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Abstract Recent advances in deep learning have proven highly effective in medical applications, notably in drug discovery.

Among various deep learning techniques, self-supervised learning (SSL) has shown considerable advantages over traditional

supervised learning by utilizing vast amounts of unlabeled data for model training. This review discusses both classic and

state-of-the-art SSL-based methods in the drug discovery field, detailing their applications from small molecule and peptide

drug discovery to antibody design and vaccine development, which provides a current and accessible guide to drug discovery.

Furthermore, this review suggests the challenges faced by SSL in drug discovery, such as data quality, model interpretability,

and computational resource constraints, and outlines its potential future directions. As deep learning technology advances,

we anticipate that SSL-based models will increasingly promote drug research and development, potentially revolutionizing

the pharmaceutical industry.
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1 Introduction

The primary goal of drug research and development [1] is to pinpoint specific target molecules with optimal
properties within the extensive and continually growing chemical space. However, rapid advancements
in chemistry have rendered traditional experimental screening methods for these targets increasingly
impractical and inefficient. The advent of deep learning technologies [2–7] has markedly sped up the
target identification process, yet these models depend heavily on extensive known datasets for effective
training. Labeled data [8,9] acquisition often consumes a significant amount of time and resources during
drug research and development, especially for emerging biological targets and complex disease states,
where the validity and accessibility of such data are often very limited. In traditional machine learning
applications, this scarcity of data often leads to inefficient model training. This dependence creates a
significant bottleneck, especially when investigating novel compounds with scant existing data. Despite
the difficulty of obtaining high-quality labeled data, a large amount of relevant unlabeled data exists.
This data contains a wealth of information such as molecular structures, gene expression levels, protein
interactions, and functional annotations. These insights can help in understanding biological processes,
identifying potential drug targets, and advancing research. Training deep learning models directly using
this unlabeled data is a potential solution [9].

Self-supervised learning (SSL) [10–13] is an advanced machine learning framework that provides a way
for deep learning models to effectively learn data representations using unlabeled data. In the context
of SSL, the model uses the information in the dataset itself as the learning objective (e.g., predicting
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Figure 1 (Color online) Comparative illustration of three machine learning methodologies: supervised learning, unsupervised

learning, and self-supervised learning. Supervised learning uses explicitly provided labels to guide the learning process. Unsuper-

vised learning operates without labels, identifying data patterns and structures autonomously. Self-supervised learning generates

its own labels from inherent features of the data, such as audio cues, to train the model.

missing fragments in a molecular sequence), thereby learning a comprehensive representation of the entire
dataset. The introduction of SSL into the field of drug discovery, i.e., through pre-training on large-
scale unlabeled chemical databases, not only reduces the dependence on expensive experiments, but also
enables the rapid identification and optimization of potential candidate molecules in the early stages of
drug research and development. Specifically, powerful feature representation enables the model to capture
the complex relationship between molecular structure and its properties, and achieve efficient similarity
comparison and pattern recognition in high-dimensional feature spaces. This ability enables researchers
to quickly screen candidate molecules with potential biological activity and excellent pharmacokinetic
properties. In addition, powerful feature representation also supports the fine optimization of candidate
molecules, further improving their drug properties and safety by adjusting and improving their structural
characteristics. This not only speeds up the screening and optimization process of candidate molecules,
but also improves the success rate of discovering highly effective drug candidates, thereby significantly
shortening the drug development cycle and reducing development costs.

In this review, we begin by defining SSL and outlining its principles, and then comparing it with
supervised and unsupervised learning. Subsequently, we explore in detail the utilization of SSL in drug
discovery and its specific applications. Lastly, we review the current status and limitations of SSL in
drug research and development and discuss the prospective advancements of SSL in this field.

2 Overview of self-supervised learning

The SSL algorithm [10–17] is designed to extract discriminative features from numerous unlabeled in-
stances without depending on manual annotations. Figure 1 concisely illustrates the differences among
the three principal machine learning paradigms: supervised learning [18–21], unsupervised learning [22]
and self-supervised learning. Supervised learning utilizes labeled training data to train models, where
each sample is paired with a corresponding output label. However, it requires a substantial volume
of high-quality labeled data, which can be expensive and time-consuming to acquire, and may lead to
model overfitting [23, 24] and reduced generalization capacity [25]. Unsupervised learning seeks to iden-
tify inherent structures and associations in data without using labels, but it lacks explicit feedback or
indicators, complicating the verification of model outputs. SSL functions as a variant of unsupervised
learning by generating pseudo-labels [26] from the data itself, mimicking the supervised learning process.
This approach not only capitalizes on unlabeled data but also enhances supervised learning tasks, for
instance, by serving as a pre-training step [27–29] to boost the performance of supervised models.

The method of SSL mainly covers three types of tasks: prediction tasks [8, 30–32], generation tasks
[10, 33–35], and contrastive learning [10, 12, 36–40]. In predictive tasks, the model must infer missing
information from existing data features to internally establish the inherent structure and logical relation-
ships of the data. For instance, in text processing, the model may need to predict missing words or the
subsequent part of a sentence [27]. Generation tasks enable the model to learn the data distribution and
generate new data samples that align with the statistical characteristics of the original data [39]. This
not only enhances the model’s understanding of data structures but also supports data augmentation in
scenarios where data is limited. Through this approach, SSL allows models to self-train without external
labels by analyzing and mimicking the input characteristics of data. While diffusion models [41] also gen-
erate high-quality outputs without labeled data, they primarily focus on iterative refinement for sample
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Figure 2 (Color online) Four representations of a drug molecule. The “sequence” displays the underlying code of the molecule

in a linear format, such as SMILES and peptide sequence. The “2D graph” focuses on representing the molecule as a network

of nodes (atoms) and edges (bonds), providing a simplified visual abstraction that emphasizes connectivity and relationships

between elements. The “image” represents the molecule in a traditional 2D chemical structure diagram, showing connections and

arrangements of atoms. The “3D graph” visualizes the molecule in three-dimensional space, highlighting its spatial configuration

essential for understanding molecular interactions. Each method of representation is essential for facilitating various types of

molecular and pharmacological studies.

generation. In contrast, SSL enhances not only generation quality but also downstream predictive tasks
by capturing rich structural and semantic information. In contrastive learning tasks, models learn by
comparing different data instances, aiming to cluster similar data points closer and separate dissimilar
ones further in the feature space. Collectively, these methods enhance the scalability and robustness of
model training by utilizing large volumes of unlabeled data.

3 How can self-supervised learning be applied to drug discovery?

Designing a novel drug entails navigating a complex landscape that necessitates meeting multiple bench-
marks, including on-target potency, desirable physicochemical properties, and adherence to pharmacolog-
ical safety standards [42,43]. Traditional drug discovery relies heavily on chemists manually screening ex-
tensive chemical libraries to identify candidate molecules and conduct experimental validation—a process
that is both time-consuming and labor-intensive. Although deep learning has hastened this process, most
models still depend on labeled data (supervised learning). In contrast, SSL leverages vast amounts of un-
labeled molecular data to train models, effectively teaching the model to recognize and generate candidate
molecules that satisfy predefined criteria without the need for manual labeling. Self-supervised learning
bridges the gap between the abundance of large-scale biological datasets and the precision required for
targeted drug design, offering a cost-effective strategy to accelerate the discovery and optimization of
new therapeutics.

3.1 Representations of drug molecules

The representation of molecules [44] is fundamental to drug discovery, as it dictates the interpretation
and processing of molecular data by computational models. Figure 2 illustrates four types of molecular
representations: (1) sequence-based [45, 46], (2) 2D graph-based [47], (3) image-based [48], and (4) 3D
graph-based [49].

Sequence-based representations treat drug molecules as biological sequences, encoding them in a linear
format such as SMILES [45], amino acid sequences [50], or InChI [51]. This approach is advantageous
for employing techniques developed for genomics and proteomics, like sequence alignment and pattern
recognition, which are effective for molecule design and similarity assessment. Two-dimensional (2D)
graph-based representations visualize molecules as graphs with atoms as nodes and bonds as edges,
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Table 1 Comparison of SSL across different molecular representations.

Representation Strengths Limitations

Sequence
1. Simple representation

2. Mature NLP-based models available

3. Efficient pretraining on large datasets

1. Structural information lost

2. Sensitive to minor input perturbations

2D Graph 1. Captures local and global molecular structures effectively
1. Computationally expensive compared to sequences

2. Limited scalability to large molecules

3D Graph
1. Encodes geometric and spatial molecular properties

2. Crucial for protein–ligand interaction modeling

1. Dependent on accurate 3D conformations

2. High computational cost

Image
1. Compatible with established vision-based SSL methods

2. Enables transfer learning from pretrained vision models

1. Structural connectivity not explicitly represented

2. Requires careful image preprocessing

Figure 3 (Color online) Self-supervised learning in drug sequences is generally divided into four methods. (a) Mask/mutation

prediction: it involves masking or mutating specific elements in a drug sequence. These modified sequences are then processed by

transformer layers, which predict the altered elements to facilitate learning of sequence dependencies. (b) Autoregression: each

element of the drug sequence is predicted sequentially based on its predecessors. This helps the model in learning temporal sequence

patterns. (c) Autoencoder: this framework compresses a drug sequence into a lower-dimensional representation using an encoder

and then reconstructs it through a decoder to capture essential sequence features. (d) Contrastive learning for sequence similarity:

this method employs techniques where similarities between drug sequences are calculated and transformed into embeddings by an

encoder, enabling effective differentiation between sequences.

facilitating the use of graph theory and network analysis to explore molecular structure and predict
properties such as solubility or reactivity. Image-based representations transform molecular structures
into 2D images, making them amenable to computer vision techniques. This method capitalizes on
advances in deep learning for image classification and object recognition to identify and classify molecular
patterns. Three-dimensional (3D) graph-based representations create detailed three-dimensional models
of molecules, capturing spatial relationships and conformations vital for understanding drug interactions
with targets like enzymes or receptors. Techniques such as molecular docking and dynamics simulations
use these representations to predict the binding affinity and stability of drug-target complexes, essential
for identifying lead compounds in drug design. Table 1 lists the advantages and disadvantages of the four
different representations. By selecting the appropriate molecular representation, researchers can enhance
the efficacy and accuracy of their computational models, thereby accelerating the discovery process and
increasing the success rate of new drug development.

3.2 Self-supervised learning in drug sequences

In drug research and development, sequence-based representation methods are highly valued for their
simplicity and have become the foundational approach for representing drug molecules. As depicted
in Figure 3, SSL strategies are particularly promising for analyzing sequence data. They enhance the
understanding of characteristics of drug molecule sequences and bolster the capability to discover new
drug molecules through the following core technologies.

BERT [29], a classical model leveraging masked prediction for pre-training, has been widely used in
natural language processing and has proven effective in understanding complex semantic structures [52].
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As depicted in Figure 3(a), the method involves randomly masking parts of drug molecule sequences
or introducing mutations (i.e., replacing them with new characters), and trains the model to predict
these altered sections. This technique uses the sequences themselves as training targets, incorporating
contextual semantics to deepen the comprehension of the model about the critical functional domains of
drug molecules. Furthermore, by pre-training with a large corpus of unlabeled drug molecule data, the
model develops rich features that enhance its performance in subsequent tasks, enabling more precise
predictions of activity, toxicity assessments, or pharmacological analyses. For example, this model can be
utilized for the rapid screening of new molecules to identify promising drug candidates with high affinity
or specific targets [53, 54], thereby not only speeding up the drug development process but also helping
to minimize the high costs associated with advancing unsuitable candidates into clinical trials.

In addition to predicting individual positions within sequences, generating complete sequences is an
effective method of self-supervised training. As depicted in Figure 3(b), autoregressive models [55] such as
recurrent neural networks (RNNs) based [56] process sequence data through a forward-generating process
that anticipates subsequent elements within a sequence. This method proves invaluable for understanding
and generating biological sequences, including small molecules [57], DNA [58], RNA [59], and protein
sequences. In the field of drug discovery, these models not only serve as pre-training parameters for
models predicting properties but also aid scientists in designing novel drug molecules from scratch and
estimating the likelihood of new sequence occurrences. The training process of autoencoders (AE) [60],
including variational autoencoders (VAE) [61], represents a distinct form of self-supervised learning. As
shown in Figure 3(c), autoencoders map sequences to a feature space using an encoder and subsequently
reconstruct the original sequence using a decoder. Similarly, in drug discovery, a well-trained encoder can
provide pre-training parameters for property prediction models [62], facilitating not only the learning of
data feature distributions but also enabling the trained decoder to generate new sequences.

Contrastive learning [37] is an effective strategy for sequence self-supervised learning, focusing on
developing meaningful feature representations by comparing different data samples. This method trains
models to reduce the distance between sequences considered positive samples in the feature space and to
increase the distance from negative samples. The selection of positive and negative samples varies greatly,
especially in drug discovery, where molecular sequences that share similar structures and functional
properties are typically viewed as positive samples. As depicted in Figure 3(d), tools such as RDKit [63]
and FASTA [64] facilitate molecular sequence similarity analysis, enabling the classification of highly
similar sequences as positive samples and those that are less similar or dissimilar as negative samples.
Based on this approach to sample construction, the training goal of the model is to draw positive samples
closer together in the feature space while distancing negative samples. This strategy significantly improves
the ability of the model to learn molecular features [38, 65], thereby enhancing its capability to identify
and interpret more complex patterns.

3.3 Self-supervised learning in drug 2D graph

A graph-based model represents the molecular structure of a drug molecule as a graph, where atoms
are depicted as nodes and chemical bonds as edges [66, 67]. This configuration enables the direct rep-
resentation of molecular structural information and topological relationships, crucial for elucidating and
predicting the chemical properties and biological activities of molecules. Figure 4 outlines several preva-
lent graph-based SSL methods employed in the field of drug discovery.

In Figure 4(a), drug molecules are represented as graphs, with nodes symbolizing atoms and edges
depicting chemical bonds between them [68]. An encoder-decoder architecture is used to learn repre-
sentations of these molecular graphs. Initially, the encoder converts the molecular graph into a latent
space representation, capturing critical structural and chemical information. Subsequently, the decoder
employs this latent representation to predict various properties of the molecule, such as atomic types
or other potential chemical properties. Pre-training on these properties helps the model capture basic
chemical characteristics, facilitating downstream drug development tasks.

Beyond property prediction, subgraph sampling and molecular graph reconstruction are key self-
supervised techniques (Figure 4(b)) [69]. Subgraphs are typically generated through methods such as
random sampling or based on node importance, and the decoder then tries to reconstruct subgraphs from
the original graph. This process helps the model learn essential substructural features while omitting
extraneous nodes or edges, thereby reducing the size of the graphs processed and consequently lowering
computational complexity and memory demands. Such reductions make managing large-scale chemical



Chen Y Y, et al. Sci China Inf Sci July 2025, Vol. 68, Iss. 7, 170103:6

Figure 4 (Color online) Self-supervised learning for drug 2D graphs is generally divided into four methods. (a) Attribute

prediction: the encoded features of a drug graph are utilized to predict the node type, molecular properties. (b) Sub-graph

generation or graph autoencoder: the features of the drug graph are encoded by an encoder and reconstructed into either its

sub-graph or the full graph. (c) Contrastive learning for samples: this involves randomly adding or removing edges from the drug

graph and identifying these altered graphs as negative samples through contrastive learning. (d) Contrastive learning for nodes: a

positive sample is defined as one where the path length is shorter than that of a reference node, and vice versa.

libraries more manageable, particularly during the early phases of drug discovery, which demand quick
screening and assessment of numerous candidate compounds. Molecular graph reconstruction uses a
graph autoencoder to fully reconstruct the entire input graph, requiring the model to learn enough infor-
mation to accurately replicate the input. This ensures that the learned representations are both highly
informative and functional. By reconstructing the entire graph structure, the graph autoencoder compels
the model to capture all vital information within the molecule, thereby enhancing the effectiveness of the
model in classification, regression, or other predictive tasks related to drug molecules.

Figures 4(c) and (d) introduce two graph-based contrastive learning methods [70]. The first method
involves randomly modifying edges (either adding or removing) on the original drug graph to generate
new graph variants that are considered negative samples. During this training process, the model must
learn to distinguish between the features of the modified graph (negative samples) and the original graph.
This approach deepens the model’s understanding of how molecules respond to specific modifications by
simulating potential chemical changes. Unlike constructing positive and negative samples from the entire
graph, the second method constructs them based on individual nodes. For example, nodes are classified
as positive or negative samples based on their path distance from a key node (in this case, the yellow node
n1). The threshold for classification depends on the specific learning task and objectives, emphasizing
the local structural information of drug molecules.

3.4 Self-supervised learning in drug 3D graph

3D molecular structures are primarily composed of the 3D coordinates of atoms, the types of atoms, and
the chemical bonds between them, which together define the spatial configuration and properties. This
accurate depiction of molecular geometry and stereochemistry is essential for understanding interactions
with biological targets. In contrast, 2D molecular graphs provide a simplified planar view focusing
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Figure 5 (Color online) Self-supervised learning for drug 3D graph structures is typically divided into three main approaches.

(a) Attribute and molecular dynamics prediction: the encoded features of a 3D drug are utilized to predict the masked atoms,

interatomic distance, bond angles, dihedral angles, or conformations of molecular dynamics. (b) 3D structural reconstruction: the

features of a 3D drug are encoded by an encoder and reconstructed through a decoder. (c) Contrastive learning for conformations:

randomly generate different conformations of the drug molecule. Conformations belonging to the same molecule are considered

positive samples, and vice versa.

only on atom connectivity and bond arrangements, suitable for basic structural analysis. However,
for detailed spatial insights needed in docking studies and molecular dynamics, 3D models are crucial.
While various 3D representations exist, such as point clouds, voxel grids, and surface models, this review
primarily focuses on 3D molecular graphs (3D-graph). Given the success of 3D graph neural networks
(3D-GNNs) in SSL, 3D-graph has become a dominant representation in drug discovery. Taking a small
molecule structure as an example, Figure 5 illustrates common 3D graph-based SSL methods used in
drug discovery.

In Figure 5(a), the model is trained to predict certain masked atoms within 3D drug molecules or
to predict geometric attributes such as interatomic distances, bond angles, and dihedral angles between
atom pairs. This approach enables the model to learn and understand the spatial geometric structure of
molecules, thereby enhancing the accuracy of predictions for molecular properties, activity, and interac-
tions. In addition, dynamic conformational changes, as opposed to static conformations, better reflect
the natural states of molecules. By utilizing trajectory data generated from molecular dynamics simu-
lations [71], we can capture these conformational changes and dynamic behaviors over time. The model
can predict structural changes within these time series, deeply learning the dynamic characteristics of
molecules. Through this pre-training method, models grasp molecular motion patterns and conforma-
tional transition pathways, providing more accurate support for downstream tasks such as drug-target
affinity or interaction prediction [72].

Generative models, such as VAEs, are also employed to learn latent representations of 3D drug
molecules. In Figure 5(b), an encoder network maps high-dimensional molecular structures into a lower-
dimensional latent space, effectively compressing essential information. Simultaneously, a decoder net-
work reconstructs the molecular structures from these latent codes, aiming to minimize the reconstruction
error between the original and regenerated molecules. This self-supervised approach allows the model to
uncover complex patterns and associations within 3D molecular data, enhancing its capability to perform
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downstream tasks such as generating new drug with desired conformations interacted with the target
protein.

Figure 5(c) illustrates a classical contrastive learning framework based on three-dimensional molecular
structures, wherein positive and negative sample pairs are constructed using different molecular con-
formations. Specifically, the method employs different conformations of the same molecule as positive
sample pairs and conformations of distinct molecules as negative sample pairs. This strategy enables the
model to learn feature representations that are invariant or robust to conformational changes, thereby
effectively capturing the intrinsic three-dimensional structural characteristics.

3.5 Self-supervised learning in drug image

In recent years, image-based representations of drug molecules have gained popularity [48]. Unlike former
representations, images offer a more intuitive and accessible format. This representation method visually
presents the molecular structure, effectively utilizing advanced image processing technologies like con-
volutional neural networks (CNNs) [73] and Swin Transformers [74] to analyze complex intermolecular
relationships. Additionally, it simplifies the understanding of the morphological and functional charac-
teristics of molecules for non-specialists. Moreover, image-based representations fully capitalize on the
latest advancements in computer vision, including pattern recognition and feature extraction, thereby
providing new perspectives and tools for drug discovery.

Similar to SSL methods applied to sequences and graphs, images can also be processed to capture
holistic features using encoders (Figure 6(a)) such as Swin Transformers [74]. This technique enables the
encoder to analyze and capture the overall structural and textural patterns in an image. Subsequently,
the representations learned are employed to predict fundamental properties of the subjects depicted in
the images, such as the presence of specific chemical groups or structures. For instance, in the context
of chemical imaging, as illustrated in Figure 6(a), the model may predict the presence of phenyl rings or
hydroxyl groups based on the encoded features. This predictive capability is crucial for applications in
fields like materials science and pharmacology, where an understanding of molecular compositions and
configurations plays a pivotal role in influencing the synthesis and functionality of compounds.

Image reconstruction is a widely adopted self-supervised pre-training method in computer vision. This
approach enables models to extract intrinsic features from images by learning to restore missing or dis-
torted parts without external annotation. By attempting to reconstruct the original image, the model
deepens its understanding of the data, allowing it to learn and articulate the fundamental structure
and content of image data, thus improving its generalization abilities in the absence of extensive labeled
datasets. As depicted in Figure 6(b), image reconstruction strategies are categorized into masking and
disturbance strategies [8, 75]. The masking strategy is implemented at various molecular levels (Figure
6(b)), specifically: (1) atom level: the model learns to identify and infer the properties of various atoms
within a molecule by predicting the types of masked atoms; (2) bond level: some bonds are masked,
and the model is tasked with predicting the presence and types of these obscured bonds, enhancing its
understanding of the connectivity within the molecular structure; (3) motif level: higher-level masking
involves specific motifs, such as ring structures or larger molecular components. The model must re-
construct the entire molecular image in the absence of these key components, requiring a comprehensive
understanding of the molecule’s overall structure and functional areas. Through this masking strategy,
the model not only improves its ability to handle complex data but also deepens its understanding of
molecular structures, facilitating the recognition of functional features. This strategy provides an effective
computational tool for fields such as drug discovery and molecular design, aiding in the development of
new pharmaceuticals and the prediction of molecular functions.

The disturbance strategy uses the disarray or perturbation of image segments, employing multiple
decoders for their reconstruction to train the model. This strategy is divided into three distinct sub-
strategies (Figure 6(b)) [8, 75]. (1) Rationality prediction: the decoders assess whether each segment
is correctly positioned by evaluating the rationality of the disturbed segments in relation to the en-
tire image. This includes determining if these segments are logically placed within the image context.
(2) Image reconstruction: even though some segments of the image are disturbed, this strategy requires
the decoders to reconstruct the entire image. The decoders work to regenerate the full content from
partial information, thus enhancing the model’s understanding of the image. (3) Sequential prediction
of blocks: this sub-strategy involves numbering the scrambled segments and predicting the correct se-
quence of these disturbed blocks. Through this approach, the model gains a deeper understanding of the
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Figure 6 (Color online) Self-supervised learning for drug images is typically divided into two main approaches. (a) Attribute

prediction: this approach uses the encoded features of a drug image to predict specific molecular properties, such as the presence

of a benzene ring. (b) Reconstruction or generation strategies: there are two distinct strategies within this approach: masking and

disturbance. Masking strategies involve reconstructing certain regions (e.g., atoms, bonds, or motifs) of a drug molecule image by

masking them. Disturbance strategies involve predicting the reconstructed state or the order of picture blocks after dividing the

image into several blocks.

overall structure of the image and the relationships between its segments. These sub-strategies collec-
tively enhance the model’s capability to handle complex data by deepening its understanding of spatial
relationships and structural integrity within images.

4 Applications of self-supervised learning in drug discovery

SSL has emerged as a powerful approach in drug discovery, particularly for leveraging large-scale unla-
beled molecular data. Unlike supervised learning, which requires extensive annotations, SSL can extract
meaningful representations from unlabeled data, enhancing generalizability. Compared to physics-based
simulations, SSL offers a data-driven approach that reduces computational costs while complementing
mechanistic modeling. By integrating SSL with existing AI methods, pharmaceutical applications can
achieve both improved efficiency and predictive accuracy, accelerating the drug discovery process. As
illustrated in Figure 7, SSL has been extensively employed across five major areas in the field of drug
discovery: drug repurposing [76], drug-target interaction (DTI or DTA) [77, 78], drug-drug interaction
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Figure 7 (Color online) Diverse applications of self-supervised learning in drug discovery. (a) Drug repositioning explores alter-

native uses for existing drugs through predictive modeling of biological processes. (b) Drug-target interaction and affinity evaluate

potential drug-target binding affinities, enhancing the prediction of therapeutic effectiveness. (c) Drug-drug interaction examines

the interactions between multiple drugs, aiding in the assessment of combination therapies. (d) Drug property interaction focuses

on the relationship between drug properties and their biological effects, facilitating optimized drug profiles. (e) Drug design and

optimization utilizes computational tools to design new drugs and optimize existing ones, leveraging AI-driven models to predict

efficacy and safety profiles.

Table 2 Benchmark datasets commonly used for evaluating SSL models in drug discovery tasks.

Dataset Description and application Task(s) evaluated

DAVIS [82]
Experimentally validated binding affinities between small molecules and kinase targets,
widely adopted for benchmarking DTI prediction methods.

Drug-target interaction
prediction

BindingDB [83]
Comprehensive database of experimentally measured protein-ligand binding affinities,
extensively used for drug design and virtual screening.

Drug-target interaction
prediction

KIBA [84]
Integration of diverse drug-kinase binding data into a unified scoring system, enabling
standardized comparison across prediction models.

Drug-target interaction
prediction

MOSES [85]
Standardized benchmarking platform providing datasets and metrics (novelty, validity,
diversity) to evaluate molecular generative models.

Molecular generation

ZINC [86]
Open chemical database containing millions of commercially available molecules,
commonly utilized in molecular generation and virtual screening benchmarks.

Molecular generation,
virtual screening

SAbDab [87]
Specialized database containing experimentally determined antibody sequences and
structural data, serving as a benchmark for antibody modeling tasks.

Antibody sequence
modeling

(DDI) [79], drug property prediction [27], and drug molecule design and optimization [80, 81]. In Table
2 [82–87], there are some benchmarks commonly used for evaluating SSL models in drug discovery applica-
tion tasks. This section will comprehensively examine the specific applications of self-supervised learning
in the research of various drug types, including small molecule drugs [88], peptide [89], vaccines [90], and
antibody drugs [91], from their respective perspectives.

4.1 Small molecule drug discovery

In recent years, SSL techniques have gained prominence in small molecule drug discovery, propelled by the
distinctive advantages of small molecules in data representation and processing. Small molecule drugs can
be represented flexibly as sequences (SMILES), graphs, or images. This versatility in data representation
not only enhances their utility in self-supervised learning frameworks but also allows for the elucidation
of biological activity and pharmacological properties from multiple perspectives. Consequently, these
approaches have substantially enhanced the model’s accuracy and applicability.

For example, K-BERT proposed by Hou et al. [27] used three self-supervised pre-training tasks: predic-
tion based on atomic features, prediction of molecular features, and contrastive learning, which effectively
extracts chemical features from SMILES representations. This method endows the model with the an-
alytical ability of a chemist and has demonstrated great potential in predicting molecular properties.
TamGen [92] used a GPT-like chemical language model to pretrain a compound decoder on a random
sample of 10 million SMILES from PubChem. The compounds generated by TamGen were shown to
have better molecular quality and activity. In addition, TamGen further identified 14 compounds with
significant inhibitory activity against the tuberculosis ClpP protease, emphasizing the practical potential
and real-world applicability of the generative drug design approach. SADR [93] utilized data augmenta-
tion and contrastive learning strategies to learn the feature representation of nodes by randomly deleting
nodes and their corresponding edges to construct negative samples. It has been extensively tested across
three datasets, demonstrating its effectiveness in addressing the challenges posed by sparse datasets.
GraphCL-DTA [70] applied graph contrastive learning to drug protein affinity prediction task. It added
different random noises to the drug representation to generate two contrastive views and optimize the
drug encoder directly, and not need a complex augmentation strategy. ImageMol [8] proposed a self-
supervised image representation learning framework to predict of molecular properties and drug targets,
which pretrained on 10 million unlabeled drug-like, bioactive molecules, to predict molecular targets of
candidate compounds. It used three SSL methods based on molecule image to pretrain the model, in-
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cluding predicting chemical structural information, distinguishing rational and irrational molecules and
predicting rational permutations. ImageMol provided a general framework for other downstream tasks
and has demonstrated its accuracy in identifying molecules that target SARS-CoV-2. Different from
ImageMol, MaskMol [75] was an image pre-training framework for activity cliffs. By using pixel masking
tasks, it extracted fine-grained information from molecular images, overcoming the limitations of existing
deep learning models in identifying subtle structural changes. In recent years, many pharmaceutical
companies have achieved success in small molecule drug design using SSL-based pre-trained models. Uti-
lizing de novo generation technology, Insilico Medicine successfully nominated ISM1745 as a preclinical
candidate drug targeting PRMT5 in PandaOmics [94]. MindRank has developed ProtMD [72], the first
self-supervised pre-training model based on protein dynamics, which significantly improves the accuracy
of drug-protein affinity prediction by introducing spatial and temporal dynamics of proteins, assisting
medicinal chemistry experts to more accurately screen highly active small molecules and accelerating
preclinical research and development.

4.2 Peptide drugs

Peptide drugs are characterized by their high specificity and potency, which reduce side effects and
increase therapeutic efficacy. Their biocompatibility ensures low toxicity, and advances in synthetic
techniques have enhanced their stability and functional versatility. Since the discovery of insulin nearly
a century ago, over 80 peptide drugs have been introduced to the market [89].

Das et al. [95] pre-trained a generative autoencoder on the UniProt protein/peptide sequence database
and used the trained classifier to screen whether the points in the generated sample space conformed
to the target attributes (such as antibacterial activity and toxicity). Molecular dynamics simulations
and synthetic experiments were used to verify two highly effective antibacterial agents against a vari-
ety of gram-positive and gram-negative pathogens. PeptideBERT [5] was a specialized protein language
model. It can be used to accurately predict key peptide features including hemolysis, solubility and
non-contamination by pre-training and then fine-tuning using BERT on amino acids. TPpred-SC [96]
combined a pre-trained protein language model with multi-label supervised contrastive learning for pre-
dicting multifunctional therapeutic peptides. In TPpred-SC, each sample is selected as an anchor sample
in turn. Samples with similar functional characteristics are classified as positive samples, while other
samples are defined as negative samples. Experimental results show that TPrEd-SC outperforms exist-
ing related methods. DeepAMP [97], a peptide language-based deep generative framework, it screened
321 antimicrobial peptide sequences with relatively high activity (MIC lower than 2.5 against E. coli)
from the GRAMPA 19 dataset, randomly masked up to 30% of the site length for each sequence, and
finally generated a large number of optimized antimicrobial peptide data pairs containing low activ-
ity and high activity. Using the deepAMP, researchers designed and tested 29 AMP candidates in a
two-round process, achieving over 90% efficacy against both Gram-positive and Gram-negative bacteria.
Beyond the traditional amino acid sequence representation, some peptides, such as cyclic peptide drugs,
can additionally be represented using SMILES sequences. The structural and functional properties of
cyclopeptides lead to the possibility that they may contain non-standard amino acids in their natural
state or during the synthesis process. CyclePermea [98] and MultiCycPermea [99] not only incorporated
a peptide encoder based on a pre-trained BERT architecture, but also constructed positive and negative
samples using SMILES sequence similarity, and further optimized the cyclopeptide representation using
contrastive learning.

4.3 Vaccine development

Since the outbreak of the COVID-19 pandemic, deep learning has played a pivotal role in vaccine devel-
opment [100,101]. The capabilities of SSL have enabled researchers to more accurately predict antigenic
epitopes of pathogens without explicit labels, facilitating the rapid identification and optimization of
viable vaccine candidates. This advancement has not only accelerated vaccine development but also im-
proved the ability to respond to emerging viral variants, which is crucial in addressing global health crises.
Recently, mRNA-based vaccines and therapies are becoming increasingly widespread in the treatment of
various diseases. CodonBERT [102] was a large language model for mRNA that takes codons as input.
Through splicing and masking operations, it is trained with more than 10 million mRNA sequences from
different organisms, enabling the model to capture important biological concepts. CodonBERT can also
be extended to predict various mRNA properties and performs well on the new crown vaccine dataset. As
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a pretrained protein language model, ESM [103] can accurately predict protein structures and functions,
providing essential insights into identifying targets for immunotherapy and optimizing vaccine antigen
design. Aziz et al. [104] employed immunoinformatics and reverse vaccinology methods combined with
deep learning to predict the protein structures of NeoCoV, designing multi-epitope vaccines against this
virus and simulating their interactions with immune receptors (TLRs and MHC), thereby significantly
reducing the cost and duration of vaccine development. pMTnet-omni [105] utilized ESM to precisely
predict the interactions between T-cell receptors (TCR) and peptide-MHC complexes (pMHC), revealing
the molecular mechanisms underlying antigen recognition by T cells. This approach facilitates the iden-
tification of immunotherapy targets and the selection of high-affinity epitopes, advancing personalized
immunotherapies and novel vaccine development.

4.4 Antibody design

Antibodies play a crucial role in drug discovery, primarily by specifically recognizing and binding to
disease-related targets such as proteins or pathogen surface molecules, which block or regulate biological
processes and ameliorate disease symptoms. Their high specificity and customizability render antibodies
ideal therapeutic agents for a wide range of diseases, including cancer, autoimmune diseases, and inflam-
matory conditions. Furthermore, antibody drugs typically exhibit high efficacy and relatively low side
effects, positioning them as central elements in contemporary drug discovery and treatment strategies.

CDRH3 [106] is a key structural domain in antibody molecules, located in the variable region of the
antibody and is critical for determining the specificity and affinity of the antibody. PALM-H3 [107]
has been proposed for the redesign of the CDRH3 region to endow it with the desired antigen-binding
specificity. Initially, a masked language model based on ESM2 [108] was applied for pre-training on
unpaired antibody heavy and light chain sequences. Subsequently, the pre-trained model RoFormer was
used together with the paired affinity data to construct and fine-tune the A2Binder. Ultimately, these
models were employed to generate and train PALM-H3. Through computational simulations and in vitro
experimentation, antibodies produced by PALM-H3 have demonstrated significant binding activity with
the SARS-CoV-2 antigen, including the newly emerged XBB variant. IgLM [109] designed antibodies
based on text-filling in language, enabling it to redesign CDR in antibody sequences using bidirectional
context. It was pretrained by autoregressive prediction rather than MLM and generated a sequence based
on conditional tokens. It has been shown that IgLM is capable of producing complete antibody sequences
from diverse species. Additionally, its infilling approach facilitates the creation of complementarity-
determining region (CDR) loop libraries, which are enhanced by better in silico developability profiles.

5 Challenges and prospects

In the field of drug discovery, SSL has demonstrated significant potential, yet it continues to face sev-
eral challenges [110]. (1) Data quality and consistency [111]: in biomedicine, data often originates from
diverse sources and varies in quality. For example, obtaining high-quality 3D molecular structure data
is challenging and costly, and computationally generated conformations may lack sufficient accuracy.
(2) Complexity and interpretability of models [112]: drug discovery involves intricate biological mecha-
nisms and constantly evolving biomarkers. While SSL models are adept at identifying patterns within
the data, their internal decision-making processes remain opaque. This lack of clarity is particularly
problematic in drug development, where explicit explanations of model predictions are essential to com-
ply with regulatory standards. (3) Model efficiency [113]: drug discovery necessitates the analysis of
extensive datasets encompassing a wide array of molecular structures and biomarkers. For instance,
processing image data-particularly high-resolution images-typically requires substantial computational
resources. This demand becomes especially pronounced when handling large molecules, thereby con-
straining the speed and efficiency of model processing. SSL models demand significant computational
power and sophisticated algorithms to efficiently process large-scale data, ensuring that training time
and resource utilization are optimized. (4) The application of self-supervised learning in drug discovery
presents several challenges, including data privacy protection and fairness, necessitating the anonymiza-
tion of patient information and the mitigation of biases that may affect drug applicability. The predicted
drug candidates must undergo rigorous experimental validation to minimize the risks of false discoveries
and potential toxicity. Additionally, issues related to intellectual property rights and legal responsibilities
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must be clearly defined to ensure compliance and safety, thereby facilitating the reliable integration of
self-supervised learning in drug discovery.

We can anticipate several promising directions for expanding the application of SSL in drug discovery.
Firstly, integrating SSL with reinforcement learning could significantly enhance the efficiency of new
drug research and development. SSL enables the extraction of rich feature representations from drug
molecules without requiring labeled data. These features can serve as inputs for reinforcement learning
models or be used to refine pre-trained models through reinforcement learning, thus accelerating and
improving decision-making and optimization processes [114, 115]. Secondly, merging SSL with multi-
view learning is another avenue that merits attention [116, 117]. SSL with multi-view representations
of drug molecules offers a promising new avenue for drug development. Multi-view representations can
capture various aspects of molecular data, including two-dimensional structural formulas and three-
dimensional conformations. This approach enables the extraction of comprehensive molecular embeddings
that integrate information from multiple perspectives, thereby enhancing the performance of downstream
tasks. Finally, future research should aim to develop scalable SSL frameworks that can be standardized
across various stages and goals of drug discovery [13]. Moreover, establishing standardized data processing
and model training protocols will enhance the reproducibility of research and the comparability of results,
ultimately advancing the entire field of drug discovery.

In summary, the future application of SSL in drug discovery is multifaceted, and the integration of
additional learning methods is anticipated to further drive innovation and development in this field.
These advancements are expected to enhance efficiency and reduce R&D costs in the discovery of new
drugs.

6 Conclusion

In this review, we emphasize the transformative impact of SSL in drug discovery. We began by exam-
ining drug molecules represented in various formats, such as sequences, graphs, images, and 3D models,
demonstrating how SSL methods (e.g., predictive modeling, generative tasks, and contrastive learning)
can utilize large amounts of unlabeled data to enhance model training. This enhancement significantly
improves the models’ effectiveness and applicability in addressing complex pharmacological challenges.
Additionally, we detailed specific applications of SSL in fields such as small molecule drug design, peptide
drug development, vaccine optimization, and antibody engineering.

Despite these advancements, SSL in drug discovery encounters challenges with data quality, model
interpretability, and computational demands. Addressing these issues through the integration of rein-
forcement and multi-task learning could further enhance its efficacy, scalability, and cost-effectiveness.
By evolving SSL frameworks and establishing standardized protocols, the field of drug discovery is well-
positioned to reach unprecedented levels of efficiency and innovation, thereby accelerating the creation
of safer and more effective therapeutic solutions.
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