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Abstract Molecular property prediction plays a pivotal role in advancing our understanding of molecular representations,

serving as a key driver for progress in drug discovery. Leveraging deep learning to gain comprehensive insights into molecular

properties has become increasingly critical. Recent breakthroughs in molecular property prediction have been achieved

through molecular pretraining models, which utilize large-scale databases of unlabeled molecules for pretraining, followed

by fine-tuning for specific downstream tasks. These models enable a deeper understanding of molecular properties. In

this study, we review recent advancements in molecular property prediction using molecular pretraining models. Our focus

includes molecular descriptors, the impact of pretraining dataset size, molecular characterization model architectures, and

the diversity of pretraining task types. Additionally, we compare the performance of existing methods and propose future

directions to enhance the effectiveness of molecular pretraining models.
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1 Introduction

Deep learning, with its powerful learning capabilities, can process raw molecular representations and au-
tomatically extract task-relevant features from vast datasets, enabling highly accurate predictions [1–6].
This makes deep learning models particularly well-suited for large-scale drug screening, where their effi-
cient runtime significantly accelerates the screening process and offers novel insights into disease mech-
anisms [7–11]. Despite these advantages, the complexity of molecular characterization poses challenges,
especially when training high-dimensional molecular feature representations from scratch with limited
data [12–15]. To overcome this, molecular pretraining models (MPMs) have been introduced. These
models leverage large-scale unlabeled molecular datasets to learn generalizable molecular representations,
enabling more accurate molecular property predictions.

Chemical molecules can be represented in various forms, including sequence-based simplified molecu-
lar input line entry system (SMILES) strings [16, 17], 2D molecular diagrams or images [18, 19], and 3D
molecular conformations or videos [20]. To leverage these representations, a range of pretraining tasks has
been developed, such as atom masking, interatomic distance prediction, and functional group prediction.
Additional tasks include node-level atomic attribute prediction, graph-level molecular motif prediction,
molecular contrastive learning, and 3D coordinate recovery that incorporates spatial structural informa-
tion. These pretraining strategies are diverse and intricate, necessitating explicit analysis to refine and
enhance their effectiveness.

As research advances, molecular pretraining models increasingly integrate 3D conformational infor-
mation to improve predictive performance. The evolution of molecular encoders has progressed from
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Figure 1 (Color online) Different types of molecular descriptors.

sequence-based models, such as recurrent neural networks (RNNs) and Transformers, to graph neural net-
works (GNNs) [21,22]. Notably, recent studies highlight the superior performance of graph Transformer-
based molecular encoders in molecular property prediction tasks. Their ability to capture global features
and fuse multimodal information has demonstrated significant advantages in advancing molecular repre-
sentation learning.

In this study, we provide a comprehensive overview of the development of molecular pretraining models,
focusing on molecular descriptors, pretraining dataset sizes, molecular representation model architectures,
and types of pretraining tasks. This review offers an organized perspective on the topic. We also compare
the performance of various methods in molecular property prediction tasks using both scaffold split [23]
and random scaffold split [24] evaluations, offering valuable insights for method assessment. Finally, we
identify key research challenges in molecular pretraining models and propose future directions to advance
this field further.

2 Molecular descriptors

Chemical molecules can be described using various molecular descriptors, including sequence-based rep-
resentations, 2D representations such as molecular diagrams and images, and 3D representations like
molecular conformations and videos (Figure 1). This section provides an in-depth discussion of these
diverse molecular descriptors.

2.1 Sequence-based molecular representation

Chemical molecules can be represented as strings using the SMILES. In SMILES strings, atoms and
chemical bonds are denoted by letters and punctuation marks, respectively, with branches indicated
by parentheses. This form of molecular representation is well-suited for natural language processing
techniques due to its sequential structure. While SMILES is compact and computationally efficient, it
has notable limitations.

First, the same molecule can have multiple valid SMILES representations, undermining the uniqueness
of molecular representations and complicating molecular representation learning. Second, while SMILES
can capture a molecule’s 2D topology to some extent, it cannot represent the 3D spatial structure or
account for the conformational diversity of multi-conformational molecules.

SELF-referencing embedded strings (SELFIES [25]) is an improved version of SMILES that ensures
all generated strings correspond to valid chemical structures, thereby preventing training failures caused
by invalid SMILES. However, SELFIES has low readability. In contrast, the International Union of Pure
and Applied Chemistry (IUPAC [26]) nomenclature system provides a systematic approach to describing
molecular structures and functional groups in a human-readable format.
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Alternatively, molecular fingerprints provide another sequence-based representation for molecules, en-
coding structural information into fixed-length vectors [27–30]. These vectors algorithmically summarize
chemical information, such as atoms, bonds, and characteristic substructures. For instance, MACCS [31]
fingerprints encode 2D substructures, while extended connectivity fingerprints (ECFPs [32]) are based on
topological features, such as ring neighborhoods. These fingerprints are widely used in drug design and
quantitative structure-activity relationship (QSAR) analysis due to their ability to efficiently represent
molecular features.

2.2 2D-based molecular representation

Graph data naturally model complex interactions and are extensively used in natural sciences, including
chemistry and biology, as well as in fields such as image processing and social network analysis. Graph-
based molecular representations, where atoms are treated as nodes and chemical bonds as edges, enable
chemical molecules to be represented as 2D graph structures. These 2D topological graphs effectively
capture the topological features of molecular structures, providing an intuitive understanding of molecular
organization. However, they are limited in their ability to represent 3D conformational information [33].

Recently, molecular representation through molecular images has emerged as a novel and effective
approach [18]. In this method, chemical molecules are visualized as 2D images or pixel-based repre-
sentations in two-dimensional space. Leveraging computer vision techniques, this approach facilitates
molecular representation learning tasks, such as calculating intermolecular similarity and extracting key
substructures, broadening the scope of molecular characterization.

2.3 3D-based molecular representation

Molecular graphs are effective for modeling the 2D features of molecules but are limited in their ability
to capture 3D spatial information, such as molecular conformations. Additionally, the complexity and
diversity of molecular graphs—such as heterogeneity and long-range interactions in varying chemical
environments—pose challenges for 2D-based molecular representation learning [34]. To address these
limitations, 3D spatial representations of molecules have been introduced for molecular representation
learning.

The 3D information of molecules includes atomic spatial coordinates, interatomic distances, bond
angles, and other conformational details. By incorporating 3D information, optimal molecular conforma-
tions can be selected, making this approach well-suited for high-precision chemical modeling and complex
molecular simulations. Moreover, 3D data enable the calculation of quantum chemical (QC) properties,
such as energy, polarizability, and molecular orbitals, enhancing the interpretability and predictive power
of molecular representations. However, 3D structural information comes with challenges, including high
computational complexity, costly data generation, and sensitivity to conformational energy variations
that significantly impact molecular characterization.

Beyond static 3D representations, molecular spatial structures can also be visualized as dynamic videos
[20]. By rendering a molecule’s 3D structure as a series of frames, this novel approach captures temporal
and spatial conformational information, offering new opportunities for molecular representation learning.

3 Datasets and split methods

3.1 Pretraining datasets

PubChem [35], an open chemistry database from the National Institutes of Health (NIH), contains over
150 million compounds and provides diverse molecular information, including chemical structures, iden-
tifiers, chemical and physical properties, biological activities, patents, and safety and toxicity data.

The ZINC [36] database hosts over 200 million molecules organized into subsets such as drug-like,
lead-like, and natural products. It offers 3D conformations suitable for molecular docking and molecular
dynamics simulations. ZINC15, an enhanced version of ZINC, features a larger dataset, improved flexi-
bility, and optimized molecular information tailored for modern virtual screening applications. ZINC20
expands upon its predecessor by incorporating over 1.7 billion molecules, available in SMILES, SDF,
Mol2, PDBQT, and other formats.
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Table 1 Pretraining datasets employed by various molecular pretraining methods, along with the number of molecules used for

pretraining. k for thousands and M for millions.

Method Datasets Number of molecules

KPGT ChEMBL 2M

FG-BERT ChEMBL 1.45M

PremuNet ChEMBL, PCQM4Mv2 5M

MolGT GEOM-Drugs, QMugs, PCQM4Mv2 6M

GeoSSL-DDM Molecule3D [41] 1M

Transformer-M PCQM4Mv2 3.37M

Uni-Mol+ PCQM4Mv2 3.37M

VideoMol PCQM4Mv2 2M

GNS-TAT PCQM4Mv2 3.37M

Frad PCQM4Mv2 3.37M

MolCLR PubChem 10M

ChemBERTa PubChem 77M

ChemBERTa-2 PubChem 77M

ImageMol PubChem 10M

CAFE-MPP PubChem 10M

BioT5+ PubChem, ZINC20 28.8M

Chemformer ZINC15 100M

SMILES-BERT ZINC15 18.6M

GEM ZINC15 20M

KANO ZINC15 0.25M

MGSSL ZINC15 250k

HiMol ZINC15 250k

Uni-Mol ZINC15, ChEMBL 19M

Mol-AE ZINC15, ChEMBL 19M

BioT5 ZINC20 –

ChEMBL [37], focused on drug discovery, includes more than 2.5 million bioactive chemical structures.
This high-quality resource links bioactive compounds with drug targets, supporting both academic and
industrial research in identifying and developing new drugs.

The PCQM4Mv2 [38], part of the PubChemQC project, is a quantum chemistry dataset comprising
3378606 molecules with 3D structures calculated via density functional theory (DFT).

GEOM-Drugs [39] provides 3D conformations of a vast number of molecules generated through quan-
tum chemical optimization or force-field-based methods. Its molecular library is primarily derived from
ZINC and ChEMBL, ensuring drug-like properties that make it well-suited for drug discovery and virtual
screening studies. Similarly, QMugs [40] selects drug-like compounds from the PubChem database and
computes high-precision quantum chemical properties for these molecules.

The pretraining datasets used for the methods mentioned in the text are given in Table 1 [41].

3.2 Downstream task datasets

MoleculeNet [42] is a benchmark dataset specifically designed for molecular machine learning tasks. It
includes classification tasks, such as BACE, BBBP, ClinTox, Tox21, HIV, SIDER, MUV, and ToxCast,
as well as regression tasks like FreeSolv, ESOL, and Lipophilicity. MoleculeNet encompasses a wide range
of challenges, from target prediction to drug toxicity and solubility assessment (Table 2).

Two widely used dataset splitting strategies in MoleculeNet are scaffold split [23] and random scaffold
split [24]: scaffold split based on molecular scaffolds, ensuring that scaffolds in the training, validation,
and test sets are distinct. By simulating out-of-distribution prediction tasks, scaffold split better reflects
real-world scenarios where models must generalize to novel chemical structures. Random scaffold split
combines elements of random and scaffold-based splitting, this method introduces a degree of randomness
to the assignment of molecules while retaining the scaffold-based separation logic. Unlike standard scaffold
splitting, where scaffold groupings are fully assigned to a single dataset (training, validation, or test),
random scaffold split proportionally distributes scaffolds across the datasets.

The scaffold split is more challenging for model evaluation as it creates a stricter test of a model’s ability
to generalize to unseen scaffolds, while the random scaffold split offers greater flexibility by blending
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Table 2 Details of the molecular property datasets.

Dataset Number of molecules Number of tasks Category Metric

BACE 1513 1 Biophysics ROC-AUC

BBBP 2039 1

Physiology ROC-AUC

ClinTox 1478 2

Tox21 7831 12

ToxCast 8575 617

SIDER 1427 27

MUV 93087 17
Biophysics ROC-AUC

MIV 41127 1

FreeSolv 642 1

Physical chemistry RMSEESOL 1128 1

Lipophilicity 4200 1

QM7 6830 1

Quantum mechanics MAEQM8 21786 12

QM9 133885 3

scaffold logic with random assignment.
According to MoleculeNet [42], the area under the receiver operating characteristic curve (ROC-AUC)

[43] is employed to evaluate the performance of classification tasks, while the root mean square error
(RMSE) [44] or the mean absolute error (MAE) is employed to evaluate the performance of regression
tasks.

BACE [45] dataset provides quantitative (IC50) and qualitative (binary label) binding results for a set
of inhibitors of human β-secretase 1 (BACE-1).

BBBP [46] dataset is extracted from a study on the modeling and prediction of the barrier permeability.
ClinTox [47] dataset compares drugs approved by the FDA and drugs that have failed clinical trials

for toxicity reasons.
Tox21 [48] dataset contains qualitative toxicity measurements for 8k compounds on 12 different targets,

including nuclear receptors and stress response pathways.
ToxCast [49] dataset is an extended data collection from the same initiative as Tox21, providing

toxicology data for a large library of compounds based on in vitro high-throughput screening. The
processed collection includes qualitative results of over 600 experiments on 8k compounds.

SIDER [50] is a database of marketed drugs and adverse drug reactions (ADR), grouped into 27 system
organ classes.

MUV [51] group is a benchmark dataset selected from PubChem BioAssay by applying a refined nearest
neighbor analysis. The MUV dataset contains 17 challenging tasks of approximately 90000 compounds,
designed specifically to validate virtual screening techniques.

HIV [52] dataset contains more than 40000 records of whether the compound inhibits HIV replication
for binary classification between active and inactive.

FreeSolv [53] provides experimental and calculated hydration free energy of small molecules in water.
The calculated values are derived from alchemical free energy calculations using molecular dynamics
simulations. The experimental values are included in the benchmark collection.

ESOL [54] is a standard regression dataset containing structures and water solubility data for 1128
compounds. The dataset is widely used to validate machine learning models on estimating solubility
directly from molecular structures (as encoded in SMILES strings).

Lipophilicity [55] is a dataset curated from ChEMBL database containing experimental results on
octanol/water distribution coefficient (logD at pH = 7.4). Due to the importance of Lipophilicity in
membrane permeability and solubility, the task is of high importance to drug development.

QM7 [56] is a subset of GDB-13 (a database of nearly 1 billion stable and synthesizable organic
molecules) that records the calculated atomization energies of stable and synthesizable organic molecules,
such as HOMO/LUMO and atomization energies. It contains various molecular structures (such as triple
bonds, cycles, amides and epoxy resins) and up to 7 heavy atoms C, N, O, and S.

QM8 [57] uses a variety of quantum mechanics methods to calculate the electronic spectrum and excited
state energy of small molecules.

QM9 [58] is a comprehensive dataset providing geometric, energetic, electronic, and thermodynamic
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Figure 2 (Color online) Summary of representative molecular pre-training models (MPMs).

properties for a subset of the GDB-17 database, including 134000 stable organic molecules and up to 9
heavy atoms.

4 Molecular encoder architecture

With the development of chemoinformatics, researchers have proposed more and more models for molecu-
lar characterization. For the three molecular descriptors mentioned above, we summarize the correspond-
ing model architectures: (1) sequences-based; (2) GNN-based; (3) graph Transformer-based; (4) others.
The methods mentioned in this review are summarized in Figure 2 and Table 3 [18, 20, 23, 34, 59–80].

4.1 Sequence-based approaches

Sequence-based approaches draw inspiration from natural language processing (NLP) for molecular data
analysis. These methods use sequence-type molecular descriptors, such as SMILES strings and molecular
fingerprints, as input to train models based on architectures like RNNs and Transformers for molecular
representation learning (Figure 3).

Wang et al. [59] developed SMILES-BERT, a semi-supervised model featuring a Transformer layer
built on an attention mechanism. The model was pre-trained on large-scale unlabeled data using the
Masked SMILES Recovery task.

Chithrananda et al. [60] and Ahmad et al. [62] developed ChemBERTa and ChemBERTa-2, respec-
tively, leveraging the Transformer architecture for SMILES-based molecular characterization. These
models were pre-trained on a dataset of 77 million SMILES molecules, marking one of the first successful
applications of Transformer models in this domain.

Chemformer, introduced by Irwin et al. [61], leverages the BART [81] language model by integrat-
ing both encoder and decoder architectures of the Transformer and improves molecular representations
through masked pretraining.

Zhang et al. [74] integrated molecular fingerprinting with SMILES and innovatively mapped each atom
in a SMILES string to its corresponding position in a 2D molecular representation.

FG-BERT, proposed by Li et al. [64], incorporates functional group information and leverages the
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Table 3 Details of the model architectures.

Model Architecture Date Molecular descriptors Datasets Pretraining strategies

SMILES-BERT [59] Transformer 2019.09 SMILES ZINC15 Masked SMILES prediction

ChemBERTa [60] Transformer 2020.10
SMILES,

SELFIES
PubChem Masked prediction

Chemformer [61] Transformer 2022.01 SMILES ZINC15

(1) Masking

(2) Augmentation a combination

of masking and augmentation

ChemBERTa-2 [62] Transformer 2022.09 SMILES PubChem
(1) Masked language modeling

(2) Properties prediction

BioT5 [63] Transformer 2023.10 SELFIES
PubChem,

ZINC20
Masked language model

FG-BERT [64] Transformer 2023.11
SMILES,

2D graph
ChEMBL

(1) Masked language model

(2) Next sentence prediction task

BioT5+ [65] Transformer 2024.02
SELFIES,

IUPAC
ZINC20 Masked language model

MGSSL [23] GNNs 2021.10 2D graph ZINC15
(1) Masked pretraining for atom attributes

(2) Construction and prediction of motif tree

GEM [34] GNNs 2022.02 3D graph ZINC15

(1) Predicting bond lengths

(2) Predicting bond angles

(3) Predicting interatomic distances

MolCLR [66] GNNs 2022.03 2D graph PubChem
(1) Molecule graph augmentation

(2) Contrastive-based pre-training

GNS-TAT [67] GNNs 2023.01 3D graph PCQM4Mv2 Atom 3D coordinate recovery

GeoSSL-DDM [68] GNNs 2023.01 3D graph Molecule3D
(1) Atomic 3D coordinate denoising

(2) Interatomic distance denoising

HiMol [69] GNNs 2023.02 2D graph ZINC15

Node or edge level:

(1) Atom type

(2) Bond link predection

(3) Bond type (single/double bond)

Graph level:

(4) Atom number

(5) Bond number

KANO [70] GNNs 2023.05 2D graph ZINC15 Contrastive-based pre-training

Frad [71] GNNs 2024.09 3D graph PCQM4Mv2 Coordinate Gaussian noise recover

GROVER [72]
Transformer,

GNNs
2020.10 2D graph

ZINC15,

ChEMBL

(1) Contextual property prediction

(2) Graph-level motif prediction

CAFE-MPP [73]
Transformer,

GNNs
2023.09

SMILES,

2D graph
PubChem

Comparative learning based on

SMILES and 2D graphs

PremuNet [74]
Transformer,

GNNs
2023.10

SMILES,

2D graph,

3D graph

ChEMBL,

PCQM4Mv2

(1) AutoEncoder

(2) Masked prediction

(3) Reconstruction of atomic

information based on 3D structures

(4) Reconstruction of 3D structures

based on atomic information

(5) Random masking of 2D and 3D

information and reconstruction

Uni-Mol [75]
Graph

Transforme
2023.02

3D graph,

Protein

Pockets

ZINC, ChEMBL

(1) Atom 3D coordinate recovery

(2) Atom-atom pair distance prediction

(3) Masked pretraining for atom species

Transformer-M [76]
Graph

Transforme
2023.05

2D graph,

3D graph
PCQM4Mv2

(1) Prediction HOMO-LUMO gap

(2) 3D position denoising

KPGT [77]
Graph

Transforme
2023.11 2D graph PCQM4Mv2 Masked pretraining

Mol-AE [78]
Graph

Transforme
2024.05 3D graph ZINC, ChEMBL 3D cloze

Uni-Mol+ [79]
Graph

Transforme
2024.08 3D graph PCQM4Mv2

(1) QC property prediction

(2) 3D position prediction

MolGT [80]
Graph

Transforme
2024.11

2D graph,

3D graph

GEOM-Drugs,

QMugs,

PCQM4Mv2

(1) InfoMotif

(2) Coordinate denoising

(3) Knowledge-guided prototypical clustering

(4) Implicit 3D geometry contrastive learning

ImageMol [18] Others 2022.11 2D image PubChem

(1) Molecular image reconstruction

(2) Mask-based contrastive learning

(3) Molecular rationality discrimination

(4) Jigsaw puzzle prediction

VideoMol [20] Others 2024.11 3D video PCQM4Mv2

(1) Video-aware pre-training

(2) Direction-aware pre-training

(3) Chemical-aware pre-training
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Figure 3 (Color online) Processing of sequence-based molecular representation using RNN and Transformer architecture.

(a) Representation of molecules using SMILES or molecular fingerprints; (b) RNN architecture; (c) Transformer architecture;

(d) obtaining molecular embedding.

Figure 4 (Color online) Processing of molecular representation using GNN architecture. (a) Convert chemical molecules into

molecular graphs and update node representations through a message-passing mechanism, where k denotes k-hop neighbors;

(b) after passing through a multilayer GNN, the graph-level molecular representation hi is obtained, followed by the final rep-

resentation zi produced through a feed-forward neural network.

attention mechanism to emphasize FG features critical to target attributes, thereby offering strong inter-
pretability for downstream training tasks.

The 1D SMILES sequence-based molecular characterization method obtains a low-dimensional vector
representation of the molecule by performing feature extraction on the SMILES string. However, the
performance of many SMILES-based deep neural network models is constrained by the limitations of
poor scalability, loss of spatial information, and non-uniqueness of the SMILES-ordered representation.
Therefore, SELFIES and IUPAC nomenclature were introduced for molecular representation.

With the growing research on large language models (LLMs), multimodal pre-trained models integrat-
ing diverse information have been applied to molecular property prediction. Beyond property prediction,
these studies on the sequence-based representation of molecules offer new insights into molecular char-
acterization. Pei et al. [63] introduced BioT5, which leverages the SELFIES representation to extract
molecular features. They employed the T5 (text-to-text transfer Transformer) architecture with an
encoder-decoder structure to process SELFIES. Later, they proposed BioT5+ [65], which further incor-
porated IUPAC nomenclature to enhance molecular characterization by jointly utilizing SELFIES and
IUPAC.

4.2 GNN-based approaches

GNN-based modeling architectures are commonly employed to process 2D molecular graphs or 2D-like
molecular graphs augmented with 3D information. These models utilize message passing within the
graph to learn the properties of nodes (atoms) and edges (bonds), effectively capturing both local and
global structural information (Figure 4). GNNs are particularly well-suited for tasks involving complex
molecular structures and strong interdependencies, such as molecular property prediction and reaction
prediction.

Classical graph neural network models, such as GCN [82], GAT [83], GIN [84], MPNN [85], and
GraphSAGE [86], can model molecular structures to varying extents. Building on these, Song et al. [87]
proposed CMPNN, which introduces a new molecular embedding method to enhance message interaction
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between nodes and edges. This is achieved through the incorporation of a message enhancer module,
addressing challenges in the representation of molecular graphs. Although the models mentioned above
are trained from scratch without a pretraining process, they offer valuable insights [64] for the development
of pre-trained models.

Wang et al. [66] introduced MolCLR, which employs GNN encoders based on GCN and GIN. By
utilizing both original molecular graphs and masked augmented graphs in a comparative learning strategy,
MolCLR improves molecular representation learning. However, these models remain constrained to the
2D topology of molecules and neglect 3D spatial information.

To overcome this limitation, Fang et al. [34] proposed GEM, a molecular representation model that
integrates both 2D and 3D molecular information. They restructured the molecular graph into a bond
angle diagram, where bond angles are treated as edges and bonds as atoms. This enables a “3D modeling”
approach through pretraining tasks designed to incorporate spatial structure.

GNS-TAT, proposed by Zaidi et al. [67], exclusively utilizes 3D molecular graphs to learn specific
force fields through 3D structural space, relying on the atomic 3D coordinates for knowledge acquisition.
Building on this, Liu et al. [68] were inspired by the dynamic properties of 3D molecules, where molecular
motion in 3D Euclidean space creates a smooth potential surface. They introduced 3D interatomic
distances and proposed GeoSSL-DDM. Similarly, Ni et al. [71] developed the Frad framework, which
incorporates noise design and refines the processing of 3D molecular graphs using GNNs, enhancing the
representation of 3D molecular structures.

Additionally, Zhang et al. [23] proposed MGSSL, which converts molecular graphs into motif trees
based on key substructures within molecules and employs GNNs to capture graph-level knowledge at
the motif level. Similarly, Zang et al. [69] introduced HiMol, which constructs a three-level graph rep-
resentation encompassing nodes, motifs, and the overall graph, enabling comprehensive integration of
motif information with molecular graph data. However, their approach defines motifs in a broad sense,
lacking specificity to functional groups in the strict sense. Fang et al. [70] introduced KANO, a model
based on knowledge graphs and functional group prompts. By constructing a knowledge graph based on
chemical elements and enhancing the molecular graph with knowledge graph embeddings and functional
group prompts, KANO aids in identifying key substructures within molecules, enhancing understand-
ing of molecular properties. CAFE-MPP, proposed by Xie et al. [73], facilitates multi-view interactions
through contrastive learning between two modalities: SMILES and molecular graph. Later, Zhang et
al. [74] proposed PremuNet, which integrated feature fusion across three molecular modalities-1D, 2D,
and 3D-further advancing the development of GNNs.

While GNNs are adept at updating node and edge features through message passing, they face limita-
tions when applied to complex graphs. Specifically, the limited range of message passing can hinder the
capture of global information between distant nodes. Moreover, GNNs may suffer from the oversmoothing
problem, where repeated updates result in the homogenization of node features, diminishing the model’s
ability to differentiate between distinct molecular structures.

4.3 Graph Transformer-based approaches

Graph-based Transformer molecular representations leverage the strengths of the Transformer architec-
ture, originally designed for sequence data, to process molecular graphs with complex dependencies.
Unlike traditional GNNs, graph Transformers utilize a self-attention mechanism to compute dependen-
cies between nodes, enabling them to effectively capture long-range structural information. This makes
them particularly suited for large-scale molecular datasets, offering greater flexibility and expressiveness
in handling diverse molecular structures (Figure 5).

One notable model, GROVER [72], combines dynamic message passing networks with Transformer-like
architecture but retains GNN components, making it a hybrid rather than a pure Transformer approach.

In contrast, Graphormer fully abandons the message-passing paradigm, introducing innovations such
as distance encoding based on shortest paths between nodes, edge encoding to include bond-specific
information, and node centrality encoding to represent the importance of nodes within the graph. Addi-
tionally, the use of a virtual node allows for global information flow across the entire graph, enabling a
comprehensive understanding of 2D molecular structures.

Building on Graphormer, Transformer-M [76] introduced a dual-channel model designed for both 2D
and 3D molecular tasks. For 2D molecular graphs, it incorporates shortest paths, edge attributes, and
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Figure 5 (Color online) Processing of molecular representation using graph Transformer architecture. The self-attention mech-

anism enables the graph Transformer to capture global dependencies, while incorporating spatial and edge encodings as biases to

the attention scores enhances the model’s ability to capture both local and global relationships within molecular graphs.

node degree encoding, while for 3D molecular graphs, it integrates spatial distances derived from atomic
coordinates, using these as attention biases to guide the learning of inter-atomic dependencies.

Expanding on this foundation, Chen et al. [80] developed the modal-sharing graph Transformer to
enhance knowledge sharing between 2D and 3D molecular features. Uni-Mol [75] adds atom-to-atom 3D
distance coding with noise-enhanced attention biases to improve the model’s grasp of 3D information.
Uni-Mol+ [79] further advances this by employing mechanisms like outer product and triangular update
to facilitate interactions between molecular encodings and the 3D distance matrix, dynamically updating
this matrix at each Transformer layer to enhance structural understanding. Mol-AE [78], based on Uni-
Mol, takes a different approach by using a self-encoder to reconstruct molecular latent representations
into 3D molecular information, minimizing reconstruction loss.

Li et al. [77] introduced the line graph Transformer (LiGhT), which captures complex patterns in
molecular graph structures without relying on 3D spatial information. Their approach extends each
molecular graph by adding a knowledge node connected to the original nodes, allowing the backbone
model to effectively capture both structural and semantic information within the molecular graph.

Despite their capabilities, graph Transformers face challenges due to their high computational complex-
ity, which limits scalability and makes processing large molecules or highly intricate structures difficult.
Nonetheless, their ability to flexibly adapt to the multi-scale features of complex graphs and incorpo-
rate 3D conformational information during 2D molecular graph processing represents a significant ad-
vancement in molecular representation learning. Balancing their computational demands with scalability
remains an ongoing area of research, aiming to optimize these powerful models for broader applications.

4.4 Other approaches

Molecular images can be generated from chemical structures using tools like RDKit, capturing the 2D
molecular structure and enabling the incorporation of functional group information through image recog-
nition techniques. This approach has led to innovative frameworks for molecular representation using
computer vision. Zeng et al. [18] introduced ImageMol, an unsupervised molecular image pre-training
framework that incorporates chemical-awareness capabilities. By representing compounds as molecular
images and employing ResNet as a molecular encoder, ImageMol effectively extracted latent molecular
features. Building on this, Xiang et al. [20] proposed VideoMol, which leveraged PyMOL to render
60-frame motion videos for each 3D molecule, capturing dynamic structural information. Using vision
Transformers (ViT) to extract molecular representations, VideoMol extended the use of computer vision
from static 2D images to dynamic 3D molecular videos. Together, these methods highlight the poten-
tial of utilizing 2D molecular images and 3D molecular videos as novel descriptors to enhance molecular
representation learning through computer vision.
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Figure 6 (Color online) Four pretraining strategies. (a) Mask-based pretraining. Predict information about the atom being

masked. (b) Contrastive learning-based pretraining. Here, G represents the original graph, while G′ refers to the enhanced graph.

(c) Functional group-based pretraining. Identify information about functional groups within molecules. (d) Spatial structure-based

pretraining. Predict bond lengths, bond angles, interatomic distances, etc.

5 Pretraining strategies

This section summarizes the pretraining tasks implemented in existing studies, categorically discussing
the specific approaches employed for molecular representation learning. Molecular pretraining models
can broadly be classified into four categories based on their design and objectives (Figure 6): mask-
based pretraining, contrastive learning-based pretraining, functional group-based pretraining, and spatial
structure-based pretraining. These categories reflect the diverse methodologies used to extract meaningful
molecular representations, leveraging unique aspects of molecular structures and properties to enhance
model performance across various downstream tasks.

5.1 Mask-based pretraining

In mask-based pretraining, the input molecular undergoes partial masking and the model is tasked with
reconstructing this masked information. In sequence-based tasks, natural language processing-inspired
approaches, such as ChemBERTa [60], mask portions of SMILES strings. Similarly, Chemformer [61],
SMILES-BERT [59], FG-BERT [64], and PremuNet [74] employ comparable strategies. BioT5 [63] and
BioT5+ [65] incorporate SELFIES and IUPAC to interpret the natural language descriptions and chemical
structures of molecules, leveraging masked modeling to predict missing structural components.

In graph-based tasks, masking involves techniques such as atom masking, bond removal, and subgraph
removal. For instance, GROVER [72] introduces a contextual property prediction task by masking
certain molecular structures (local subgraphs) and predicting the properties of nodes and edges within
these regions. MGSSL [23] employs only property masks for atoms and chemical bonds. MolCLR [66]
extends the masking strategy to three levels: atoms, bonds, and subgraphs. It generates augmented
molecular graphs through atom masking, bond deletion, and subgraph removal, employing a contrastive
learning strategy to extract meaningful molecular representations. Similarly, Uni-Mol [75] incorporates
atom species masking into its pretraining framework, using the prediction of masked atomic species as a
core pretraining task, thereby enhancing the model’s ability to learn detailed molecular features. KPGT,
proposed by Li et al. [77], employs the LiGhT to capture complex structural patterns in molecular graphs
for knowledge-guided learning. A pretraining strategy based on masked graphs is designed to effectively
capture the structural and semantic knowledge of molecules.

ImageMol [18] utilizes molecular images for molecular characterization and introduces an image-based
masking pretraining task by randomly masking regions of molecular images. This approach offers a novel
perspective for mask-based pretraining.
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5.2 Comparative learning-based pretraining

Contrastive learning has emerged as a prominent pretraining task in molecular representation learning,
emphasizing the model’s ability to distinguish between different molecules or their structural features by
comparing positive and negative samples. This methodology is especially effective in scenarios without
labeled data, significantly enhancing the generalization of molecular representations while preserving
chemical semantics. Since contrastive learning requires both positive and negative samples, it is often
integrated with masking-based pretraining techniques.

For example, MolCLR [66] employs a contrastive learning framework where each molecule is represented
in two views: the original molecular graph and an augmented version. The augmented graph from
the same molecule serves as a positive sample pair, while augmented graphs from different molecules
act as negative sample pairs. Similarly, KANO [70] introduces a novel approach by constructing a
knowledge graph based on the chemical elements of a molecule. It integrates knowledge graph embeddings
and functional group hints to enrich molecular graph representations, which are subsequently used for
contrastive learning pretraining. These strategies exemplify the versatility and effectiveness of contrastive
learning in capturing intricate molecular relationships and structures. MolGT [80] employs implicit
3D geometric contrastive learning to align 2D and 3D molecular representations in feature space by
maximizing mutual information, ensuring that the features of the same molecule remain consistent across
both modalities.

5.3 Functional group-based pretraining

Functional group (FG)-based pretraining leverages molecular chemistry’s a priori knowledge to improve a
model’s ability to comprehend molecular structures and properties by incorporating functional group and
motif information. Functional groups are specific atom arrangements within a molecule that significantly
influence its chemical behavior. Identifying these groups provides insights into the molecule’s critical
substructures and properties. Similar to functional groups, motifs are recurring substructural patterns
in molecules that exhibit structural repetitions or functional correlations, offering broader coverage than
functional groups. Both provide prior knowledge that enhances model performance and interpretability
in molecular property prediction tasks.

GROVER [72] introduced a molecular-level motif identification task, focusing on detecting motifs such
as functional groups and ring structures embedded in molecules. These motifs encode substantial domain
knowledge essential for understanding molecular properties.

Zhang et al. [23] introduced MGSSL, the first method to employ a true functional group learning
strategy rather than using motifs in a broader sense. They developed a molecular partitioning approach
that leverages the inverse synthesis-based BRICS algorithm along with additional rules to regulate the size
of the motif vocabulary. The molecular graph is subsequently transformed into a motif graph based on
functional group division, thereby accounting for the positional relationships between functional groups
during recognition.

Zang et al. [69] designed HMGNN and further proposed HiMol, a hierarchical molecular graph self-
supervised learning framework. HiMol extracts graph representations of motif hierarchies from molec-
ular graphs and achieves node-motif-graph hierarchical information representation by adding edges and
constructing node-level, motif-level, and graph-level associations. This framework enables multi-layer
self-supervised pre-training based on functional groups.

Li et al. [64] proposed FG-BERT, drawing inspiration from the BERT model [88]. FG-BERT imple-
ments masked modeling for functional groups within molecules to predict the masked molecular fragments,
enhancing the model’s ability to understand molecular structures.

Similarly, KANO [70] adopted a comparable approach, aiming to identify functional groups within
a molecule. However, functional group classification in many methods often relies on dictionary-based
lookups. To address this, Xie et al. [73] proposed a click-chemistry perceptual molecular partitioning
approach and constructed a fragment-based molecular graph. Initially, molecular representations were
derived through contrastive learning between SMILES and molecular graphs. These representations were
then integrated with fragment-based molecular graph features, creating a more comprehensive molecular
characterization.

However, their methodology limits functional group identification to the molecular level and does not
refine the task to the atomic level, which could involve pinpointing the specific functional group associated
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with individual atoms. This refinement could potentially unlock a more detailed understanding of molec-
ular characteristics and enhance model precision. MolGT [80] captures key molecular motifs through
contrastive learning, ensuring that atoms within the same motif share similar feature representations,
while those in different motifs remain distinct. This enables atom-level motif feature extraction.

5.4 Molecular spatial structure-based pretraining

Spatial structure-based pretraining methods focus on utilizing the 3D spatial structure of molecule (such
as bond lengths, bond angles, and atomic distances) to improve molecular representation learning. These
methods are particularly relevant in applications like molecular property prediction and drug design,
where spatial configurations play a critical role.

The most fundamental approach to incorporating a molecule’s three-dimensional structure is by in-
troducing its 3D coordinates and angles. GEM [34] proposed a novel approach by reconstructing the
molecular graph into a bond angle graph, where bond angles are represented as edges and chemical
bonds as nodes. Their work introduced three pretraining tasks: predicting bond lengths, predicting bond
angles, and predicting inter-atomic distances. Notably, instead of directly predicting continuous atomic
distances, GEM discretized the distances into 30 equal intervals, framing it as a multi-class classification
task, which adds robustness to distance prediction.

GNS-TAT [67] introduces a 3D coordinate recovery task based on the 3D coordinates of molecules.
The key idea is to add noise to atomic coordinates and predict this noise during pretraining, indirectly
estimating the true atomic coordinates. This approach is both simple and innovative, serving as a pio-
neering effort in such pretraining tasks. Building on this, Liu et al. [68] proposed GeoSSL-DDM, refining
the 3D coordinate denoising task through a fractional matching method leveraging SE(3)-equivariance.
SE(3)-equivariance ensures that a neural network’s representation remains unchanged under molecular
rotations and translations, making it essential for 3D molecular learning tasks.

Subsequent approaches incorporated quantum chemical information to enhance molecular property pre-
diction. Luo et al. [76] introduced Transformer-M, with its first pretraining task focused on a supervised
learning objective to predict the energy gap of each molecule’s HOMO-LUMO orbitals. Additionally,
they employed a self-supervised learning objective called 3D positional noise reduction, which proved
particularly effective. A 3D distance encoding matrix was used to aid training; however, the matrix is
static and not updated during training, leaving room for improvement.

Building on the idea of incorporating 3D molecular information, Uni-Mol [75] introduced three inno-
vative pretraining tasks: recovery of atom 3D coordinates, atom-atom pair distance prediction, and a
masked pretraining task for atom classes. This method recovers 3D coordinates by denoising atomic po-
sitions. In Uni-Mol, the backbone architecture is flexible and can be replaced with any SE(3)-equivariant
model capable of processing 3D positions as inputs and outputs. Additionally, the interatomic distance
representation is dynamically updated during training, enhancing its adaptability and effectiveness. Ex-
panding on Uni-Mol, Uni-Mol+ [79] introduced QC property prediction tasks, which include predicting
energies, polarizabilities, and molecular orbitals. These properties are directly tied to the chemical struc-
ture and reveal crucial information about a molecule’s electronic structure, reactivity, and stability. By
integrating QC properties into pretraining, Uni-Mol+ enables deeper and more precise learning of molec-
ular characteristics, enhancing its applicability to complex chemical analyses.

Mol-AE, proposed by Yang et al. [78], builds upon the concept of Uni-Mol by introducing a novel
training objective called the 3D Cloze Test. This approach enables the model to better capture the
spatial relationships among atoms in real molecular structures.

Ni et al. [71] further enhanced the denoising pretraining task with the Frad framework. They introduced
a mixture of chemical awareness noise (CAN) and coordinate Gaussian noise (CGN) to generate noisy
molecular conformations. During pretraining, the model predicts the CGN noise, effectively decoupling
noise design from the constraints of force-learning equivalence. This customizable noise design allows
the incorporation of chemical priors, significantly improving the performance of molecular distribution
models.

PremuNet [74] designs three pretraining tasks to facilitate the interaction between 2D and 3D molecular
information: (1) masking all atoms and reconstructing them using 3D coordinates; (2) masking all 3D
coordinates and reconstructing them using atomic information; and (3) independently masking atoms and
their coordinates, then reconstructing them using the features of unmasked atoms and 3D coordinates.
These tasks complement each other-the first enables the model to extract 3D information from 2D data,
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the second allows it to extract 2D information from 3D data, and the third integrates both modalities,
enhancing the model’s multimodal learning capability.

5.5 Other pretraining strategies

ImageMol [18] introduces an innovative approach by transforming molecules into molecular images and
leveraging computer vision for molecular representation learning. Its pretraining strategy includes tasks
such as masked comparison learning on images, molecular image reconstruction, and the multi-granularity
chemical clusters classification (MG3C) task, which ensures pretraining consistency. Additionally, Im-
ageMol incorporates rationality-focused tasks, including molecular rationality discrimination and jigsaw
puzzle prediction, to align the structural information of molecular images with established chemical
principles. While the method demonstrates promising performance, the use of images for molecular
representation learning requires further exploration.

VideoMol [20] extends molecular representation learning to a dynamic context, incorporating three pre-
training tasks: video-aware, orientation-aware, and chemistry-aware pretraining. Video-aware pretraining
trains the model to distinguish between different molecular videos, such as identifying whether two frames
belong to the same video. Orientation-aware pretraining focuses on recognizing spatial relationships, such
as angular differences between frames. Chemistry-aware pretraining extracts physicochemical informa-
tion from molecular videos. Together, these tasks enable dynamic and physicochemical perception of
molecules, offering a novel perspective for molecular pretraining models.

PremuNet [74] employs an AutoEncoder framework for processing SMILES representations. It first
tags the original SMILES string, and then encodes it using a multilayer encoder to generate a feature
matrix. This matrix is subsequently decoded by a multilayer decoder, minimizing the difference between
the input and output. This pretraining approach enables the transformer encoder to efficiently extract
meaningful features from SMILES strings.

MolGT [80] introduces knowledge-guided prototypical clustering (KGPC) for layer-level pretraining
from both 2D and 3D perspectives, leveraging MACCS and USRCAT molecular fingerprints as prior
knowledge.

6 Performance comparison

We identified the best-performing components of the models discussed in this paper and evaluated their
performance on a molecular property prediction dataset. For the models included in the comparison, we
referenced data from their original publications and assessed their performance using both scaffold split
and random scaffold split divisions (Tables 4–7). Some method performance is missing and therefore not
counted in the table.

Synthesizing the various approaches reveals several key observations. (1) Most methods adopt scaffold
split as the primary evaluation criterion, with only a few considering both scaffold split and random scaf-
fold split scenarios. (2) Performance in the random scaffold split scenario consistently exceeds that in the
scaffold split scenario, highlighting the increased challenge posed by molecular property prediction under
scaffold split conditions. (3) No single method achieves optimal performance across all tasks, underscor-
ing the need for task-specific optimization. (4) Methods incorporating additional information, such as 3D
spatial structure or functional groups, generally outperform those relying solely on 2D molecular graphs,
demonstrating the value of enriched molecular representations.

7 Applications

This section explores various applications of predictive modeling based on molecular properties.

7.1 Target-based drug discovery

By leveraging structural information of specific biological targets, high-affinity small-molecule inhibitors
can be identified through a combination of computational simulations and experimental screening. For
instance, hematopoietic progenitor kinase 1 (HPK1) and fibroblast growth factor receptor 1 (FGFR1)
are implicated in various cancer types and have been extensively studied for antitumor therapy [89–92].
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Table 4 ROC-AUC (%) performance of scaffold split scenes for some excellent methods on classification tasks. All results are

reported as mean. Higher is better.

BACE BBBP ClinTox ToxCast Tox21 SIDER HIV MUV

MolCLR 81.9 71.6 91.9 – 75.0 59.9 78.3 79.7

GROVER 82.2 71.8 84.3 63.5 76.5 63.7 78.6 76.9

MGSSL 79.1 69.7 80.7 64.1 76.5 61.8 78.8 78.7

ImageMol 83.9 73.9 85.1 65.9 77.3 67.7 79.7 82.5

GEM 85.6 72.4 90.1 69.2 78.1 67.2 80.6 81.7

Uni-Mol 85.7 72.9 91.9 69.6 79.6 65.9 80.8 82.1

MOL-AE 84.1 72.0 87.8 69.0 80.0 67.0 80.6 81.6

KPGT 85.5 – 94.6 74.6 84.8 74.6 – –

HiMol 84.6 73.2 80.8 66.3 76.2 62.5 – –

BioT5 89.4 77.7 95.4 – 77.9 73.2 81.0 –

MolGT 84.5 73.7 88.9 66.4 75.8 65.4 79.3 78.9

PremuNet 84.3 73.3 99.2 – 74.0 62.6 – –

Table 5 Performance of the regression task in the scaffold split scenario. All results are reported as mean. Higher is better.

RMSE MAE

FreeSolv ESOL Lipophilicity QM7 QM8 QM9

MolCLR 2.47 1.21 0.69 144.4 0.0359 0.01488

GROVER 2.48 0.99 0.66 92.0 0.0224 0.00986

ImageMol 2.02 0.97 0.72 116.4 0.0241 0.02061

GEM 1.877 0.798 0.660 58.9 0.0171 0.00746

Uni-Mol 1.480 0.788 0.603 41.8 0.0156 0.00467

MOL-AE 1.448 0.830 0.607 53.8 0.0161 0.00530

KPGT 2.121 0.803 0.600 – – –

HiMol 2.283 0.833 0.708 91.5 0.0199 –

MolGT – 0.839 0.788 – – –

PremuNet 1.858 0.730 – – – –

Table 6 ROC-AUC (%) performance of random scaffold split scenes for some excellent methods on classification tasks. All results

are reported as mean. Higher is better.

BACE BBBP ClinTox ToxCast Tox21 SIDER HIV MUV

MolCLR 89.0 73.6 93.2 – 79.8 68.0 80.6 88.6

GROVER 92.3 94.0 95.6 74.1 84.0 69.1 – –

KANO 93.1 96.0 94.4 73.2 83.7 65.2 85.1 83.7

ImageMol 93.9 95.2 97.5 75.2 84.7 70.8 – –

Table 7 Performance of the regression task in the random scaffold split scenario. All results are reported as mean. Higher is

better.

RMSE MAE

FreeSolv ESOL Lipophilicity QM7 QM8 QM9

MolCLR 2.20 1.11 0.65 87.2 0.0174 –

GROVER 1.366 0.730 0.556 72.1 – –

KANO 1.142 0.670 0.566 56.4 0.0123 0.00320

ImageMol 1.149 0.690 0.625 65.9 – –

KPGT enables efficient screening of HPK1 and FGFR1 inhibitors, demonstrating strong performance in
both structural and temporal partitioning test sets.

7.2 Activity cliff analysis

Activity cliffs refer to structurally similar molecules that exhibit significant differences in biological activ-
ity. Conventional molecular property prediction models typically rely on structural similarity principles;
however, activity cliff molecules can differ in activity by severalfold or even hundreds of times despite high
structural similarity. This can lead to incorrect learning of non-deterministic substructures. Designing
molecular pretraining models to capture complex structural features can help identify key determinants
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that differentiate structurally similar molecules with varying activities, thereby improving recognition
accuracy.

For instance, van Tilborg et al. [93] constructed the MoleculeACE dataset to evaluate the performance
of various deep learning methods on activity cliff analysis. Additionally, KPGT [77] further explored
activity cliff recognition using the CYP3A4 dataset. Results demonstrated that KPGT could accurately
predict biological activity differences between activity cliff molecule pairs with high fingerprint similarity,
highlighting its ability to sensitively capture subtle variations in molecular activity.

8 Future outlooks

Although pre-trained models are now widely used in the field of molecular characterization, there are
still a number of issues that must be addressed. We summarize some of the current issues and discuss
possible directions for improvement.

8.1 Improved interactions between different molecular modalities

Existing molecular descriptors, such as SMILES, molecular fingerprints, 2D molecular graphs, 3D molecu-
lar graphs, and molecular images, encompass diverse modalities, including sequences, planar graphs, and
3D spatial conformations. Current methods have explored multimodal knowledge integration through
various approaches, such as using multimodal information as model input or incorporating multimodal
pretraining tasks. However, more efficient strategies are required to optimize the learning of multimodal
information. Multimodal pretraining frameworks like CLIP [94] and ALBEF [95] represent promis-
ing directions. Furthermore, adopting knowledge distillation architectures-where complex models (e.g.,
molecular image-based or video-based models) serve as teacher models to guide the training of simpler
models (e.g., molecular graph-based models)-could significantly enhance the performance of molecular
pretraining models.

8.2 Optimizing the impact of pretraining tasks

Pretraining tasks for molecular models can encompass various aspects, including molecular properties,
functional groups, and 3D conformations. The importance of these tasks varies in influencing model
learning and should be carefully considered during training. A potential solution is to assign different
weights to pretraining tasks, enabling the development of an optimized training strategy for molecular
representation models.

8.3 Explainability of pretraining tasks

Deep learning models are often perceived as “black boxes” due to their limited interpretability, which
hinders their broader application in real-world scenarios across various domains. This challenge extends
to pretraining tasks, where methods predict features such as chemical bond lengths and angles without
clarifying how these predictions enable the model to acquire new knowledge. For example, 3D bond angle
prediction allows models to reason the 3D structure given 2D graphs, thus enabling learning information
not presented in the original input graph. Future research should prioritize interpretability, focusing on
approaches that provide credible insights to support applications like drug development.

9 Conclusion

This review provides an overview of sequence-based, 2D-based, and 3D-based molecular representations,
with a particular emphasis on molecular pretraining models. We discuss various model architectures
and pretraining strategies, using the molecular property prediction task as a case study to introduce
mature datasets and evaluation criteria while comparing the performance of state-of-the-art methods.
Additionally, we examine the limitations of existing molecular pretraining models and propose potential
directions for improvement. Looking ahead, we aim to encourage the development and application of high-
performing models in molecular characterization to enhance molecular property prediction and facilitate
drug discovery.
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39 Axelrod S, Gómez-Bombarelli R. GEOM, energy-annotated molecular conformations for property prediction and molecular

generation. Sci Data, 2022, 9: 185
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