision-making capabilities are still constrained by the LLM
itself. As such, they still struggle to serve complete wireless systems or solve wireless problems that
cannot be solved by conventional algorithms. Moreover, the intricate logical architecture of the agent
further increases the reasoning complexity beyond that of the LLM alone.

2.3 wBAIM

Although LLM-based methods have been somewhat explored, the current technical progress primarily
focuses on instruction design, resource scheduling, and a few simple wireless problems. These approaches
still lack effective solutions for numerous tough wireless challenges, such as scenario sensing and high-rate
transmission. This limitation arises from two primary factors: firstly, linguistic expressions are frequently
insufficient in precisely characterizing multimodal signals and their intricate correlations; secondly, the
language intelligence derived from textual training lacks adequate knowledge reserves to comprehend the
data structures and underlying mechanisms inherent in wireless data. Therefore, instead of embracing
LLMs, some researchers have explored BAIM in a wireless native way. Wireless native AI refers to an
intelligent framework based on regular patterns of AI technologies, such as deep neural networks, while
incorporating the peculiarities of wireless systems. It tailors model design to the nature of wireless data
and system requirements, and adapts through re-learning on wireless data. Conventional wireless AI has
also followed this approach in many studies. For example, in model design, researchers initially leveraged
the numerical characteristics of wireless data, such as exploiting channel sparsity in the angle-delay
domain and transforming it into the angle domain to make it more image-like [51,52]. Later, researchers
delved deeper into the physical mechanisms underlying the numerical characteristics and employed more
fundamental, physics-inspired techniques to guide model optimization [7–10,12]. In terms of architecture,
some cross-module [13, 14] and cross-layer [53] joint techniques have also been developed to facilitate
applications in wireless systems.

However, given that wBAIM has a broader functional scope, relying solely on existing wireless AI
technologies is insufficient. Therefore, in [19], the authors first outlined three key generalizability indica-
tors of wBAIM: multi-task integration, multi-scenario unification, and all-in-one scheduling. Meanwhile,
Ref. [19] also provides a demonstrative case study where a CMixer [11] model is trained across multiple
scenarios to simultaneously accomplish high-dimensional channel estimation and channel compression
feedback tasks, illustrating the feasibility and significance of wBAIM. Building on this basis, Ref. [54]
introduced SWTCAN, a network based on the advanced swin transformer, which integrates downlink
pilot patterns, channel estimation, and uplink channel feedback into a joint design. Ref. [55] proposed
Csi-LLM, a downlink channel prediction model based on GPT2, which supports variable-length inputs
and enables continuous prediction. Similarly, in [56], a pre-training and fine-tuning-based channel predic-
tion method was presented, enhancing performance in few-shot learning. Meanwhile, [57] evaluated the
similarity and diversity across multi-scenario datasets, offering valuable insights into developing multi-
scenario generalization techniques from a data-based perspective.

2.4 Summary of the literature

Figure 3 presents statistical information on the 36 publications related to BAIM in wireless systems
included in this paper. It shows that research interest in BAIM for wireless is growing, and there is
a growing consensus on the importance of BAIM techniques for the evolution of 6G. However, studies
based on LLMs dominate among the existing paradigms, while research on wBAIM remains limited, and
technical advances in wBAIM are still in the early stages. Furthermore, current LLM-based solutions
primarily focus on a narrow set of wireless tasks, due to substantial differences in core principles and
application contexts between language and wireless domains. The integration of BAIM into wireless
systems has not yet reached the depth and breadth it has achieved in language and other fields. Therefore,
the following sections highlight the necessity and significance of wBAIM, offering critical insights into its
unique challenges and methodologies to foster a deeper integration of BAIM and wireless technologies.
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Figure 3 Statistics of reviewed publications related to ‘BAIM for wireless’. (a) Recent quantitative trends; (b) categorization of

studies.

3 Comparisons with LLM: the ambitions of wBAIM

3.1 Differences in intelligence orientation

Leveraging existing LLMs, the research value of integrating BAIM techniques and wireless networks can
be initially evaluated with low resources and uncomplicated technology adaptation, which is an important
motivation for why existing research primarily investigates wireless LLM and LLM-based wireless agents.
However, there are many intuitionistic differences between language and wireless. What is the scientific
nature of such differences? Can one expect to build complete universal wireless intelligence based on
LLM’s transfer in the presence of such differences? This is one of the important questions to be answered
in this paper.

In fact, the intelligence orientation and applications of AI technologies can be divided into two cate-
gories based on human cognition, which we term “human-centric” and “hyper-cognitive”, as illustrated in
Figure 4. The human-centric model primarily learns from human-generated data, such as images and lan-
guage, and is continually refined through human feedback, such as RLHF, ultimately aiming to replicate
humanoid intelligence. In this sense, the “teacher” of the human-centric model is humanity itself, and its
ultimate goal is to replace and liberate humans. However, due to the inherent limitations of biological
intelligent agents in complex perception and intensive computation, humans lack the deep understanding
and control over many natural and industrial systems. As a result, hyper-cognitive intelligence becomes
essential. The hyper-cognitive model primarily learns from phenomena in natural and industrial sys-
tems, such as weather patterns and electromagnetic signals, and is optimized through system feedback,
ultimately producing intelligence that surpasses the limits of human cognition. In this process, humans
typically act as assistants, observing and interacting with information, while the model draws knowledge
from systematic phenomena to help humans understand and manipulate complex scientific laws beyond
their existing cognitive frameworks.

The distinction between these two forms of intelligence can be intuitively grasped by referencing human
intelligence. Rooted in human-activity-and-feedback-based learning, this type of intelligence is inherently
constrained by the limits of human cognition, making it challenging to fully address problems that exceed
human understanding. Intuitively, language is a human-centric domain, whereas electromagnetic sciences
and systems, which are not directly perceivable or recognizable by humans, represent hyper-cognitive
challenges. Consequently, while LLMs excel at language-related tasks, they struggle to fully engage with
electromagnetic intelligence—an area even beyond human capability. The identified differences address
Question 1: LLMs and their transfer can simplify human interaction with wireless systems and manage
certain simple wireless use cases. However, for complex wireless problems that are difficult to solve even
with the mathematical and physical methods available to humans, LLMs cannot provide a complete
solution.

3.2 Scientific significance of wBAIM

Given these substantial differences, an in-depth understanding of electromagnetic laws is essential to
more freely and accurately process, represent, and utilize electromagnetic signals. This necessitates the
development of a BAIM that is native to electromagnetic sciences and systems—referred to as wBAIM.
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Figure 4 Graphical illustration of human-centric and hyper-cognitive intelligence, which reflects substantial differences in intel-

ligence orientation between LLM and wBAIM.

However, the black-box nature of AI models, coupled with the limitations of human cognition, makes it
impossible to directly assess whether a given model has truly acquired the required capabilities. As a
result, implicit assessment metrics become essential. This is precisely one of the reasons why Ref. [19]
defined multi-task integration, multi-scenario unification, and all-in-one scheduling as the key features of
wBAIM. If a single model can be used to generalize across multiple wireless tasks and scenarios, it must
inherently capture the commonalities among them—that is, the general electromagnetic laws. In other
words, this is the “compression is intelligence” in the wireless context. Likely, this intelligence not only
serves wireless communication systems but also provides technical support for other electromagnetics-
related fields such as remote sensing [58, 59] and radar systems [60].

Compared to human-centric intelligence, hyper-cognitive intelligence is also crucial for the advancement
of human society, though its development is still in relatively early stages. Given that the wireless
network is a widely-used, scientifically well-defined, and highly digitized field within common natural and
industrial systems, their advantages in data, computational power, and system feedback are particularly
pronounced. As such, wBAIM serves as an ideal candidate for studying hyper-cognitive intelligence, with
significant potential to lead technological breakthroughs and provide a valuable reference framework for
AI-driven science and engineering.

4 Peculiarities of wBAIM

As discussed in Section 3, the intelligence inherent in natural language does not entirely satisfy the
functional requirements of wireless systems. To fully leverage the potential of BAIM in wireless systems,
it is necessary to develop wBAIM in a wireless native manner. Before creating practical implementation
methods, we must evaluate critical aspects of AI technology development, including data, models, and
applications, as summarized in Figure 5. This evaluation will help us understand how wBAIM differs
from conventional wireless models and LLMs.

4.1 Data attribute

In conventional wireless models, the focus is often limited to specific tasks, meaning these models typically
process only unimodal data in input or output. However, one key feature of wBAIM is its integration
of multiple wireless tasks, which requires representing and processing multimodal data, such as channel
state information (CSI), modulation symbols, and positional coordinates. In contrast, language data are
inherently unimodal, and multimodal data processing is not a crucial requirement in LLMs. Other BAIMs,
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Figure 5 Technical peculiarities of wBAIM in terms of data, model, and application.

such as language-vision models (LVMs), primarily rely on the alignment of semantic information to handle
multimodal data, yet there remains a need to better exploit the correlations and complementarities among
these modalities. As a result, addressing the multimodality of wireless data requires further technical
research. Moreover, wireless data are typically raw data obtained through sampling and observation,
which impose strict logical order, correspondence, and structural properties. In comparison, language
data, which have been pre-processed by humans, do not require the same strict order and logic, as they can
convey semantic information accurately even when somewhat rearranged. This fundamental difference
places higher demands on feature extraction and representation learning structures in wBAIM.

4.2 Model functionality

Unlike language models, which encompass a wide variety of knowledge, the fundamental laws of elec-
tromagnetic waves are relatively simple. The complexity of wireless signals often comes from the deep
coupling of these simple laws with scattering environments and transmission mechanisms. This charac-
teristic should be reflected in the development of wBAIM, i.e., the key to the functionality of the model
is its reasoning ability rather than its memorization. Specifically, this involves how to guide the model to
understand the concise mechanism behind complex data and how to couple the learned mechanism with
the features of the target scenario.

Additionally, wireless systems require real-time transmission, making it essential to strictly control
inference time to avoid issues like outdated state information and additional transmission latency. This
means that wBAIM urgently needs lightweight reasoning mechanisms under a large information capac-
ity. Furthermore, since obtaining real-time state information in wireless systems often incurs additional
signaling overhead, the interactions between wBAIM, the system, and users are inherently limited. As a
result, a mechanism capable of deep information extraction and high-density data representation is more
needed for wBAIM than for processing extremely long information sequences.

4.3 Applied scenarios

The unique networking architecture of wireless systems also brings peculiarities to wBAIM. On the one
hand, since the major objective of wBAIM is to unify various scenarios and provide all-in-one scheduling, it
requires wBAIM to be generalizable across diverse and heterogeneous cellular scenarios. The transmission
configurations and scatterer environments within different scenarios are usually different, making it a key
technical challenge to enable wBAIM to quickly adapt to various scenarios. On the other hand, as
wireless networks are evolving towards decentralization, the wireless data and computational resources
are inherently distributed across scenarios. This decentralized nature makes it impractical for wBAIM
to perform training and inference in a fully centralized manner, which differs from the mainstream LLM
paradigm. Therefore, developing an efficient, multi-node architecture for collaborative computation is
another critical technical requirement for advancing wBAIM.
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Figure 6 Systematic methodologies in developing wBAIM.

5 Methodologies to build wBAIM

Despite the essential differences between wireless and language, scientific development often has strong
commonalities across different domains. The successful evolution of LLMs from conventional language
models is essentially driven by four key elements: the extensive data as a source of intelligence, the learning
paradigm oriented towards general intelligence, the emergence effect brought about by the expansion of
model structure and scale, and the efficient method for use case adaptation. In this paper, we map these
four elements to the wireless case, merge the evolutionary laws of LLMs with wireless peculiarities, and
provide a methodology to guide the development of wBAIM, as shown in Figure 6.

5.1 Hybrid data collection

A rich knowledge base of training data is the foundation for BAIM to achieve wide-ranging intelligence.
However, since wBAIM aims to serve massive heterogeneous cellular scenarios, the wireless datasets
used for pre-training must adequately reflect the scenario diversity, which requires mixing the data from
multiple scenarios. Meanwhile, to maximize the diversity of the dataset, an initial assessment of the
similarity between scenarios, such as the data distribution sampling [57], should be performed before
the data collection, and the scenarios with more significant differences should be prioritized. In addition,
given privacy and security considerations, federated learning [61], which employs model interaction rather
than direct data mixing, represents a potential technical approach.

In addition, considering the cost of the real data collection, efficient wireless data augmentation tech-
niques, such as data conversion based on a priori physical properties of electromagnetic signals and data
generation based on generative models, are worth exploring. Meanwhile, the significance of simulation
data should be especially emphasized. Advanced simulation techniques, like ray-tracing, can generate
high-fidelity wireless datasets at a low cost. Moreover, they can obtain additional information difficult
to obtain in real measurements, such as the multi-path component of the channel and the unbiased user
location. Therefore, the efficient mixing of simulated and measured data can significantly reduce the cost
of the pre-training for wBAIM.

5.2 Physics-driven learning paradigm

To build broad-domain generalization intelligence for BAIM, it is essential to establish a learning paradigm
that enables the model to learn various regular phenomena. In wireless networks, the regulations of
different tasks and scenarios are derived from the physical laws of electromagnetic waves. Therefore,
the ideal learning paradigm for wBAIM should be physics-driven. On the one hand, incorporating
known physical laws into the model’s a priori design can significantly improve learning efficiency and
generalization ability, reducing parameter redundancy and effectively controlling inference complexity.
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For instance, one could design the neural network’s representation structure according to the physical
structure of wireless data, define the optimization objective based on the distribution of wireless features,
or select the activation function based on the mapping relationship of wireless information [8].

On the other hand, the architecture design of wireless AI should shift from local module-oriented to
global function-oriented, from task-driven to physics-driven. This transformation would facilitate better
utilization of the physical correlations across multiple domains and dimensions of wireless data through
necessary module reorganization. For example, in [13], researchers proposed a novel channel acquisition
method, channel deduction, by combining channel estimation and prediction. This approach overcomes
the limitations of traditional channel acquisition models, leveraging the physical correlation of wireless
data across multiple dimensions of space, time, and frequency, leading to a low-overhead, continuous
autoregressive channel acquisition technique.

5.3 Wireless scaling laws

Another typical feature of BAIM is that it continuously improves performance through the structure or
scale expansion of the model, even producing the “emergence” effect. In language models, researchers
have summarized the statistical relationships between parameter count, dataset size, computational cost,
and loss value, broadly predicting the performance gains that can result from expanding the model scale.
This has also become an important theoretical foundation for the evolution of LLMs. This paper argues
that increasing model size is also essential for the performance of wireless models, especially in terms
of generalization, because sufficient neurons are necessary for the model to store diverse knowledge and
perform complex reasoning. This principle is preliminarily confirmed in [19].

Meanwhile, it is necessary to point out that the capability to jointly represent and process multi-modal,
multi-user, and multi-scenario data is also crucial for wireless models to break through the current
performance bottlenecks and generate the emergence effect of ‘more is different’. In wireless models,
only limited real-time state information is available due to naturally constrained signaling costs, which
differs greatly from language models, where sufficient information is usually accessible. This scarcity
of known information can significantly restrict the model’s performance, even if the model has extreme
depth in information processing. Therefore, for wBAIM, the ability to simultaneously process multi-
view information across a wide range of dimensions will significantly enhance their capacity to represent
complex wireless environments, which will be a fundamental composition of the wireless scaling laws.

5.4 Structural prompt

After learning a wealth of knowledge and intelligence, the model’s efficient adaption to specific use cases is
crucial for the deployment and application of BAIM. Common adaptation methods include fine-tuning,
feature extraction, and prompting. Both fine-tuning and feature extraction require back-propagation
and gradient descent in batches, which are demanding on hardware devices and computational resources.
Meanwhile, this retraining process often demands considerable time, during which the model’s intelli-
gence expression may fail to meet current scenario requirements—a particularly critical issue for wireless
communication systems with frequent environmental and configuration changes. Therefore, prompting,
which does not require retraining, is the preferred adaptation method for wireless systems with highly
decentralized computational resources.

Unlike LLMs, where the prompt can linguistically be described in various forms, the ideal prompt
for wBAIM should be strictly structured. The model must design specific data reading and processing
patterns to extract essential features from the wireless prompt, facilitating an understanding of and
adaptation to the target scenario. For instance, in wireless prompting, the data with different modalities
should be processed through corresponding representation interfaces, and the orders and relationships
between sub-elements must be strictly maintained during processing. This additional design is necessary
due to the peculiarities of wireless data. As described in Subsection 4.1, the meaning of wireless data
depends on its strict logic and structure. In contrast, language has robust overall semantics and can
convey core information even without strict logic and structure, which significantly simplifies the structure
requirements for the prompt to LLMs. While in the development of wBAIM, researchers need to pay
extra attention to developing and utilizing structural prompts.
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Figure 7 Overall example of wBAIM’s collaboration with AI-agents.

5.5 Collaboration with AI-agents

After constructing wBAIM, the next step is to consider the integration with AI-agents, an important
booster for expanding the practical applications of current BAIM technology. Building upon wBAIM’s
deep understanding of wireless regulations, adding modules such as planning, observation, memorization,
and small model tool libraries will create wireless intelligent agents, significantly enhancing the usability
and flexibility of wireless intelligence. For instance, a planning module can improve wBAIM’s logical
reasoning capabilities and optimize its global performance; an observation module can enable autonomous
acquisition of necessary state information, reducing signaling overhead; a memory module can help the
agent to evolve continuously and reduce repetitive thinking; and small-tool libraries can lower the energy
consumption required for intelligent computations and optimize the system configurations. An overall
example is shown in Figure 7. Furthermore, the technical crux of coordinating such multifunctional
modules lies in controlling the overall computational latency and achieving effective fusion and alignment
of multi-modal information.

Meanwhile, wireless intelligence is not an isolated intelligence. It can collaborate deeply with linguistic
and visual intelligence to further facilitate the management of wireless systems. For example, by aligning
wireless commands with natural language through techniques such as the projection layer, wireless agents
can be effectively linked with other commonly used agents, improving the interactivity of wireless systems
and reducing the technical barriers to operation. In summary, the core objective of integrating wBAIM
with AI agents is to avoid the passive and mechanical use of wireless intelligence, instead developing
it into an intelligent wireless brain that can actively observe, control, optimize, and interact with the
system.

6 Conclusion

Ubiquitous intelligence will become an indispensable, fundamental enabling technology as the next-
generation wireless networks evolve and improve their functionality, performance, and flexibility. To
address the current challenges that wireless AI technologies face in terms of unit cost and reliability,
BAIM, which has recently made significant breakthroughs in versatility and generalizability, has become
a promising new approach. Therefore, the question of building a BAIM suitable for wireless networks
has become a topic of great interest in wireless AI research.

In this study, we focus on creating a research roadmap for developing native wBAIM. We provide a
detailed description of its scientific objectives, dissect the peculiarities, and indicate instructive method-
ologies for the evolution of wireless intelligence. This study can provide academic researchers and industry
experts with insightful ideas on the evolution of wBAIM. With further efforts in these research directions,
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wBAIM is anticipated to create a revolution in the intelligence of entire wireless systems.
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