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Abstract Artificial intelligence (AI) is revolutionizing the field of drug development, particularly in addressing key chal-

lenges such as drug response prediction, drug combination design, drug repositioning, and drug molecule generation. Tradi-

tional drug discovery is hindered by long timelines, high costs, and low success rates, necessitating innovative technologies to

accelerate the process. AI technologies, such as deep learning, graph neural networks, and generative models, have demon-

strated significant potential in enhancing the accuracy of drug response predictions, optimizing drug combination strategies,

identifying opportunities for drug repositioning, and generating drug molecules with specific biological activities. These

advancements not only accelerate the drug development process but also open up new possibilities for precision medicine.

This review discusses the latest applications and developments of AI in drug discovery, highlighting the breakthroughs and

challenges AI addresses in drug development. By summarizing the current research progress, this study provides theoretical

support and practical guidance for further applications of AI in drug development.
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1 Introduction

Drug response prediction, drug combination design, drug repositioning, and drug molecule generation are
pivotal tasks in drug development, directly influencing the efficacy and safety of disease treatments. Drug
response prediction aims to reveal the interactions between specific drugs and the biological system, pro-
viding a theoretical foundation for personalized medicine and therapeutic efficacy assessment [1–3]. Drug
combination research explores the synergistic effects of combined therapies, with the goal of enhancing
efficacy, reducing drug resistance, and minimizing side effects [4, 5]. Drug repositioning discovers new
indications for existing drugs, thereby accelerating the development process and reducing costs [6–8].
Meanwhile, drug molecule generation designs novel compounds with specific biological activities and
physicochemical properties, thereby expanding the chemical space of potential therapeutic agents [6, 9]
Research in these areas not only addresses major public health challenges but also tackles industry issues
such as long drug development timelines and low success rates, thereby providing both theoretical support
and technological tools to accelerate the development of new drugs.

Current drug development primarily involves four key stages: target discovery, drug screening, clinical
trials, and post-marketing surveillance [10]. In the target discovery phase, researchers identify potential
therapeutic targets through omics technologies and biomarker exploration; during the drug screening
phase, high-throughput screening or computational simulations are used to identify candidate compounds;
the clinical trial phase focuses on validating the safety and efficacy of the drug; and post-marketing

*Corresponding author (email: bliu@bliulab.net)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-024-4461-0&domain=pdf&date_stamp=2025-6-19
https://doi.org/10.1007/s11432-024-4461-0
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-024-4461-0
https://doi.org/10.1007/s11432-024-4461-0


Qi R, et al. Sci China Inf Sci July 2025, Vol. 68, Iss. 7, 170102:2

surveillance monitors the long-term efficacy and potential adverse reactions of the drug [11]. However,
these traditional processes are not only time-consuming and labor-intensive but also face challenges such
as high failure rates and substantial costs. Therefore, there is an urgent need for more efficient technologies
to optimize and complement these processes [12], enhancing the success rate of drug development and
accelerating the time to market.

Although significant progress has been made in drug development, several key issues remain to be
addressed [13]. Firstly, there is still considerable uncertainty in drug response and toxicity prediction,
especially in cancers with high heterogeneity, which presents challenges for personalized treatment and
efficacy evaluation [14]. Secondly, the mechanisms underlying the synergistic effects of drug combinations
remain unclear, and existing combination design methods lack systematization and efficiency, limiting
their clinical applicability [15]. Thirdly, drug repositioning approaches largely depend on expert knowl-
edge, which, although valuable for identifying new indications for existing drugs, is unable to fully explore
all potential application scenarios and necessitates further refinement [16]. Finally, drug molecule gener-
ation is constrained by limitations in chemical space exploration, the prediction accuracy of drug efficacy,
and the evaluation of synthetic feasibility, challenges that remain unresolved in the context of novel drug
design and assessment [17]. To overcome these challenges, there is an urgent need to develop innovative
technologies and methods to improve the efficiency and quality of drug development, accelerating its
clinical application.

In recent years, artificial intelligence (AI) has found increasingly extensive applications in the field of
biopharmaceuticals, offering novel solutions for drug development and fostering significant advancements
in personalized treatment strategies [18–22]. Deep learning models, owing to their distinctive abilities in
high-dimensional data processing, feature extraction, and pattern recognition, facilitate accurate drug re-
sponse prediction, thus providing robust support for personalized therapeutic decision-making [9,23,24].
Models based on graph neural networks (GNNs) and multimodal learning have achieved remarkable
progress in drug combination design, significantly enhancing the accuracy of synergy effect prediction [25].
Simultaneously, AI-driven approaches leveraging data mining and knowledge graph construction have
greatly improved the discovery capabilities for drug repositioning, allowing the identification of potential
new indications from vast amounts of existing data [26]. Moreover, generative models such as generative
adversarial networks (GANs) and variational autoencoders (VAEs) have demonstrated exceptional ca-
pabilities in exploring chemical space, facilitating the design of tailored molecular structures to address
the complexities of modern therapies [27]. These innovative advancements not only drive transformative
changes in drug development, shortening development timelines and reducing costs, but also provide
robust technological support for personalized medicine and novel drug discovery.

This paper aims to review the latest advancements in AI for drug response prediction, drug com-
bination optimization, drug repositioning, and drug molecule generation, while exploring the potential
and challenges of these technologies in addressing key issues in drug development. By systematically
summarizing and analyzing existing research, we aim to provide a comprehensive knowledge framework
for this field, stimulate further academic interest, and promote interdisciplinary collaboration, ultimately
advancing the application and development of AI in drug discovery. The contributions of this study are
as follows: (1) systematically organizing AI applications in drug development, creating a knowledge map
and classification framework, (2) analyzing AI’s technical advantages and application scenarios, offering
practical insights, (3) highlighting the importance of interdisciplinary collaboration, exploring integration
with biology and pharmacology, (4) identifying bottlenecks like data quality and model interpretability,
proposing solutions and future directions, (5) constructing a comprehensive knowledge framework to
support AI application and industrialization in drug development.

2 Core AI technologies in drug development

Drug development is typically divided into preclinical and clinical stages, with AI making a significant im-
pact mainly in the preclinical phase [28]. This stage involves critical steps like disease mechanism research,
target identification, and compound screening, where AI enhances efficiency through data-driven insights
and advanced computational algorithms [29]. AI-driven pharmaceutical technologies reduce development
time and costs by optimizing multiple processes [30]. Deep learning methods, in particular, are notewor-
thy for their theoretical strength and practical breakthroughs. Below, we analyze the characteristics of
key deep learning methods and their applications at various stages of drug development.
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Figure 1 (Color online) Core AI methods in drug development. (a) DNN architecture; (b) GAN architecture; (c) GNN architec-

ture; (d) RNN architecture; (e) Tansformer architecture; (f) CNN architecture; (g) LSTM architecture; (h) reinforcement learning

architecture; (i) autoencoder architecture; (j) transfer learning architecture.

Deep neural networks (DNNs) excel at capturing complex nonlinear relationships through multi-layer
architectures (Figure 1(a)), which adjusts the weights through backpropagation and automatically ex-
tracts features for large-scale and complex data to aid in drug discovery, such as drug-target interaction
(DTI) prediction and drug compound activity prediction [31,32]. Convolutional neural networks (CNNs)
specialize in spatially structured data (Figure 1(f)) and extract spatial features through convolutional
layers, which are extensively applied in molecular crystal structure analysis and compound image recog-
nition [33, 34]. In drug development, CNNs optimize virtual screening by analyzing 2D images and
3D molecular structures, enhancing candidate identification and predicting spatial compatibility between
molecules and targets to improve binding precision [35]. Recurrent neural networks (RNNs) (Figure 1(d))
and long short-term memory networks (LSTMs) (Figure 1(g)) are focused on sequential data, applied
in molecular sequence generation, protein folding prediction, and genomic analysis [36–40], and LSTMs
solve the problem of disappearing gradients in RNNs to better model long-term dependencies. GNNs spe-
cialize in analyzing graph-structured data (Figure 1(c)), widely used for molecular property prediction,
drug interaction network analysis, and protein structure simulations [41,42]. By propagating information
between nodes (atoms) and edges (bonds), GNNs capture complex non-Euclidean relationships between
molecules. GANs use adversarial training to generate samples that resemble real data distributions (Fig-
ure 1(b)), excelling in chemical space exploration and novel molecule design [43–45]. The Transformer
model (Figure 1(e)), with its attention-based architecture, improves sequence modeling efficiency, widely
applied in natural language processing (NLP), molecular sequence generation, and protein structure
prediction [46, 47]. The self-attention mechanism enables the model to efficiently capture long-distance
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Figure 2 (Color online) AI-driven workflow for drug development.

dependencies. Transfer learning applies domain knowledge to solve problems in other areas (Figure 1(j)),
particularly useful in data-scarce scenarios, widely applied in cross-disease and cross-target predictions in
drug development, such as drug repositioning [48,49]. Deep autoencoders learn efficient data representa-
tion through encoding and decoding processes (Figure 1(i)), applied in compound representation, protein
structure prediction, and novel drug design [50, 51]. Reinforcement learning (RL) (Figure 1(h)), using
the “exploration and exploitation” strategy, solves complex decision-making problems, widely applied in
molecule optimization, drug design, and personalized drug dosage optimization [9, 52].

3 Specific methods and applications of AI in drug development

3.1 Data foundations and workflow overview

In drug response prediction, drug molecule representation is crucial and falls into sequence-based, graph-
based, and image-based methods. Simplified molecular input line entry system (SMILES) [53], a widely
used sequence-based method, encodes molecular structures into strings and uses Transformer models to
extract features, offering a compact and standardized format with simplicity and efficiency. As drug
databases expand, many now include 2D and 3D molecular descriptions for hundreds of drugs, providing
richer structural information. These multi-dimensional data have enriched representation methods and
accelerated the development of deep learning models, enhancing AI’s potential in drug response prediction.

Figure 2 illustrates the interrelationship and workflow among input data, AI methods, and drug re-
search, emphasizing synergistic interactions and information flow. The AI-integrated drug development
process is summarized as follows. First, data such as drug properties, genomic information, and labels
are prepared. Next, AI methods extract feature representations of drugs or biological cells, forming a
foundation for modeling. These feature vectors and task-specific labels are input into machine learning or
deep learning models, where parameters are optimized to improve predictive performance. After training,
the model is evaluated using performance metrics to identify the best version and tested on an external
set to assess generalization. Finally, predictive results are validated through biological experiments or
literature, and interpretability analyses uncover underlying biological mechanisms.

AI models leverage extensive molecular and biological data from sources like GDSC [54], CCLE [55], and
DrugBank [56] to identify patterns that guide drug selection and enhance early-stage screening efficiency.
Modern drug research integrates genomic, pharmacological, and clinical datasets to support therapeutic
development. High-throughput genomics techniques identify mutations, gene expression profiles, and reg-
ulatory pathways [57], while whole-genome and whole-exome sequencing reveal cancer genome variations
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to uncover drug targets and resistance mechanisms [58]. Single-cell technologies capture tumor hetero-
geneity, aiding in designing targeted drug combinations. Epigenomic data reveal chromatin accessibility
and regulatory elements [59]. Drug databases like DrugBank and CMap offer pharmacological insights,
which, combined with clinical data, enable predictive models of drug efficacy and safety [60]. Together,
these datasets underpin precision medicine and personalized treatment strategies [61].

AI plays a transformative role in drug development by accelerating stages from drug screening to
molecular design. In data processing, AI structures and analyzes complex datasets to identify high-quality
data and potential drug candidates from vast libraries, reducing trial-and-error processes. A 2019 Cell
cover story reported AI’s success in discovering novel antibiotics from over 100 million molecules, validated
in mice experiments [62]. In data analysis, AI efficiently identifies disease-related targets using machine
learning and deep learning, expediting the transition from biological mechanisms to therapeutic discovery
while aiding in drug resistance and patient response prediction [63]. By analyzing genomic and single-cell
data, AI identifies resistance biomarkers and stratifies patients, enabling precision medicine [64]. For
molecule generation, AI models like GANs and VAEs design novel compounds with optimized properties,
while RL refines structures to enhance efficacy and safety [65, 66]. AI’s capacity to manage large-scale,
high-dimensional data has established it as an indispensable tool, driving efficient, data-driven drug
discovery [67].

3.2 Deep learning models efficiently predict 3D structures of molecules and complexes

Target-based drug design dominates drug development, with proteins being the primary targets. Under-
standing molecular and complex three-dimensional structures is fundamental to life sciences and drug de-
velopment, offering insights into interactions, binding mechanisms, and functional properties essential for
effective therapeutic strategies [68]. Traditional methods for structural determination are time-intensive
and constrained by experimental limitations. Deep learning models address these challenges by enabling
efficient and accurate molecular structure prediction, demonstrating exceptional applicability even in
complex scenarios and significantly advancing molecular biology and drug discovery. AlphaFold [69],
developed by DeepMind under Google, has predicted structures for approximately 200 million proteins,
covering nearly all known organisms.

Drug discovery depends on molecular structures like proteins, drugs, and ligands to analyze binding
mechanisms and interactions. Determining a single protein’s 3D structure can take months or years,
especially without similar known structures, making structural coverage a challenge. AlphaFold 2 ad-
dresses this by leveraging deep learning for end-to-end 3D structure prediction directly from amino acid
sequences, bypassing manual feature engineering and complex simulations [69]. It uses templates for
known structures and constructs multiple sequence alignments for unknown ones to extract evolutionary
information and predict conserved and variable regions. AlphaFold 2 achieves a high prediction accuracy
(average GDT score of 92.4), comparable to experimental techniques like cryo-electron microscopy. Al-
phaFold 3 further advances this capability by incorporating diverse input types and introducing enhanced
feature representations and diffusion modules with SwiGLU activation, improving performance [70]. It
achieves at least 50% better accuracy in predicting interactions between proteins and other molecules,
doubling accuracy for critical interactions like protein-ligand and antibody-target protein binding. Addi-
tionally, AlphaFold 3 models large biomolecules and small molecules, making it a highly promising tool
for drug design.

Deep learning models excel in predicting the 3D structures of molecules and complexes, offering signifi-
cant efficiency and speed advantages, and have become pivotal in life sciences and drug development [71].
By employing end-to-end sequence-to-structure learning, these models drastically reduce the time needed
for traditional structural analysis, accurately predicting protein and molecular structures even without
known similar templates. The AlphaFold series enhances precision and expands applicability through ad-
vanced feature representations and innovative architectures, supporting predictions across diverse molec-
ular types and complexes [72]. Additionally, integrating self-supervised and contrastive learning signifi-
cantly improves the models’ ability to capture molecular properties and interactions. These advancements
underpin the understanding of molecular mechanisms, optimization of drug design, and development of
new therapies, thereby accelerating progress in life sciences.
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3.3 Artificial intelligence improves efficiency and predictive accuracy of drug-target inter-

actions

Successful drug development involves critical factors such as target selection, drug interactions, phar-
macokinetics, and safety evaluation. Investigating how molecular structures affect DTIs is crucial, as
it provides key insights into drug action mechanisms [73]. After achieving precise structural character-
ization, exploring its functional implications becomes essential in drug discovery. Deep learning, with
its ability to analyze complex datasets, has become a transformative tool for predicting DTIs [74]. It
bridges the gap between structure and function, offering insights into how structural features translate
into functional outcomes, thereby advancing efficient drug development strategies [75]. For example, in
amyotrophic lateral sclerosis (ALS), motor neurons in the brain and spinal cord degenerate, leading to
loss of muscle control. Existing ALS drugs cannot reverse neurodegeneration. However, using the AI-
based target discovery platform PandaOmics [76], scientists at Insilico Medicine have identified previously
unreported potential therapeutic targets, offering new hope for ALS treatment.

AI predicts compound-target binding affinity, aiding drug design to enhance efficacy. The vast mutation
diversity in antibody complementarity-determining regions makes traditional in vitro affinity maturation
time-consuming and costly [77]. Although molecular dynamics simulations are accurate, their compu-
tational inefficiency limits large-scale mutation screening. Deep learning models significantly improve
affinity prediction accuracy and reliability. The GearBind method [78] uses a pretrainable deep neu-
ral network to model protein-protein interactions via hierarchical geometric information propagation.
Pretrained on large-scale unlabeled protein structures, it contrasts native structures with randomly mu-
tated counterparts sampled from a rotamer library, focusing on side-chain torsion angles. This approach
captures native structural features and distinguishes between wild-type and mutant proteins.

Conventional methods for predicting DTIs typically rely on the known three-dimensional structures
of drugs and targets. However, the structural data for certain drug targets remain limited. MIDTI [79]
overcomes this limitation by constructing various graphs that incorporate not only chemical and genetic
information but also semantic relationships between biological entities, such as targets, drugs, diseases,
and side effects. By leveraging a multi-view similarity network fusion strategy and a deep interaction
attention mechanism, MIDTI effectively predicts DTIs, providing a more comprehensive and robust ap-
proach to DTI prediction. However, when the input consists solely of molecular descriptions of drugs and
amino acid sequences of protein targets, structure-based approaches often struggle to achieve high predic-
tion accuracy. ConPlex [80] addresses this issue by utilizing a pretrained protein model and categorizing
datasets into two types based on data coverage: high-coverage and low-coverage datasets. High-coverage
datasets encompass a wide range of proteins to evaluate diversity, while low-coverage datasets focus on
specific protein families to assess specificity.

In conclusion, AI significantly enhances the efficiency of DTI research. By integrating molecular
docking, virtual screening techniques, and deep learning models, AI predicts ligand-protein interactions
and employs molecular dynamics simulations to improve prediction accuracy [80]. Deep learning models
complement existing ligand-protein binding screening strategies by analyzing 3D structures to determine
binding energies between candidate drugs and proteins, thereby selecting the most suitable ligands and
improving DTI prediction accuracy. Leveraging target-drug molecular interactions, AI can calculate the
binding affinities between drugs and their targets, enabling the virtual screening of lead compounds from
chemical databases. This approach greatly enhances the specificity of drug research, increases the hit
rate of bioactivity assays, and effectively reduces development costs.

3.4 Deep learning advances predictive models for drug sensitivity

Drug response refers to the physiological, pharmacological, and biochemical reactions when a drug in-
teracts with cells, tissues, or organs, encompassing its efficacy, toxicity, metabolism, and excretion, and
reflecting individual variability in drug responses [81]. The study of drug response includes therapeu-
tic outcomes, as well as absorption, distribution, metabolism, excretion (ADME), and the influence of
genetics, disease, and environmental factors on the drug’s effect [82]. Drug response is crucial for as-
sessing drug efficacy and identifying areas for improvement, guiding new drug design and optimization.
Research primarily focuses on predicting drug responses in cancer treatments. Rapid advancements in AI
have significantly enhanced the accuracy, efficiency, and scalability of drug response predictions, fostering
innovation in this field [83].
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Figure 3 (Color online) Representative methods for drug sensitivity prediction. DPP: drug physicochemical properties.

AI models for drug response prediction typically combine drug data with omics data, producing output
values such as half-maximal inhibitory concentration (IC50), 50% growth inhibitory concentration (GI50),
or area under the dose-response curve (AUC) to describe the dose-response relationship [1]. While earlier
studies used either drug or omics data, recent research focuses on integrating both to improve predictive
accuracy. Drug response prediction tasks are divided into regression and binary classification. Regression
predicts specific values, while binary classification assesses drug-disease sensitivity or resistance. Eval-
uation metrics differ: regression tasks use Pearson correlation coefficient (PCC), Spearman correlation
coefficient (SCC), and root mean square error (RMSE), while classification tasks use AUC, the area under
the precision-recall curve (AUPR), and F1 score. Figure 3 illustrates key AI methods for drug sensitivity
prediction, along with their associated data, models, and evaluation metrics.

DNNs have become indispensable tools in drug response prediction due to their exceptional ability
to extract features and make predictions from high-dimensional omics data. MOLI [84] is the first end-
to-end integrated method to use DNNs, taking somatic mutations, copy number alterations (CNAs),
and gene expression data as input, and using a DNN to extract features and ultimately predict drug
response. Similarly, RefDNN [85] consists of multiple ElasticNet models to compute representations of
high-dimensional gene expression data, and uses a DNN classifier to predict drug responses based on
these representations.

Sequence-based representation methods typically use SMILES as input data for drug molecules and
employ Transformer models for feature extraction. DeepChem [86] provides a function to derive molecular
graphs from SMILES strings, which is widely applied in graph-based representation methods. Graph
structures effectively capture the atoms and their relationships in drug molecules and use GNNs for
feature extraction. In contrast, drug molecule images can also be used as input, with CNNs employed for
feature extraction. Among current research, sequence-based SMILES representations and graph-based
representations are the two dominant approaches, each offering unique advantages [87].

For instance, in DeepCDR [88], a graph convolutional network (GCN) [89] is constructed to extract
feature vector representations from drug molecular graphs. Similarly, the Nerd model also employs
multi-layer GCN networks to extract drug. Both methods share the common feature of using graph
structures to represent drug molecules, enabling precise capture of atomic relationships and complex
molecular features. Moreover, DeepCDR integrates multiple subnetworks to extract multi-omics features
from genomic, transcriptomic, and epigenomic data, enhancing the prediction performance. This inte-
gration of multi-omics data highlights the potential of combining drug features with cellular and genetic
information [90].

In addition, some studies attempt to model the interaction between drugs and cancer cell lines (CCLs)
as a graph structure. In GraphCDR [91], cancer cell line representations learned through DNNs and drug
representations learned via GNNs are used as node attributes in a cancer drug response (CDR) graph,
with CCLs and drugs as nodes and sensitive responses as edges. The GNN encoder is employed to learn
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the latent embeddings of CCLs and drugs from the CDR graph for prediction. This graph-based modeling
approach not only captures the relationships between drugs and cell lines efficiently but also optimizes
predictions through GNNs. Similarly, in GADRP [92], a sparse drug cell line pairs (DCP) network is
constructed, combining similarity information between drugs, cell lines, and DCPs, with drug features
represented as DCP node attributes, and similarities between DCP nodes represented by edges. This
approach also emphasizes the importance of drug-cell line interactions and enhances prediction accuracy
through the network structure.

Since the introduction of the Transformer model in 2017, it has become a revolutionary architecture
in deep learning [93], particularly in the field of NLP. SMILES strings, as a sequence representation,
can be treated as textual data, enabling the use of Transformer models for feature extraction. The
self-attention mechanism in Transformer models allows for the efficient capture of complex relationships
between atoms and bonds in SMILES sequences, thus generating more accurate drug representations. In
DeepTTA [94], SMILES of drugs are treated as a sequence, decomposed into substructures, and input
into a Transformer encoder-based neural network to obtain the drug’s representation vector. In this
approach, the self-attention mechanism in Transformer models improves prediction accuracy by capturing
dependencies between different parts of the drug molecule. DeepCoVDR [95] is an improved version of
DeepTTA, employing a graph Transformer and feedforward neural network to mine information from both
drugs and cell lines. Additionally, the cross-attention module in the Transformer is used to compute the
interaction between drugs and cell lines. Unlike traditional Transformer methods, DeepCoVDR enhances
the model’s capability to handle drug-cell line interaction data by integrating the graph Transformer,
thereby improving prediction performance.

Other methods have also made significant progress in this field. For example, scDEAL [96] is a deep
transfer learning framework that predicts cancer drug responses at the single-cell level by integrating large-
scale cell line data. The innovation of scDEAL lies in coordinating large RNA-seq data related to drugs
with single-cell RNA-seq data and applying models trained on RNA-seq data to predict drug responses
in single-cell data. This approach emphasizes the synergistic effect between different data sources and
uses deep transfer learning to improve prediction accuracy. Similarly, MSDRP [97] constructs drug-drug,
drug-cell line, and cell line-cell line similarity matrices and uses inner and outer products to extract and
fuse features, providing new insights for drug response prediction.

Deep learning has demonstrated significant advantages in drug sensitivity prediction, offering powerful
tools for analyzing and modeling complex biological data. However, the progression and pathogenesis
of many diseases often involve multiple biological pathways, making it challenging for single drugs to
target all relevant mechanisms effectively. As the complexity of treating such diseases continues to
grow, the limitations of single-drug therapies have become increasingly apparent, positioning combination
therapy [98] as an indispensable strategy in addressing these challenges.

3.5 Deep learning-enabled innovations in modeling drug combinations and synergistic ef-

fects

Developing drug combinations that target multiple pathways simultaneously has become a key strat-
egy for enhancing therapeutic efficacy and reducing side effects [24, 99]. Drug combinations allow for
the simultaneous targeting of multiple cellular pathways, maximizing the cytotoxic effects on diseased
cells while potentially reducing the likelihood of resistance development [100]. By selecting drugs with
synergistic effects [101], combination therapies can be tailored to address the heterogeneity within tu-
mors, as each drug in the combination may target distinct cellular subpopulations, thereby increasing
the probability of complete disease eradication [102].

Early research on drug synergism typically relied on wet-laboratory experiments, which are time-
consuming, expensive, and carry inherent risks [103]. However, advancements in high-throughput se-
quencing technologies have greatly expanded the scope of genomics and transcriptomics, providing rich
datasets for disease-related research. These datasets encompass genetic variations, gene expression, and
protein functions across diseases, healthy tissues, animal models, and cell lines [104]. As the volume of
data increases dramatically, traditional analytical methods and individual expert knowledge are no longer
sufficient to meet the needs of precision medicine. In this context, the application of AI is progressively re-
shaping drug combination research, offering new approaches to drug synergy prediction. Table 1 [105–112]
summarizes the application of representative AI methods in drug combination research.



Qi R, et al. Sci China Inf Sci July 2025, Vol. 68, Iss. 7, 170102:9

Table 1 Representative AI methods for drug combination prediction.

Method Model Input Evaluation Code

DeepTraSynergy [105]
PPI network,

Transformer

SMILES, protein-protein

interactions, drug-protein

interactions, cell line-

protein interactions

AUC-ROC, AUC-PR,

ACC, recall,

F1 score

https://github.com/fatemeh-

rafiei/DeepTraSynergy

TranSynergy [106] Transformer, MLP

Drug-target interaction,

gene expression,

gene dependency

MSE, SCC, PCC,

PR-AUC, ROC-AUC

https://github.com/qiaoliuhub/

drug combination

DeepDDS [107]
GNN, Attention

mechanism

SMILES,

gene expression

ROC-AUC, PR-AUC,

ACC, BACC, PREC,

TPR, KAPPA

https://github.com/Sinwang404

/DeepDDS/tree/master

MTLSynergy [108]
Multi-task learning,

Autoencoder, MLP

SMILES,

gene expression

MSE, RMSE, PCC,

ROC-AUC, PR-AUC,

ACC

https://github.com/

TOJSSE-iData/MTLSynergy

DFFNDDS [109]
BERT, Attention

mechanism

SMILES, fingerprint,

gene expression

ACC, ROC-AUC,

BACC, MCC,

F1 score, recall,

average precision,

precision, KAPPA

https://github.com/sorachel

/DFFNDDS

GAECDS [110]
GAE, GCN,

CNN, MLP

Fingerprint, gene

expression

ACC, AUC, AUPR,

recall, precision,

F1 score

https://github.com/

junelyemm/GAECDS

Muthene [111]
Multi-task learning,

GCN, GAT

Drug-drug interaction,

drug-drug adverse effect,

drug target interaction,

gene expression

MSE, MAE, PCC
https://github.com/arantir123/

HNEMA

DTSyn [112] GCN, Transformer
SMILES,

gene expression

ROC-AUC, PR-AUC,

ACC, BACC, PREC,

TPR, KAPPA

https://github.com/PaddlePaddle/

PaddleHelix/tree/dev/apps/

drug drug synergy/DTSyn

Drug combination prediction often relies on similarity metrics, assuming that drugs with similar struc-
tures or targets may exhibit similar effects or interact with one another [113]. Furthermore, mathematical
models are widely employed to interpret pharmacokinetic and pharmacodynamic data to optimize dosing
regimens. AI technologies, such as machine learning, deep learning, and data analysis, can rapidly process
and analyze large-scale genomic, clinical, and drug-related data to extract similarity information, predict
interactions between drugs and targets, and optimize the effects of drug combinations. AI-based models
have already been applied to predict drug combinations for various diseases, including cancer, infectious
diseases, HIV, and hypertension [114]. For instance, the AI algorithm ComboFM [115] accurately predicts
whether combinations of anticancer drugs exhibit synergistic effects, thereby enhancing their combined
cytotoxicity against cancer cells. By leveraging higher-order tensor modeling, ComboFM effectively cap-
tures the interactions within drug combinations. Validation using pharmacogenomic screening data from
tumor cell lines demonstrated that ComboFM achieves outstanding predictive performance across diverse
scenarios.

In machine learning, drug combination prediction is framed as either a multi-class classification or
regression task. Most studies on classification classify combinations into synergistic or non-synergistic
categories, whereas regression tasks are focused on predicting synergy scores [116, 117]. For example,
Zhou et al. [118] developed a model using CatBoost, XGBoost, and RF, confirming the strong therapeutic
effect of Lapatinib and Pazopanib in breast cancer. With the rapid development of deep learning, an
increasing number of deep learning models are being applied to drug combination prediction. Deep
learning uses DNNs for feature extraction and prediction. Models based on Transformer and GNNs are
widely used in recent studies. For instance, TranSynergy [106] employs a self-attention mechanism to
model gene-gene interactions, using DNNs for prediction. The DTSyn [112] model integrates fine-grained
and coarse-grained Transformer encoders to capture associations between chemical substructures and
genes, and between chemicals and cell lines. DTSyn has demonstrated superior performance in multiple
cross-validation tasks. DeepTraSynergy [105] predicts drug synergism using multi-modal inputs, including
drug-target, protein-protein, and cell-target interactions, and has achieved high accuracy on drugs.

3.6 Artificial intelligence accelerates drug repositioning with enhanced precision

Drug repositioning repurposes existing drugs for new therapeutic uses, offering significant cost and time
advantages compared to traditional drug discovery, as the safety and pharmacokinetics of these drugs
are already established [12]. This strategy is particularly effective in tackling resistance or addressing
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Figure 4 (Color online) Representative methods for drug reposition. Disease inf: disease description information; DDI: drug-drug

interactions; DPI: drug-protein interactions; PPI: protein-protein interactions; DiPI: disease-protein interactions; DDiI: drug-disease

interactions; LR: linear regression; TE: tree ensemble; RF: random forest; RM: residual mechanism; TL: transfer learning; AM:

attention mechanism; GE: graph embedding; BA: bilinear aggregator; RW: random walk; TM: text mining.

emerging diseases. By leveraging AI to analyze large-scale data, drug repositioning identifies therapeutic
potential in approved drugs, expediting discovery and reducing costs [119].

The rapid advancement of AI and computational technologies has integrated these tools into drug
development stages, from molecular structure analysis to biological interaction predictions, enabling
efficient repositioning. This paradigm shift transforms traditional drug discovery, advancing precision
medicine. Drug response prediction underpins drug repositioning, providing essential support for its
success. For instance, DeepDRK [120] utilizes DNNs to process integrated multi-omics data, including
drug structural similarity, DTIs, and drug efficacy on CCLs, providing a foundation for drug repositioning.
Similarly, scDEAL [96] applies transfer learning to harmonize bulk gene expression data with single-cell
data, successfully addressing the scarcity of single-cell drug response datasets and offering innovative
solutions for drug repositioning tasks.

Understanding a drug’s mechanism of action (MOA) is crucial for uncovering novel therapeutic patterns
and enabling drug repositioning. MitoReID [121] employs mitochondrial morphology and membrane
potential as proxies for MOA by using metric learning to optimize extracted temporal features for sample
matching. This approach facilitates MOA inference for unknown drugs, aiding repositioning efforts. For
Alzheimer’s disease, DRIAD [122] leverages gene expression profiles at different pathological stages and
drug-induced gene perturbations in neurons to train a predictor for evaluating drug-induced cellular
disruptions, thus providing insights into repositioning candidates.

Biomedical knowledge graphs (KGs), encompassing entities such as diseases, genes, and drugs, enable
the discovery of latent associations between entities, offering valuable insights for drug repositioning.
For example, deepDR [123] uses positive pointwise mutual information (PPMI) and collective variational
autoencoders (cVAE) to predict drug-disease associations. LAGCN [124] enhances GCNs with attention
mechanisms to optimize heterogeneous network integration, improving predictive accuracy. Similarly,
STRGNN [125] incorporates topological regularization in GNNs to analyze multimodal networks for
repositioning.

Addressing complex network integration, approaches like DRWBNCF [126] and DRHGCN [127] com-
bine bilinear aggregation and GCNs to enhance predictions in heterogeneous networks. AdaDR [128]
employs consistency constraints and attention mechanisms to fuse network embeddings, achieving mul-
tidimensional modeling of drug-disease relationships. Moreover, TxGNN [129] extracts latent rules from
knowledge graphs, supplementing the treatment gap for certain diseases while providing interpretable
predictions through multi-hop knowledge paths. Figure 4 illustrates representative methods for drug
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repositioning.

In conclusion, AI in drug repositioning offers promising prospects for precision medicine and drug devel-
opment. Future research may focus on (1) building larger, high-quality multimodal biomedical knowledge
bases for robust model training, (2) improving model interpretability for better clinical applicability, and
(3) advancing the integration of heterogeneous networks and cross-domain knowledge to address data
sparsity and noise in complex biological systems. These advancements will further expand AI’s impact
on drug discovery and effectively address unmet clinical needs.

3.7 Generative models revolutionize drug molecule design and optimization

AI utilizes deep learning generative models to analyze features of known molecules and generate novel
structures. Techniques such as VAEs and GANs optimize drug structures, enhance efficacy, and identify
novel candidates. Drug molecule generation focuses on designing compounds with specific biological
activities and physicochemical properties. By learning from existing molecules and their interactions,
AI expands the chemical space of drug discovery, enabling innovative molecular designs through deep
learning frameworks that integrate generative models and neural networks.

AI-driven advancements in molecular modeling and drug generation facilitate the design of innovative
compounds targeting specific disease-associated molecules. These approaches improve binding affinity,
reduce off-target effects, and enhance bioavailability, optimizing therapeutic potential. Moreover, inte-
grating large language models, such as ProteinGPT [130], enables the generation of protein-based drug
candidates that meet predefined criteria, highlighting AI’s transformative potential in drug discovery
and biomaterial design. Chemical language models (CLMs), which are designed to process string-based
drug data, learn the syntactic and semantic features of drug molecules. This capability allows CLMs
to generate drug-like molecules with specific desired properties, contributing significantly to molecular
design and optimization. Building on this foundation, HybridCLMs [131] implement two distinct pre-
training strategies tailored for different objectives. The first strategy employs an autoregressive training
approach to create generative models capable of designing novel drug-like molecules. In contrast, the
second strategy leverages the ELECTRA pretraining method to develop classification models that assess
the accuracy and plausibility of generated tokens, ensuring the reliability of the outputs.

Further advancing the field, the s4dd model demonstrates the advantages of structured state space se-
quence (S4) models in CLMs [132]. By learning global patterns from molecular sequences and generating
molecules character by character, s4dd succeeds in creating bioactive and structurally complex drug-like
molecules. These advancements illustrate the growing sophistication of CLMs in capturing both the
structural and functional nuances of drug molecules, paving the way for more precise and efficient drug
discovery methodologies. Knowledge graphs composed of proteins, drugs, and diseases encapsulate inter-
actions among various entities, enabling the discovery of latent biomedical knowledge through network
topology analysis. Among these methods, DRAGONFLY [133] integrates graph transformation neural
networks and CLMs to uncover hidden information in drug-target interaction networks. By leveraging
multi-node information from interaction networks, DRAGONFLY circumvents the need for target-specific
fine-tuning, focusing instead on ligand- and structure-based drug design. This approach significantly re-
duces dependency on experimental data. In addition, DeepBlock [6] employs a block generation network
to capture relationships between protein sequences and compound molecules. Not only does it generate
molecular blocks, but it also uses assembly algorithms to reconstruct these blocks into complete drug
molecules. Consequently, DeepBlock facilitates protein sequence-based drug molecule generation while
providing a robust foundation for optimizing molecular properties by integrating block attributes and
their chemical interactions. Moreover, the three-dimensional structure of molecules provides critical la-
tent information for drug generation. For example, GEOM-CVAE [134] leverages molecular images and
geometric protein graphs to independently learn 3D structural features of drugs and proteins, generating
target-specific drugs via protein constraints. Similarly, TamGen [16] integrates protein sequence and 3D
structure information from a protein encoder with latent features from a context encoder, embedding
these into a compound decoder for target-specific drug generation and molecular optimization. At the
same time, PMDM [135] uses a dual-diffusion model to construct local covalent edges for chemical bonds
and global edges for van der Waals forces, enabling drug-like molecule generation based on protein pocket
structures. Additionally, pharmacophore information is crucial for uncovering drug-target binding fea-
tures. For instance, PGMG [136] generates drug-like molecules linked to specific pharmacophores by
learning their relationships with molecules. These methods significantly reduce reliance on task-specific
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Table 2 Summary of methods in drug molecular generation. 1D: SMILES string; 2D: molecule graph; 3D: 3D graph; RL:

reinforcement learning; TL: transfer learning; TF: transformer; DM: diffusion model.

Drug Method

1D 2D 3D LLM VAE TF RL GCN LSTM RNN GNN GTNN BGNet GAN TL DM

DrugLLM ⋆ X

GMG-NCDVAE ⋆ X X

LA-CycleGAN ⋆ X X

MomdTDSRL ⋆ X X

Taiga ⋆ X X

TransGEM ⋆ X

TransAntivirus ⋆ X

Sc2Mol ⋆ X X

PGMG ⋆ X X

POLYGON ⋆ X X

TamGen ⋆ X X

Multitarget-ligands ⋆ X X

CRAG ⋆ X X

MG2 N2 ⋆ X

SEED ⋆ X X

DRAGONFLY ⋆ X X

DeepBlock ⋆ X

DNMG ⋆ X X X

GEOM-CVAE ⋆ X X X

PMDM ⋆ X

transfer or RL, especially when fine-tuning datasets are limited. Table 2 summarizes the methods for
drug molecule generation.

Multi-target drugs excel in treating multifactorial diseases by modulating multiple pathways. However,
traditional methods struggle to design such drugs systematically. AI-driven drug generation has thus
emerged as a key focus. For instance, POLYGON [137] employs a VAE to embed drug molecules and
RL to prioritize subspaces for dual-target inhibition, synthetic accessibility, and drug-likeness, iteratively
generating high-quality dual-target drugs. Similarly, multitarget ligands use transfer learning on a fine-
tuned chemical language model to design molecules targeting two specific proteins. While promising,
these methods are limited to dual-target drugs, highlighting the need for advancements in generating
molecules targeting more than two targets.

4 Summary and outlook

AI in drug development is rapidly advancing, particularly with deep learning (DL) methods applied
to drug discovery, response prediction, and personalized medicine. The limited availability of annotated
data presents opportunities for active learning, allowing model training with fewer samples. The adoption
of end-to-end DL frameworks is expected to increase, enabling more comprehensive use of diverse data
types. Incorporating biological knowledge into models will enhance accuracy and interpretability. AI
tools are becoming more accessible through cloud platforms, enabling users without coding skills to
utilize them. Looking ahead, AI is set to drive actionable insights for personalized treatment strategies,
drug repurposing, and optimized drug combinations, transforming drug development into a more efficient
and personalized process.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos. 62325202, 62372332,

62201129), Beijing Natural Science Foundation (Grant No. L248013), and Zhongguancun Academy (Project No. 20240101). Alexey

K. SHAYTAN was supported by HSE Basic Research Program.

References

1 Baptista D, Ferreira P G, Rocha M. Deep learning for drug response prediction in cancer. Brief Bioinf, 2021, 22: 360–379

2 Lin H. Artificial intelligence with great potential in medical informatics: a brief review. Medinformatics, 2024, 1: 2–9

3 Ren Z, Zeng X, Lao Y, et al. A spatial hierarchical network learning framework for drug repositioning allowing interpretation

from macro to micro scale. Commun Biol, 2024, 7: 1413

https://doi.org/10.1093/bib/bbz171
https://doi.org/10.47852/bonviewMEDIN42022204
https://doi.org/10.1038/s42003-024-07107-3


Qi R, et al. Sci China Inf Sci July 2025, Vol. 68, Iss. 7, 170102:13

4 Shyr Z A, Cheng Y S, Lo D C, et al. Drug combination therapy for emerging viral diseases. Drug Discov Today, 2021, 26:

2367–2376

5 Ren S, Chen L, Hao H, et al. Prediction of cancer drug combinations based on multidrug learning and cancer expression

information injection. Future Gener Comput Syst, 2024, 160: 798–807

6 Li P, Zhang K, Liu T, et al. A deep learning approach for rational ligand generation with toxicity control via reactive

building blocks. Nat Comput Sci, 2024, 4: 851–864

7 Huang Z, Chen S, Yu L. Predicting new drug indications based on double variational autoencoders. Comput Biol Med, 2023,

164: 107261

8 Huang Z, Xiao Z, Ao C, et al. Computational approaches for predicting drug-disease associations: a comprehensive review.

Front Comput Sci, 2025, 19: 195909

9 Xiang H, Zeng L, Hou L, et al. A molecular video-derived foundation model for scientific drug discovery. Nat Commun,

2024, 15: 9696

10 Deore A B, Dhumane J R, Wagh R, et al. The stages of drug discovery and development process. Asian J Pharm Res Dev,

2019, 7: 62–67

11 Bai T, Xie J, Liu Y, et al. MMLmiRLocNet: miRNA subcellular localization prediction based on multi-view multi-label

learning for drug design. IEEE J Biomed Health Inform, 2024. doi: 10.1109/JBHI.2024.3483997

12 Kiriiri G K, Njogu P M, Mwangi A N. Exploring different approaches to improve the success of drug discovery and develop-

ment projects: a review. Futur J Pharm Sci, 2020, 6: 27

13 Wang Y Z, Zhai Y X, Ding Y J, et al. SBSM-Pro: support bio-sequence machine for proteins. Sci China Inf Sci, 2024, 67:

212106

14 Mervin L H, Johansson S, Semenova E, et al. Uncertainty quantification in drug design. Drug Discov Today, 2021, 26:

474–489

15 Vakil V, Trappe W. Drug combinations: mathematical modeling and networking methods. Pharmaceutics, 2019, 11: 208

16 Wu K, Xia Y, Deng P, et al. TamGen: drug design with target-aware molecule generation through a chemical language

model. Nat Commun, 2024, 15: 9360

17 Qi X, Zhao L, Tian C, et al. Predicting transcriptional responses to novel chemical perturbations using deep generative

model for drug discovery. Nat Commun, 2024, 15: 9256

18 Mak K K, Pichika M R. Artificial intelligence in drug development: present status and future prospects. Drug Discov Today,

2019, 24: 773–780

19 Yan K, Lv H W, Shao J Y, et al. TPpred-SC: multi-functional therapeutic peptide prediction based on multi-label supervised

contrastive learning. Sci China Inf Sci, 2024, 67: 212105

20 Shao J Y, Chen J J, Liu B. ProFun-SOM: protein function prediction for specific ontology based on multiple sequence

alignment reconstruction. IEEE Trans Neural Netw Learn Syst, 2025, 36: 8060–8071

21 Ai C, Yang H, Liu X, et al. MTMol-GPT: de novo multi-target molecular generation with transformer-based generative

adversarial imitation learning. Plos Comput Biol, 2024, 20: e1012229

22 Pang C, Qiao J, Zeng X, et al. Deep generative models in de novo drug molecule generation. J Chem Inf Model, 2023, 64:

2174–2194

23 Zhong Y, Li G, Yang J, et al. Learning motif-based graphs for drug-drug interaction prediction via local-global self-attention.

Nat Mach Intell, 2024, 6: 1094–1105

24 Yang Y, Gao D, Xie X, et al. DeepIDC: a prediction framework of injectable drug combination based on heterogeneous

information and deep learning. Clin Pharmacokinet, 2022, 61: 1749–1759

25 Besharatifard M, Vafaee F. A review on graph neural networks for predicting synergistic drug combinations. Artif Intell

Rev, 2024, 57: 49

26 Perdomo-Quinteiro P, Belmonte-Hernández A. Knowledge graphs for drug repurposing: a review of databases and methods.

Brief Bioinf, 2024, 25: bbae461

27 Bilodeau C, Jin W, Jaakkola T, et al. Generative models for molecular discovery: recent advances and challenges. WIREs

Comput Mol Sci, 2022, 12: e1608

28 Wu F, Zhou Y, Li L, et al. Computational approaches in preclinical studies on drug discovery and development. Front

Chem, 2020, 8: 726

29 You Y, Lai X, Pan Y, et al. Artificial intelligence in cancer target identification and drug discovery. Sig Transduct Target

Ther, 2022, 7: 156

30 Vora L K, Gholap A D, Jetha K, et al. Artificial intelligence in pharmaceutical technology and drug delivery design.

Pharmaceutics, 2023, 15: 1916

31 Cichy R M, Kaiser D. Deep neural networks as scientific models. Trends Cogn Sci, 2019, 23: 305–317

32 Zhang Z, Chen L, Zhong F, et al. Graph neural network approaches for drug-target interactions. Curr Opin Struct Biol,

2022, 73: 102327

33 Purwono P, Ma’arif A, Rahmaniar W, et al. Understanding of convolutional neural network (CNN): a review. Int J Robot

Control Syst, 2022, 2: 739–748

https://doi.org/10.1016/j.drudis.2021.05.008
https://doi.org/10.1016/j.future.2024.06.039
https://doi.org/10.1038/s43588-024-00718-0
https://doi.org/10.1016/j.compbiomed.2023.107261
https://doi.org/10.1007/s11704-024-40072-y
https://doi.org/10.1038/s41467-024-53742-z
https://doi.org/10.22270/ajprd.v7i6.616
https://doi.org/10.1109/JBHI.2024.3483997
https://doi.org/10.1186/s43094-020-00047-9
https://doi.org/10.1007/s11432-024-4171-9
https://doi.org/10.1016/j.drudis.2020.11.027
https://doi.org/10.3390/pharmaceutics11050208
https://doi.org/10.1038/s41467-024-53632-4
https://doi.org/10.1038/s41467-024-53457-1
https://doi.org/10.1016/j.drudis.2018.11.014
https://doi.org/10.1007/s11432-024-4147-8
https://doi.org/10.1109/tnnls.2024.3419250
https://doi.org/10.1371/journal.pcbi.1012229
https://doi.org/10.1021/acs.jcim.3c01496
https://doi.org/10.1038/s42256-024-00888-6
https://doi.org/10.1007/s40262-022-01180-9
https://doi.org/10.1007/s10462-023-10669-z
https://doi.org/10.1093/bib/bbae461
https://doi.org/10.1002/wcms.1608
https://doi.org/10.3389/fchem.2020.00726
https://doi.org/10.1038/s41392-022-00994-0
https://doi.org/10.3390/pharmaceutics15071916
https://doi.org/10.1016/j.tics.2019.01.009
https://doi.org/10.1016/j.sbi.2021.102327
https://doi.org/10.31763/ijrcs.v2i4.888


Qi R, et al. Sci China Inf Sci July 2025, Vol. 68, Iss. 7, 170102:14

34 Li Z, Jiang M, Wang S, et al. Deep learning methods for molecular representation and property prediction. Drug Discov

Today, 2022, 27: 103373

35 Zhang H, Liu X, Cheng W, et al. Prediction of drug-target binding affinity based on deep learning models. Comput Biol

Med, 2024, 174: 108435

36 Cossu A, Carta A, Lomonaco V, et al. Continual learning for recurrent neural networks: an empirical evaluation. Neural

Netws, 2021, 143: 607–627

37 Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9: 1735–1780

38 Liu L, Zhao X, Huang X. Generating potential RET-specific inhibitors using a novel LSTM encoder-decoder model. Int J

Mol Sci, 2024, 25: 2357

39 Zulfiqar H, Guo Z, Ahmad R M, et al. Deep-STP: a deep learning-based approach to predict snake toxin proteins by using

word embeddings. Front Med, 2024, 10: 1291352

40 Zhao M, Li J, Liu X, et al. A gene regulatory network-aware graph learning method for cell identity annotation in single-cell

RNA-seq data. Genome Res, 2024, 34: 1036–1051

41 Scarselli F, Gori M, Tsoi A C, et al. The graph neural network model. IEEE Trans Neural Netw, 2008, 20: 61–80

42 Wang Y, Li Z, Farimani A B. Graph neural networks for molecules. In: Machine Learning in Molecular Sciences. Cham:

Springer, 2023. 21–66

43 Creswell A, White T, Dumoulin V, et al. Generative adversarial networks: an overview. IEEE Signal Process Mag, 2018,

35: 53–65

44 Lin E, Lin C H, Lane H Y. Relevant applications of generative adversarial networks in drug design and discovery: molecular

de novo design, dimensionality reduction, and de novo peptide and protein design. Molecules, 2020, 25: 3250

45 Cheng Y, Gong Y, Liu Y, et al. Molecular design in drug discovery: a comprehensive review of deep generative models.

Brief Bioinf, 2021, 22: bbab344

46 Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. In: Proceedings of Advances in Neural Information

Processing Systems, 2017. 30

47 Bagal V, Aggarwal R, Vinod P K, et al. MolGPT: molecular generation using a transformer-decoder model. J Chem Inf

Model, 2022, 62: 2064–2076

48 Hosna A, Merry E, Gyalmo J, et al. Transfer learning: a friendly introduction. J Big Data, 2022, 9: 102

49 Cai C, Wang S, Xu Y, et al. Transfer learning for drug discovery. J Med Chem, 2020, 63: 8683–8694

50 Bank D, Koenigstein N, Giryes R. Autoencoders. In: Machine Learning for Data Science Handbook. Berlin: Springer, 2023.

353–374

51 Sousa T, Correia J, Pereira V, et al. Generative deep learning for targeted compound design. J Chem Inf Model, 2021, 61:

5343–5361

52 Arulkumaran K, Deisenroth M P, Brundage M, et al. Deep reinforcement learning: a brief survey. IEEE Signal Process

Mag, 2017, 34: 26–38

53 Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J

Chem Inf Comput Sci, 1988, 28: 31–36

54 Yang W, Soares J, Greninger P, et al. Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker

discovery in cancer cells. Nucleic Acids Res, 2013, 41: D955–D961

55 Barretina J, Caponigro G, Stransky N, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer

drug sensitivity. Nature, 2012, 483: 603–607

56 Wishart D S, Feunang Y D, Guo A C, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic

Acids Res, 2018, 46: D1074–D1082

57 Churko J M, Mantalas G L, Snyder M P, et al. Overview of high throughput sequencing technologies to elucidate molecular

pathways in cardiovascular diseases. Circ Res, 2013, 112: 1613–1623

58 Weinstein J N, Collisson E A, Mills G B, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet, 2013,

45: 1113–1120

59 Villani A C, Satija R, Reynolds G, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes,

and progenitors. Science, 2017, 356: eaah4573

60 Lamb J. The connectivity map: a new tool for biomedical research. Nat Rev Cancer, 2007, 7: 54–60

61 Picard M, Scott-Boyer M P, Bodein A, et al. Integration strategies of multi-omics data for machine learning analysis.

Comput Struct Biotechnol J, 2021, 19: 3735–3746

62 Stokes J M, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery. Cell, 2020, 180: 688–702

63 Talat A, Khan A U. Artificial intelligence as a smart approach to develop antimicrobial drug molecules: a paradigm to

combat drug-resistant infections. Drug Discov Today, 2023, 28: 103491

64 Tolios A, Rivas J D L, Hovig E, et al. Computational approaches in cancer multidrug resistance research: identification of

potential biomarkers, drug targets and drug-target interactions. Drug Resist Updat, 2020, 48: 100662

65 Gangwal A, Ansari A, Ahmad I, et al. Generative artificial intelligence in drug discovery: basic framework, recent advances,

challenges, and opportunities. Front Pharmacol, 2024, 15: 1331062

https://doi.org/10.1016/j.drudis.2022.103373
https://doi.org/10.1016/j.compbiomed.2024.108435
https://doi.org/10.1016/j.neunet.2021.07.021
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3390/ijms25042357
https://doi.org/10.3389/fmed.2023.1291352
https://doi.org/10.1101/gr.278439.123
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/MSP.2017.2765202
https://doi.org/10.3390/molecules25143250
https://doi.org/10.1093/bib/bbab344
https://doi.org/10.1021/acs.jcim.1c00600
https://doi.org/10.1186/s40537-022-00652-w
https://doi.org/10.1021/acs.jmedchem.9b02147
https://doi.org/10.1021/acs.jcim.0c01496
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1038/nature11003
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1161/CIRCRESAHA.113.300939
https://doi.org/10.1038/ng.2764
https://doi.org/10.1126/science.aah4573
https://doi.org/10.1038/nrc2044
https://doi.org/10.1016/j.csbj.2021.06.030
https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.1016/j.drudis.2023.103491
https://doi.org/10.1016/j.drup.2019.100662
https://doi.org/10.3389/fphar.2024.1331062


Qi R, et al. Sci China Inf Sci July 2025, Vol. 68, Iss. 7, 170102:15

66 Staszak M, Staszak K, Wieszczycka K, et al. Machine learning in drug design: use of artificial intelligence to explore the

chemical structure-biological activity relationship. WIREs Comput Mol Sci, 2022, 12: e1568

67 Tripathi N, Goshisht M K, Sahu S K, et al. Applications of artificial intelligence to drug design and discovery in the big

data era: a comprehensive review. Mol Divers, 2021, 25: 1643–1664

68 Renaud N, Geng C, Georgievska S, et al. DeepRank: a deep learning framework for data mining 3D protein-protein interfaces.

Nat Commun, 2021, 12: 7068

69 Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596:

583–589

70 Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature,

2024, 630: 493–500

71 Torrisi M, Pollastri G, Le Q. Deep learning methods in protein structure prediction. Comput Struct Biotechnol J, 2020, 18:

1301–1310

72 Varadi M, Anyango S, Deshpande M, et al. AlphaFold Protein Structure Database: massively expanding the structural

coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res, 2022, 50: D439–D444

73 Wang B, Zhang T, Liu Q, et al. Elucidating the role of artificial intelligence in drug development from the perspective of

drug-target interactions. J Pharm Anal, 2025, 15: 101144

74 Chen S, Yan K, Liu B. PDB-BRE: a ligand-protein interaction binding residue extractor based on Protein Data Bank.

Proteins, 2024, 92: 145–153

75 Wei H, Gao L, Wu S, et al. DiSMVC: a multi-view graph collaborative learning framework for measuring disease similarity.

Bioinformatics, 2024, 40: btae306

76 Kamya P, Ozerov I V, Pun F W, et al. PandaOmics: an AI-driven platform for therapeutic target and biomarker discovery.

J Chem Inf Model, 2024, 64: 3961–3969

77 Williamson E M, Liu X, Izzo A A. Trends in use, pharmacology, and clinical applications of emerging herbal nutraceuticals.

Br J Pharmacol, 2020, 177: 1227–1240

78 Cai H, Zhang Z, Wang M, et al. Pretrainable geometric graph neural network for antibody affinity maturation. Nat Commun,

2024, 15: 7785

79 Song W, Xu L, Han C, et al. Drug-target interaction predictions with multi-view similarity network fusion strategy and

deep interactive attention mechanism. Bioinformatics, 2024, 40: btae346

80 Singh R, Sledzieski S, Cowen L, et al. Learning the drug-target interaction lexicon. bioRxiv, 2022. doi:

10.1101/2022.12.06.519374

81 Li H, Zou L, Kowah J A H, et al. A compact review of progress and prospects of deep learning in drug discovery. J Mol

Model, 2023, 29: 117

82 Hadrup N, Ravn-Haren G. Absorption, distribution, metabolism and excretion (ADME) of oral selenium from organic and

inorganic sources: a review. J Trace Elem Med Biol, 2021, 67: 126801
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