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Abstract Recently, numerous large language models (LLMs) have emerged as foundational models, reshaping biological

data modeling and achieving remarkable breakthroughs in both discriminative and generative tasks. The success of these

models is largely attributed to the inherent similarities between natural language and biological data, such as DNA, RNA,

and amino acid sequences. Through pre-training and fine-tuning phases, LLMs have demonstrated their ability to effectively

model these biological datasets. Additionally, while protein structures and RNA-seq expression data are not inherently

sequential, they can still be modeled and predicted effectively by LLMs based on the Transformer architecture. Previous

research has predominantly focused on architectural innovations in LLMs and their applications to sequential data across

various domains. However, there is a notable lack of systematic reviews addressing the reasons and methods behind LLM

modifications for fitting biological omics data, particularly for non-sequential data types. Furthermore, comprehensive

analyses of LLM applications in synthetic biology remain limited. We first systematically review representative LLMs in the

biological domain. Next, we delve into their applications across the genome, transcriptome, and proteome fields, detailing

the goals, processes, datasets, and methodologies involved. Finally, we discuss the challenges of applying LLMs to biological

omics data and fundamental scientific research. In summary, we aim to provide a comprehensive overview of the technical

and conceptual advances in this field, as well as an essential resource for researchers exploring the diverse applications of

LLMs across various biological disciplines.
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1 Introduction

Large language models, a groundbreaking advancement in the field of natural language processing (NLP),
have revolutionized global innovation with prominent examples such as ChatGPT [1, 2] and Claude [3].
LLMs process sequential input data, such as sentences or paragraphs, and acquire their general-purpose,
multitasking capabilities through a two-phase approach: pre-training and fine-tuning. At the heart of
LLM architecture lies the Transformer framework [4], which forms the foundation of their design. De-
pending on the specific Transformer components utilized, LLMs are classified into three primary config-
urations: encoder-only, decoder-only, and encoder-decoder architectures. Representative models include
BERT (bidirectional encoder representations from transformers) [5] for encoder-only designs, GPT (gen-
erative pre-trained transformer) for decoder-only models, and T5 (text-to-text transfer transformer) [6,7]
for the encoder-decoder configuration. These sophisticated architectures enable LLMs to extract mean-
ingful feature representations from raw, complex, and unstructured natural language sequences, effectively
abstracting and decoding the underlying information embedded within text.

Just as natural language sequences encapsulate complex information, biological sequences and omics
data store a wealth of information related to growth, development, genetics, and phenotypic regulation.
These omics datasets, generated along the central dogma of molecular biology (DNA, RNA, protein),
span genomics, transcriptomics, and proteomics, represent the most fundamental and information-rich
layers of biological systems [8]. Developing models to construct high-quality representations and extract
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meaningful insights from biological omics data has remained a pivotal focus in advancing computational
biology [9, 10], enabling a wide array of downstream applications.

The biological domain is increasingly embracing LLMs as cutting-edge tools for model-based analysis.
Numerous domain-specific models have emerged, including Enformer [11], DNABERT [12], GROVER [13],
the ESM family [14], and POET [15]. The success of these models stems from the inherent similarities
between natural language and biological sequences [10, 12, 16], such as DNA, RNA, and amino acid se-
quences. This resemblance allows the development of biological LLMs using similar sequence modeling
and pretraining strategies, including masked pretraining (BERT) [5, 17] and autoregressive pretraining
(GPT) [1, 18]. Through fine-tuning, these LLMs can address fundamental biological challenges, such as
predicting chromatin accessibility sites [19, 20], methylation modifications [21], protein subcellular local-
ization [22,23], protein-protein interaction sites [24], B-cell receptor specificity [25], protein 3D structure
generation [17], and protein sequence-based remote homology searches [26].

While some types of biological omics data, such as structural data [27, 28] and RNA-seq expression
data [18, 29, 30], are not inherently sequential, they can still be effectively modeled and predicted using
foundational LLM paradigms built on the Transformer architecture. For example, scBERT [30] and
scGPT [18] process RNA-seq expression matrices as input using specialized tokenization techniques and
self-supervised pretraining to create general-purpose models for gene expression profiles at the tran-
scriptomics level. Furthermore, to enhance the applicability of LLMs in bioinformatics, researchers are
actively modifying LLM architectures to accommodate the redundancy and modality complexity inherent
in biological omics data.

To provide cross-disciplinary researchers with a comprehensive understanding of LLM development
and its applications in the biological domain, this study first systematically reviews the architecture and
representative LLMs in the field of biology. We then detail the latest advancements in LLM research,
including their goals, methodologies, architectures, datasets, and cutting-edge applications, such as those
in synthetic biology, across the genome, transcriptome, and proteome landscapes. Additionally, we explore
innovations in LLMs designed to address the redundancy and modality complexity of biological data.
Finally, we discuss how transformative technologies and existing challenges may reshape LLM frameworks,
highlighting future directions for their application in biological omics and fundamental scientific research.

Difference from existing surveys. Although previous reviews [31–34] have explored the applications
of pretrained LLMs in the biological and biomedical fields, spanning genomics, transcriptomics, and
proteomics, the rapid advancements in large models for biological data present challenges for a single
review to capture the latest pretrained or fine-tuned models comprehensively. To bridge this gap, we
have carefully curated the most representative models in this domain, focusing first on the architectures
used to model biological data and their evolution. We then provide a detailed analysis of architectural
modifications aimed at incorporating multimodal and evolutionary information into LLMs. The aim is
to help researchers understand why such model designs are necessary, fostering deeper insight into the
future development of LLM algorithms tailored for biological data. Furthermore, we adopt a narrative
framework centered on the central dogma of molecular biology, offering a systematic and comprehensive
examination of the diverse data types encompassed by the central dogma and their integration into LLM-
based applications. We also highlight cutting-edge developments in adjacent fields, with a particular focus
on the latest breakthroughs in synthetic biology.

Contribution. This survey provides a comprehensive overview of the technical foundations and
conceptual advancements in the field, aiming to serve as a crucial resource for researchers investigating
the diverse applications of large language models across biological omics.

2 Brief introduction to biological LLM architecture

2.1 Foundation architecture of LLMs

The Transformer is a deep learning architecture originally developed for natural language processing,
which has since become the foundational model for a wide range of tasks, including those in genomics and
transcriptomics. At a high level, the Transformer architecture excels at modeling long-range dependencies
and complex patterns within sequential data by leveraging a self-attention mechanism. Unlike recurrent
neural networks (RNNs), which process sequences step-by-step, the Transformer processes input sequences
in parallel, allowing for faster training and better scalability. This parallel processing is enabled by self-
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attention, which allows the model to weigh the importance of each token in a sequence relative to all
others. As a result, the Transformer can capture contextual relationships more effectively, making it
particularly well-suited for modeling the intricate patterns found in biological sequences such as DNA,
RNA, and proteins.

2.1.1 Attention & transformer

The state-of-the-art (SOTA) performance achieved by LLMs, currently a major research focus, is pre-
dominantly rooted in the Transformer architecture. A Transformer comprises two core components: the
encoder and decoder blocks. These blocks integrate advanced technologies such as attention mechanisms,
layer normalization, and skip connections. At the heart of the Transformer lies the scaled dot-product
attention mechanism (1), which models the relationships between tokens in a sequence. This mechanism
represents each token as a weighted sum of all other tokens in the sequence. Tokens with lower relevance
are assigned weights close to zero, while tokens with higher relevance receive greater weights. This process
mimics human visual attention, focusing selectively on the most pertinent information, thus earning the
term “attention mechanism”.

The scaled dot-product attention employs three key weight matrices, Q (query), K (key), and V

(value), to model relationships and generate attention-weighted representations, enabling the Transformer
to effectively capture dependencies within the input data:

Attention (Q,K, V ) = softmax

(

QKT

√
dk

)

V, (1)

where
√
dk is the dimension of the keys.

√
dk is the normalization factor, which can ensure numerical

stability.
In NLP, the Transformer architecture has enabled the development of models with hundreds of millions

of parameters, including BERT, T5, and GPT. The BERT model leverages the Transformer’s encoder
architecture and employs bidirectional modeling to generate contextual representations of sequences. In
contrast, the GPT model is based on the Transformer’s decoder architecture and utilizes an autoregressive
approach to model sequences unidirectionally, processing them from start to end. T5 incorporates both
the encoder and decoder components of the Transformer and reframes all NLP tasks as text-to-text
problems, unifying the approach to a wide range of applications. A brief illustration of these three
models is shown in Figure 1.

2.1.2 Key elements of LLM architecture

Tokenization. The first step in constructing a Transformer model is tokenization, where raw data are
converted into tokens. This step is crucial for transforming non-sequential data into sequential formats,
as tokens can easily be arranged into a sequence.

Embedding. The embedding layer (including both positional and token embeddings) is fundamental
to the Transformer architecture. It represents a critical evolution of word embeddings in both NLP and
biological language models. These embeddings serve as the first step in mapping tokens into a vector
space, capturing basic information from the tokens and guiding the model to fit both sequential and non-
sequential data. In models like BERT and T5 (encoder), which employ random masking for pre-training,
“mask” tokens are introduced to replace a preset proportion of tokens in the sequence. In contrast, the
embedding layer in GPT and T5 (decoder) follows the original structure of the Transformer architecture,
where token order plays a key role.

Pre-training. A key phase in training LLMs involves fitting the model to large amounts of unlabeled
data to reconstruct or predict the original data. This self-supervised pre-training helps LLMs compress
unstructured data, extract effective representations, and develop strong generalization abilities. During
pre-training, BERT focuses on reconstructing masked tokens, while GPT predicts the next token based on
the preceding tokens. T5, on the other hand, employs a more complex pre-training process, which includes
reconstructing large portions of corrupted text. This paradigm allows BERT to retain bidirectional
encoding capabilities, while GPT encodes only past context. Therefore, BERT may be more advantageous
for modeling bidirectional sequences, such as genetic and amino acid sequences.

Fine-tuning. Fine-tuning LLMs for downstream tasks is a critical step in applying LLMs to biologi-
cal research. This process adapts the general knowledge embedded in pre-trained models (manifested as
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Figure 1 (Color online) Classical LLM architecture in the pre-training phase.

features and weights) to specific tasks, enhancing their suitability for targeted applications. Fine-tuning
methods include feature extraction, full fine-tuning, parameter-efficient fine-tuning (PEFT) [35], instruc-
tion fine-tuning [36], and generating features from various modalities [24, 37, 38]. Feature extraction is
widely used for its flexibility in building downstream models, while generative models for feature genera-
tion (e.g., structure-aware features) are becoming increasingly popular, particularly for fine-tuning models
that incorporate 3D structural information. PEFT and instruction fine-tuning, which balance compu-
tational efficiency and performance, may become best practices for fine-tuning LLMs in the biological
domain.

This section has covered the key elements of LLM architecture, including embedding, pre-training,
and fine-tuning. Typically, LLMs and domain-specific LLMs are distinguished by their pre-training data:
natural language for general LLMs and biological data for domain-specific models. In Subsection 2.2, we
will focus on representative domain-specific LLMs, their frameworks, and training methods.

2.2 Representative models in the field of biology

Large language models are now being effectively applied in the biological and medical fields. To better
adapt to domain-specific data, most biological domain LLMs are built upon the original LLM paradigm,
with specialized modifications, as illustrated in Figure 2. In Table A1 in the supplementary file, we present
the biological domain LLMs and downstream fine-tuning models discussed in this survey. Additionally,
we provide a detailed comparison of several representative domain-specific LLMs, highlighting differences
in their model architectures and pre-training approaches. To offer a comprehensive understanding of
biological data, we also briefly present an illustration of the central dogma, encompassing the genome,
transcriptome, and proteome.
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Figure 2 (Color online) Biological LLMs fine-tuning in downstream prediction. LLMs are demonstrated in fitting biological data,

including RNA-seq, DNA, RNA, Amino acid sequence (protein primary structure), and biomedical image data (whole slide image,

WSI). Each token corresponds to a gene base, an amino acid residue, and an image patch.

2.2.1 Enformer versus DNABERT (genomics)

Enformer [11] and DNABERT [12], both introduced in 2021, serve as foundational models for DNA
sequence analysis. They excel at capturing long-range interactions within genes and have demonstrated
strong modeling capabilities in non-coding regions. This is largely due to the attention mechanism,
which enables the modeling of relationships across extended DNA sequences. The Enformer architecture
combines a CNN block with Transformer encoders. The CNN block employs one-dimensional convolutions
to process DNA sequences with fixed kernel lengths (window size), allowing for efficient feature extraction.
In contrast, DNABERT follows the BERT paradigm for model construction, treating k-mers (k-th DNA
base sequences) as tokens. These distinct approaches facilitate the downsampling of DNA sequences,
making them more manageable for long-range modeling. Following these initial processes, the dimensional
representation of DNA sequences can be described as follows:

NEnformer =
L

S
, (2)

where L is the original length of the DNA sequence, S is the stride of the convolution kernel, and N is
the number of segments.

NDNABERT =

⌈

L

K

⌉

, (3)

where L is the original length of the DNA sequence, K is the size of the k-mer, and N is the length of
all tokens in the sequence.

Additionally, DNABERT and its successor DNABERT2 follow the BERT-style masked pre-training
approach, whereas Enformer employs a more traditional supervised learning method for pre-training.
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Notably, DNABERT2 replaces k-mers with byte pair encoding (BPE) [39], which improves compression
efficiency and reduces the length of DNA sequences. Gene sequences, in fact, are much longer than
natural language sequences and more redundant than protein sequences. This highlights the importance
of effective modeling techniques for genomic data, which could drive further research into downsampling
methods for LLMs.

2.2.2 scBERT versus scGPT (transcriptomics)

RNA sequencing (RNA-seq) data are typically represented as a matrix X ∈ R
C×G, where C denotes

the number of cells (in rows) and G denotes the number of genes (in columns). Each gene expression
variable is non-negative, meaning X ∈ R+. Although RNA-seq data are not inherently sequential, the
complex interrelationships among genes within each cell are well-suited for modeling using the attention
mechanisms in transformers. Therefore, to leverage the power of large language models (LLMs) for single-
cell data, both scBERT and scGPT treat each gene as a token and consider the collection of all genes
within a cell as a sequence. They replace traditional positional embeddings with expression embeddings,
as the arrangement of genes in the feature columns has no inherent order.

Additionally, benefiting from the efficient language modeling paradigm, both scBERT and scGPT
employ more extensive gene models and avoid aggressive filtering of high-variance genes (HVGs) during
the pre-training phase to support a larger set of genes as tokens. For example, scBERT removes only cells
with low counts of expressed genes without excessive gene filtering during data preprocessing, preserving
over 15000 genes. scGPT extends this further by including the entire genome in the model. Moreover,
since RNA-seq data are continuous values and often suffer from batch effects, both models utilize binning
techniques in the expression embeddings to effectively transform row expression values into acceptable
tokens. The key differences between scBERT and scGPT lie in their modeling architecture, particularly
in the embedding layer, attention layer, and pre-training paradigms. In the embedding layer, scBERT
includes only gene and expression tokens, whereas scGPT also incorporates condition tokens to represent
gene attributes such as modality, batch, and perturbation conditions.

Additionally, scBERT introduces the concept of matrix factorization in the attention calculation, map-
ping the original Q and K matrices to Q′ and K ′ through kernel transformation,

Q′ = φ (Q) ,K ′ = φ (K) , (4)

where φ represents the kernel transformation function. This approach avoids the direct computation of
QKT, thereby alleviating the problem of excessively large QKT matrices due to long sequence length.
The modified module is known as the Performer [40].

Finally, scBERT follows BERT’s masked language model (MLM) pre-training paradigm, whereas
scGPT adopts a more complex approach. This complexity stems from the fact that autoregressive models
are designed for sequences, but expression data do not inherently have a concept of sequence position,
nor does it include a “next” gene in the traditional sense. To address this, scGPT innovatively organizes
the autoregressive predictions based on attention scores. An interesting observation is that the designs of
both models center around the attribution of expression data, emphasizing the importance of contextual
relationships between genes within the single-cell environment.

2.2.3 AlphaFold versus ESM (proteomics)

In the field of proteomics, two prominent domain models have significantly advanced scientific under-
standing: the AlphaFold family introduced by DeepMind and the ESM family developed by Meta.
These models represent two distinct approaches to constructing domain-specific models. Initially, Al-
phaFold2 [41] introduced the EvoFormer module, which includes the MSA (multiple sequence alignment)
representation module to capture evolutionary information and the pair representation module to model
spatial geometric data. This approach places a strong emphasis on incorporating domain knowledge to
build predictive models.

In contrast, the ESM-1b [24] and its successor ESM2 [22] are based on a more general architecture
rooted in the BERT model. ESM2 introduces rotary position embedding (RoPE) [42] in the embedding
layer to handle longer protein sequences and updates the dynamic masking strategy, which is a key
component of the RoBERTa model [43], during pre-training. As a result, ESM1b and ESM2 adhere
more closely to the LLM paradigm. Interestingly, ESM2 has demonstrated superior accuracy in protein
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Figure 3 (Color online) Illustration of information flow in the central dogma of biology.

structure prediction compared to AlphaFold2, particularly in the absence of MSA information, which is
one of AlphaFold2’s major limitations.

For the latest versions, AlphaFold3 [44] and ESM3 [14], AlphaFold3 has simplified the EvoFormer
module, reducing its reliance on the MSA module, and incorporates a diffusion architecture. This change
leads to higher accuracy in generating protein-protein complex structures and enables the prediction of
protein-molecular complex structures. ESM3 introduces structure and function tokens, capturing more
biological prior knowledge, and employs geometric attention to better model the 3D structures of proteins.
These innovations suggest that the two approaches are gradually converging. Notably, AlphaFold3 does
not utilize an LLM architecture, whereas ESM3 remains firmly within the LLM framework. This raises
an interesting question: Will AlphaFold4 adopt an LLM-based architecture, or will ESM4 continue to
build on the LLM paradigm?

3 Applications of LLMs in genomics and transcriptomics field

3.1 Mission

In the central dogma of molecular biology (Figure 3), DNA encodes genetic information, which is then
transcribed into RNA, reflecting gene expression at the transcriptional level. This genetic information is
further translated into proteins, which manifest as biological functions at the translational level. With
the advancement of sequencing technologies, vast amounts of data have emerged, shaping the fields of
genomics, transcriptomics, and spatial omics [45–49]. A key distinction between genomic and transcrip-
tomic data, as compared to proteomic data, is that the former consists of longer sequences with more
redundancy, including non-coding regions and codon degeneracy, while also presenting more complex
challenges related to sequencing quality [29, 45, 50, 51]. Like proteins, DNA and RNA also possess intri-
cate spatial structures. Therefore, effectively embedding and representing genomic and transcriptomic
data, encompassing DNA and RNA sequences, structural data, and expression profiles, remains a primary
task for LLMs. This involves developing tokenizers and model architectures that are suited to the ex-
tended and diverse patterns inherent in genomic and transcriptomic data. Moreover, this field emphasizes
research that spans from individual gene studies to broader genomic and transcriptomic levels.

The core focus areas in this field are summarized as follows.

(1) Developing optimized LLM models capable of fitting diverse genomic and transcriptomic data for
downstream tasks.

(2) Extending research from gene function to broader genomic-level studies.

(3) Applying LLMs to the non-coding regions of sequences (e.g., intergenic regions in DNA, non-coding
RNA).

(4) Advancing the use of LLMs in synthetic biology within the genomics and transcriptomics fields.
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3.2 Algorithm and application

3.2.1 Sequence modeling in DNA and RNA

DNA sequences are inherently long and redundant, posing challenges for effective embedding in compu-
tational models. The primary objective is to develop methods for transforming raw sequence data into
a tokenized format that can be effectively modeled by LLMs. This process begins with tokenization and
embedding, where raw data are converted into tokens with vector embeddings. Some models achieve
token embedding through specialized architectural designs. For example, the Enformer model applies
one-dimensional convolutional kernels to embed DNA sequences, followed by processing in transformer
modules. Although this method effectively models DNA sequences, it is limited by its reliance on a preset
window size for the convolutional kernels, which constrains its ability to model DNA sequences of varying
lengths—sequences longer than the fixed window size are truncated, affecting fine-tuning accuracy.

To address this, many LLMs adopt a more flexible Tokenizer paradigm, combining multiple bases
into a single token to better accommodate DNA sequences of varying lengths. A common approach is
k-mer encoding, where tokens are created by grouping bases (e.g., three bases at a time, or k-mers).
This method is employed in models such as DNABERT [12] and DNAGPT [52]. Alternatively, subword
tokenization techniques like WordPiece [53] and BytePairEncoding (BPE) [54] use statistical methods
to iteratively generate tokens from different base combinations. Models such as DNABERT2 [55] and
GROVER [13] adopt BPE-encoding for more flexible token generation. Subword tokenization offers an
advantage because it generates variable-length base combinations, allowing LLMs to adapt better to the
diversity of DNA sequences. However, the k-mer approach raises concerns about potential information
leakage or sequence sensitivity, particularly when adjacent k-mer tokens share base overlaps. This issue
is similar to codon degeneracy in nature, where a non-strict one-to-one mapping exists between three
bases and an amino acid [45, 56]. Mapping bases directly to fixed tokens may overlook this flexibility.
Just as nature employs a genetic “codebook” for translating genetic information, LLMs also need their
own vocabulary rules for tokenization. Some models, like ENBED, opt for a single-base tokenization
strategy, treating each DNA base as an individual token. This approach accounts for mutations such as
single nucleotide polymorphisms (SNPs) [45], which can significantly alter model predictions. However,
this method results in longer sequences, increasing the complexity of model training and inference.

RNA sequences, while similar to DNA in primary structure, differ by replacing thymine (T) with
uracil (U). Many RNA-based models, such as UNI-RNA, convert all “U” bases in RNA sequences to
“T” for consistency during training. Unlike DNA sequence tokenization, most RNA models (e.g., UNI-
RNA, RNA-FM, RNA-MSM, ERNIE-RNA) use single-base tokenization. This is possible because RNA
sequences are typically shorter than DNA sequences, representing individual units like mRNA or other
small RNA molecules (e.g., tRNA). This makes single-base tokenization more suitable for RNA data.
Similarly, protein sequences, which are shorter and less redundant than DNA, often use single amino acid
residue tokenization in LLMs.

DNA and RNA sequences present challenges in terms of length, leading to improvements in LLM
architectures. In particular, the scaled dot-product attention mechanism in transformers has a quadratic
complexity in relation to sequence length (O(L2), where L is the total number of tokens) [57]. To
reduce this complexity, some models, like DNABERT2 and UNI-RNA, integrate the flash attention
module, which improves the input/output (I/O) process during attention computations, thereby reducing
complexity. Most classical transformer models rely on absolute positional encoding in the embedding
layer, but this approach becomes problematic when fine-tuning sequences of varying lengths, as it cannot
effectively handle longer sequences not encountered during pre-training. To address this, models like
DNABERT2 replace traditional positional encodings with linear biases, which allow for more flexible
handling of sequence length. UNI-RNA uses RoPE, a method also employed by the large protein language
model ESM2, which facilitates the extension of sequence length beyond the limits imposed by traditional
positional encoding.

3.2.2 RNA-seq expression matrix in transcriptomics

In transcriptomics, the expression matrix is essential for understanding gene expression and transcrip-
tional activity, forming the foundation for various downstream analyses. The primary method for gen-
erating such data is RNA sequencing (RNA-seq), which includes both bulk RNA-seq at the tissue level
and single-cell RNA sequencing (scRNA-seq) at the cellular level. Specifically, scRNA-seq provides high-
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resolution data by sequencing individual cells, enabling more detailed insights into gene expression at
the single-cell level. RNA-seq data, after undergoing upstream processing, is structured as an expres-
sion profile matrix. This structured format is essential for diverse analyses, including gene regulation
studies [58], drug sensitivity prediction [59, 60], and disease prognosis [61]. Statistical models, including
machine learning and deep learning approaches, have been widely applied to RNA-seq data before the
integration of LLMs for modeling biological sequences. The matrix format of RNA-seq data makes it
particularly suitable for traditional statistical models designed for tabular data, but the emergence of
LLMs has opened new possibilities.

While traditional sequence-based LLMs are not inherently suited for modeling RNA-seq data due
to the lack of sequence positional information, the attention mechanism in transformers can effectively
capture complex relationships between genes. This ability to model intricate relationships, combined
with the large-scale data integration potential of pretrained models, positions LLMs as valuable tools for
RNA-seq data modeling. Notable early studies in this area include scBERT [30] and scGPT [18], which
adapt the BERT and GPT architectures for modeling scRNA-seq data. These models include specific
modifications to handle the nature of RNA-seq data during their pre-training phases. For example,
scBERT uses the BERT architecture, while scGPT leverages GPT to adapt to the unique challenges
of single-cell RNA-seq data. Another significant contribution is scFoundation [29], which employs an
asymmetric encoder-decoder transformer architecture called xTrimoGene. This model uses a masked
language model (MLM) training objective, where masked genes are reconstructed based on unmasked
genes and two special overall gene expression vectors (T&S). This structure enables effective modeling for
RNA-seq data with varying sequencing depths. Additionally, scFoundation incorporates the Performer
architecture, replacing traditional attention mechanisms to reduce computational complexity, making it
suitable for large-scale RNA-seq datasets.

During the fine-tuning phase, cell-level and gene-level tasks can be addressed by treating cells as
sequences and individual genes as tokens. The fine-tuning tasks can be categorized as follows.

(1) Cell-level tasks, such as cell type annotation, cell trajectory analysis, drug response prediction, and
single-cell perturbation prediction.

(2) Gene-level tasks, including drug sensitivity gene identification and key gene screening.

One advantage of models like scGPT is the inclusion of a CLS token as a special starting token, allowing
the model to rely solely on features extracted from this token for cell-level tasks. This approach simplifies
the fine-tuning process. In contrast, scBERT and xTrimoGene require the aggregation of features from
all genes, typically through pooling or other methods, to form a cell representation for fine-tuning. This
distinction highlights the different approaches to handling cell-level tasks and offers insight into the
flexibility of LLMs for RNA-seq data analysis.

3.2.3 Application in non-coding sequences

Genomic data contains vast amounts of information, but when research focuses on the segments of DNA
that encode proteins, specifically the exonic regions of genes, most of the genome, including introns and
intergenic regions (non-coding areas), can be considered redundant. This is particularly true for the
human genome and most eukaryotic genomes. However, the complex regulatory processes that govern
the flow of genetic information from DNA to proteins cannot function without the involvement of these
non-coding regions. While these areas are less well understood, contain more redundancy, and have fewer
high-quality experimental labels (as they do not code for proteins and are often referred to as “junk
DNA”), they play critical roles in gene regulation.

The scarcity of high-quality labels in non-coding regions makes traditional supervised learning ap-
proaches more challenging. However, self-supervised learning models, like LLMs, do not require exten-
sive labeled data during pre-training and need fewer labels for fine-tuning. This characteristic makes
them especially well-suited for exploring and modeling these non-coding regions. LLMs have proven
effective in modeling and predicting the function of transcription factors, cis-regulatory elements, and
promoters, all of which are located in non-coding regions of the genome. For example, models such
as DNABERT-Prom-300 [12], DNABERT-Prom-scan [12], and miProBERT [62], which are fine-tuned
versions of DNABERT [12], can accurately identify TATA and non-TATA promoters. Similarly, the
DNABERT-TF [12] model, also fine-tuned from DNABERT, excels at predicting transcription factor
binding sites (TFBS). These models perform exceptionally well on these tasks, especially when fine-tuned
for specific datasets.
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Furthermore, the fine-tuned DNABERT2 model achieves high performance in promoter detection (PD)
and core promoter detection (CPD). However, its performance in human data may not surpass that of
DNABERT due to potential limitations of byte-pair encoding (BPE) when encoding short DNA sequences.
Models like GROVER and DNAGPT have also been successfully fine-tuned for predicting cis-regulatory
regions, expanding the scope of DNA sequence modeling. In a noteworthy application, Chang et al. [63]
demonstrated that a BERT-based multilingual model, originally pre-trained on cross-linguistic corpora,
could be adapted to predict DNA sequences. After fine-tuning on DNA data, this model was used
to predict whether a given DNA sequence belonged to a promoter region. This finding highlights the
versatility of pre-trained language models, which can be fine-tuned for DNA sequence prediction tasks
even when originally trained on natural language corpora. Models like PromoGen [64], based on the
GPT-2 architecture, are pretrained on DNA promoter sequences, focusing on specific regions rather than
the entire genome. This pretraining approach eliminates the need to consider sequence length constraints,
as the model is designed to handle promoter sequences specifically. PromoGen is also fine-tuned using
species-specific datasets to generate and design promoter sequences tailored to individual species.

3.2.4 Application in epigenetics

Epigenetics has become a central focus in life sciences research, examining how gene activity regulation
changes without altering the underlying DNA sequence. This field includes processes such as DNA
methylation, histone modification, and chromatin accessibility, all of which influence gene expression. As
the field progresses, LLMs have increasingly been applied to support epigenetic research and modeling.

One notable example is the BERT6mA model [65], which is based on the BERT architecture and under-
goes cross-species pre-training followed by fine-tuning for the target species to predict 6mA methylation
sites. iDNA-ABF [21], fine-tuned from DNABERT, is capable of predicting various types of methylation
sites, improving its performance by incorporating histone modification coverage information for more
accurate detection of 5mC methylation sites. Another model, iDNA-ABT [66], also based on the BERT
framework, shows high precision in detecting multiple methylation sites by integrating the CLS token
in the tokenizer and treating each nucleotide as a distinct token. MuLan-Methyl [67] explores vari-
ous BERT-related pre-training frameworks and processes, including masked language model pre-training
(with the exception of ELECTRA [68], which uses a generator-discriminator approach to identify token
replacements). MuLan-Methyl uses a WordPiece tokenizer and incorporates the CLS token to fine-tune
and detect multiple methylation sites across different species.

Another promising model is EPiGePT, which is based on the Transformer encoder and combines
MLM pre-training with multitask learning. This model can handle a range of epigenetic tasks, such
as transcription factor binding, histone modification, and chromatin accessibility, without the need for
additional fine-tuning after pre-training. EPiGePT’s tokenizer approach for DNA sequences is similar
to Enformer, involving a convolutional embedding process applied after one-hot encoding of sequences
with a fixed length of 128 bases. Additionally, EPiGePT integrates transcription factor expression data
(RNA-seq), which enhances the model’s predictive power by incorporating multi-modal data, positioning
it as a potential foundational model in epigenomics.

3.2.5 Application at the genome level

With advancements in high-scalability token embedding techniques in LLMs and their enhanced ability
to capture long-range sequence relationships, there has been a significant expansion in the capacity to
model and predict genomic features on a broad scale. This development parallels the shift from analyzing
individual sentences or paragraphs to studying entire books, thus providing a comprehensive perspective
on genomics that enables the study of organismal characteristics and functions at the genome level.

Notable research in this domain includes the following.
• Genome-wide mutation (or variant effect) prediction. LLMs have been utilized for predicting the

impact of genetic mutations across the genome, which is crucial for understanding disease susceptibility
and treatment responses.

• Genome-wide modification prediction. Predicting modifications across the entire genome, such as
epigenetic changes or structural variations, helps in understanding genome stability and regulatory mech-
anisms.

• Identification of functional traits at the species genome level. LLMs have been applied to identify
key functional traits, such as resistance mechanisms, in the genomes of different species, which can aid
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in agriculture, medicine, and evolutionary studies.

These applications highlight the growing ability of LLMs to extend their predictive power beyond
individual genes, encompassing the entire genome to provide insights into complex biological functions
and characteristics.

3.2.6 Application in synthetic biology

Recent groundbreaking advancements in synthetic biology have focused on the de novo design and syn-
thesis of functional genomes that can support cellular metabolism and self-replication [69–71]. Achieving
these results requires a deep understanding of genome function, enhancing the efficiency of genome editing
tools (such as the CRISPR-Cas9 system), and a comprehensive grasp of overall cellular functions. LLMs
in genomics and transcriptomics have already facilitated several key applications in synthetic biology,
including the following.

(1) Functional genome annotations at the genome scale [72, 73]. LLMs can provide insights into the
functional elements of genomes, enabling the design of synthetic genomes with well-defined functions.

(2) RNA structure prediction and design [69, 74–76]. LLMs have proven effective in predicting and
designing RNA structures, which is critical for synthetic biology, especially in the context of CRISPR-
related applications.

(3) Gene editing system design [77]. LLMs are being used to optimize CRISPR-based gene editing
systems, making them more precise and efficient.

(4) Single-cell functional annotations based on scRNA-seq data [18, 29, 30]. LLMs also support func-
tional analysis at the single-cell level, which is crucial for creating personalized and highly specific bio-
logical systems in synthetic biology.

These advancements demonstrate the growing potential of LLMs to bridge genomics, transcriptomics,
and synthetic biology, providing powerful tools for the design and optimization of synthetic biological
systems.

3.2.7 Integration of multimodal information

In addition to primary sequence information, genomic and transcriptomic data often encompass other
valuable modalities, including secondary structure, functional annotations, and evolutionary conserva-
tion [75]. Several recent models, such as DNAGPT, ERNIE-RNA, and RNA-MSM, have begun to incor-
porate these complementary data sources to enhance predictive performance. For example, DNAGPT
integrates numerical features alongside DNA sequences to capture functional signals, while ERNIE-RNA
introduces pairwise positional biases in its attention mechanism to infer RNA secondary structure from
sequence data. RNA-MSM incorporates evolutionary information to enrich its representation learning
and improve downstream predictions.

Although most current LLMs in genomics and transcriptomics focus primarily on sequence data,
the growing availability of high-quality experimental and LLM-generated annotations paves the way
for broader multimodal integration. This direction holds great promise for enhancing both predictive
power and biological interpretability. By jointly learning from sequence data, expression profiles, struc-
tural features, and functional annotations, future models can develop more comprehensive representations
that reflect not only the primary nucleotide sequence but also its regulatory, structural, and evolutionary
context. This enables more accurate modeling of complex biological processes such as gene regulation,
alternative splicing, and cellular state transitions across diverse conditions and species.

Moreover, multimodal integration can improve model robustness and generalizability, particularly for
applications involving novel tasks or datasets with limited labeled data. Ultimately, such integration
supports a more holistic understanding of biological function, aligning model predictions more closely
with real-world biological systems and enhancing their utility in both basic research and translational
contexts.

Despite these advantages, integrating multimodal information into LLMs presents notable challenges.
The convergence of diverse data types, ranging from nucleotide sequences and expression profiles to
protein structures, functional annotations, and evolutionary conservation, offers rich biological context
but also introduces complexity. Aligning and encoding heterogeneous modalities into a unified model
framework is nontrivial, especially given their varying resolutions, formats, and noise levels. Scalability
is another concern, as multimodal LLMs require significant computational resources and sophisticated
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architectures capable of processing modality-specific features while preserving interpretability. Addition-
ally, the limited availability of fully aligned multimodal datasets and the need to effectively handle missing
or partial modalities pose further barriers.

Addressing these challenges will be critical for realizing the full potential of multimodal LLMs in
genomics and transcriptomics. Success in this area could yield generalizable, biologically grounded models
that drive forward both fundamental discovery and clinical innovation.

3.3 Database

Most genomic datasets predominantly store DNA and RNA sequences, with the Human Genome Project
Database being one of the most prominent genomic databases. In contrast, gene expression data are
preserved in RNA sequencing databases, which are divided into bulk and single-cell RNA-seq data.
Additionally, advanced research-related databases involved RNA’s spatial structure, DNA methylation
sequencing data (epigenetics related), and spatial transcriptomics data (RNA-seq related).

For pre-training purposes, large datasets are in the nature fit for this task due to their large scale. In
comparison, smaller datasets need to be amalgamated with other datasets for pre-training. Theoretically,
any dataset that provides ample data to train a large model could be suitable for pretraining, contingent
primarily upon quality control measures and conventional selection practices. For fine-tuning, the scale
of data is not a constraint, but comprehensive task-related annotations are essential. Table 1 [28, 33, 70,
73,78–94] delineates commonly employed datasets for pretraining or fine-tuning LLMs in the domains of
genomics and transcriptomics, highlighting the datasets’ attributes and application scenarios.

3.4 Summary

This section delves into the application of LLMs in genomics and transcriptomics, emphasizing their
purpose, the diverse model frameworks suited for various data types, and a comparison of tokenization
methods for embedding long and complex sequences. Moreover, cutting-edge applications of LLMs across
different domains of genomics and transcriptomics are discussed, alongside a summary of relevant datasets.
With advancements in high-throughput sequencing technologies, the scope and format of sequencing data
have significantly evolved, especially in areas such as non-coding regions, methylation sequencing [95],
and spatial transcriptomics [96, 97]. As LLMs excel in handling large-scale and multimodal data, they
hold immense potential for continued and widespread application in genomics and transcriptomics.

4 Application of LLMs in the proteomics field

4.1 Mission

Proteins, often regarded as the “final output” in the Central Dogma (see Figure 3), play a pivotal
role in facilitating essential life functions. The functional basis of proteins stems from the folding of their
tertiary spatial structure, with the instructions for this folding process encoded in their primary structure
(amino acid sequences) [98]. Understanding protein functionality, encompassing aspects such as specific
expression, subcellular localization [22, 23], and interactions with other molecules (e.g., protein-protein
interactions [44], protein-ligand interactions [44, 99], phosphorylation [100, 101], ubiquitination [102]),
relies on decoding the information embedded within amino acid sequences and the rules governing their
3D structural formation [25, 44, 103].

This challenge aligns closely with AI research on information theory and representation learning. Given
LLMs’ strong sequence representation capabilities, the analogy between protein primary structures and
natural language sequences has inspired researchers to model protein sequences within the LLM frame-
work (pre-training phase) [10, 17]. Subsequently, these foundational models are fine-tuned for diverse
protein-specific prediction and biological tasks (fine-tuning phase). Furthermore, integrating multimodal
data, such as hierarchical spatial structures (from secondary to quaternary) [14, 38, 104] and functional
annotations [105,106], into LLMs has become a priority in recent research. Core focus areas in this field
include the following.

(1) Development of optimized pre-trained large models: balancing performance with resource efficiency
to handle diverse protein datasets and types.

(2) Effective fine-tuning methodologies: enabling targeted adaptations of LLMs for various protein-
specific tasks.
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Table 1 Summary of datasets in the genomics and transcriptomics field. Seq: DNA or RNA sequence; Func: functional annotations; Struc: structure; Mut: mutation (including SNP, insertions,

and deletions).

Database Data type Scale
Cross-multiple

species
Feature

Model fit
example

Pre-training

GRCh38 [78]
DNA Seq, gene

annotations
Full human genome, 3.2G

nucleotides [33]
Human Genome reference

DNABERT, Enformer,
DNABERT-2, DNAGPT

NCBI-Genome [70]
Biological Seq, Omics data
(DNA, RNA, RNA-seq),
Func annotation, etc.

Contain vast amounts of
BiolocalSeq, Omics data

cross-species
Yes

Organized, structured, various
biological data

ENBED

Ensembl [79]
Biological Seq, Omics data
(DNA, RNA, RNA-seq),
Func annotation, etc.

Contain large amounts of
BiolocalSeq, Omics data cross

over 300 species, with a
strong focus on vertebrates
(less than NCBI-Genome)

Yes
Organized, structured, various

biological data
SA DNA-LM [80]

1000 Genomes
Project [81]

DNA Seq, Mut
annotation

20.5T nucleotides [33],
over 88 million SNPs

and 1.4 million short insertions
and deletions

Human
Human genetic variation

across populations
worldwide

Nucleotide-
Transformer [82]

CGGA [83]
DNA Seq, RNA-seq,

DNA methylation data
∼2k primary and recurrent

glioma samples
Human

Genomic data focused on
glioma patients from a

Chinese cohort
–

ENCODE [84]

Biological Seq (DNA, RNA),
Chromatin accessibility data,

RNA-seq Annotation
(Interaction, Func)

Encompasses over ∼14k
types of experimental

data from various tissues
or cell lines, covering a
wide array of sequencing
data (such as RNA-seq)

Yes
Gene function and
expression datasets

EpiGePT, GROVER

RNAcmap [28]
RNA contact map

(Struc)
– Yes

Automatic evolutionary coupling
analysis for RNA

sequence
RNA-MSM

BV-BRC [85]
Biological Seq, Omics

data, annotation (Func,
drug resistance, etc.)

Over 600k bacterial
genomes, 1000 archaeal

genomes, 8.5 million viral
genomes

Yes
Bacterial and ViralPathogens,

SARS-CoV-2 genomes
GenSLMs [94]

Panglao [86] scRNA-seq 4M cells [33] Human and mouse scRNA-seq data scBERT

Fine-tuning

NT-Bench [82]
Genomic data (DNA),

Annotation (TFBS, Promoters,
and Enhancers site)

3202 diverse human genomes,
850 genomes from various

species
Yes

Benchmark for evaluating the
Transformer-based model in

the DNA Seq task

DNABERT, Enformer, ENBED,
Nucleotide-Transformer

PGB [73] (proposed)
Genomic data

(DNA)
48 Plants genomics Yes (plant species)

Benchmark for plant
genomic research modeling.

AgroNT [73]

EPDnew [87]
DNA Promoter

Seq
187k promoters [33] Yes

Benchmark for Promoter
seq prediction

DNABERT, miProBERT

iDNA-MS [88]
DNA methylation

data
– –

Supply benchmark dataset
for 5hmC, 6mA, 4mC

modification

BERT6MA, iDNA-ABT,
MuLan-Methyl

CAGI5 [89]
Genomic data (DNA),

Annotation (Func, single-nucleotide
variants (SNV), etc.)

Over 810M potential
nonsynonymous variants compared

to reference genomics
Yes

Benchmark for evaluating
effects on regulatory

elements, prediction for
genetic and genomic

outcomes

–

ENCODE (protein-RNA
binding) [90]

– – Yes

Include benchmark for
RNA-binding protein (RBP)
interactions prediction, (it

is part of ENCODE
databases)

BERT-RBP [91]

Zheng68k [92]
scRNA-seq, cell
type annotation

∼6.8k cells Human
Benchmark for cell

type prediction
scBERT

STOmics DB [93]
Spatial

transcriptomics data
228 spatial

transcriptomic datasets
Yes

Storage and integration
of spatial transcriptomic

datasets
–
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(3) Incorporation of evolutionary information: designing LLMs to represent and leverage protein evo-
lutionary data, advancing research on protein evolution.

(4) Expanding applications in synthetic biology: utilizing LLMs to support protein design and engi-
neering in synthetic biology.

4.2 Algorithm and application

4.2.1 Pre-training algorithms

Developing optimized pre-trained large models that balance performance and resource utilization is a
significant challenge in protein modeling. Recent studies highlight that the key lies in enabling models to
effectively handle diverse protein data types. Rather than solely fitting protein sequence data, integrating
cross-domain information (e.g., protein annotations) and cross-modal information during pre-training
has been shown to significantly enhance performance. By incorporating both protein sequences and gene
ontology (GO) annotations [107] as input during pre-training, ProteinBERT [108] demonstrates improved
performance across several downstream tasks. Importantly, this strategy achieves these gains without
expanding model parameters, outperforming sequence-only models such as ESM-1b [109], ProtT5 [110],
TAPE-Transformer [108], and UDSMProt [111] (a pre-trained LSTM model). ProtST [106] leverages a
combination of protein sequences and biomedical text, adopting three masked pre-training techniques
(unimodal and multimodal) to improve multimodal information alignment. This allows ProtST to excel
in retrieving functional proteins from large databases. ProGen [112] and ProGen2 [113] integrate protein
sequences with biological domain conditioning tags (e.g., taxonomic and keyword labels) during pre-
training to enhance protein design capabilities. ProGen2 builds upon ProGen by expanding its parameter
count and training data, achieving further improvements in protein design tasks.

Additionally, non-sequential modality information can also be generated from the sequence itself. Non-
sequential information, such as protein 3D structure, can also be derived directly from sequences and
incorporated into pre-training. Using a structure-aware (SA) approach, SaProt [37] employs Foldseek [114]
to generate 3D structural information tokens. These are integrated with protein sequence data, enabling
SaProt to outperform ESM2 in tasks like protein contact prediction. Additionally, SaProt demonstrates
superior zero-shot mutational effect inference, particularly when compared to ESM2, whose performance
does not scale proportionally with size increases (e.g., from 650 million to 3 billion parameters). Building
on ProtT5, ProtST5 [38] incorporates structural tokens generated by Foldseek and is trained on billions
of protein sequences using span corruption techniques. This model surpasses AlphaFold and ESMFold
(fine-tuned from ESM2) in structural generation tasks, demonstrating its efficiency in capturing both
sequence and structural information.

In contrast, large foundational models (including single-modality models) can also enhance performance
by focusing on extracting relational information between protein sequences, emphasizing sequence attribu-
tion. A prominent example is the AlphaFold family, which relies on a core architectural design centered
around relational modeling between sequences. PoET [15] employs a unique “sequence-of-sequences”
approach, concatenating multiple sequences from the same protein family to capture hierarchical evolu-
tionary relationships. With its intra-sequence and inter-sequence module designs, PoET can exceed the
sequence lengths encountered during pre-training. PoET surpasses models like ESM-1v [109] in evolution-
ary prediction tasks (e.g., mutation effects) and demonstrates strong performance in functional sequence
design tasks.

While integrating cross-domain and multimodal information can enhance model performance, the
scarcity of multimodal and annotated data poses a significant challenge. Models such as ESM3 and
SaProt, which focus on generating 3D structural representations from sequences, circumvent this issue by
relying primarily on sequence-derived information. These methods are particularly valuable in scenarios
where high-quality non-sequential data are unavailable. However, recent research has raised concerns
about the risks associated with “generated” data in LLMs [115]. Addressing the scarcity of cross-modal
data and understanding the extent to which sequence-derived information can represent other modalities
remain critical challenges for developing more robust and versatile LLMs for protein modeling.

4.2.2 Fine-tuning algorithms

The success of fine-tuning LLMs for domain-specific tasks depends on selecting appropriate methodologies
that enable effective task-specific data embedding and representation. Protein-related downstream tasks
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can generally be divided into sequence-level tasks (e.g., subcellular localization prediction [22, 23]) and
amino acid residue (token)-level tasks (e.g., protein-protein interaction sites [24], ubiquitination modifi-
cation sites [116], or protein structural predictions [7, 14, 17, 44, 117]). Each type of task often requires
tailored fine-tuning methods. Fine-tuning methodologies can be categorized into two main approaches.

(1) Feature extraction, where representations from hidden layers of the LLM are used as inputs to
separate downstream models.

(2) Direct weight fine-tuning, where the model’s parameters are updated directly using downstream
data, including approaches like full fine-tuning and parameter-efficient fine-tuning.

For feature extraction methods addressing sequence-level problems, it is necessary to construct an
overall representation of the sequence. The most widely used approach involves global average pooling
based on features from all amino acid residues. For instance, Elnaggar et al. [7] extracted amino acid
features from ProtT5’s last hidden layer, applied global average pooling, and fed the resulting sequence
representation into a DNN to predict subcellular localization. Fang et al. [118] used global average pooled
features from ProtT5 in their AFP-MFL model to identify antifungal peptides with a simple MLP. Wang
et al. [119] compared features extracted from antiBERTy [120], ProtT5, and ESM2 for B-cell receptor
(BCR) sequences and demonstrated that task-specific fine-tuning led to better feature representations.
ProtLoc-Mex [22] introduced a novel approach by combining special character embeddings and segmental
average pooling of features extracted from ESM2 for subcellular localization prediction. Additionally,
overall sequence representation features can also be aggregated through attention mechanisms. DeepLoc
2.0 [23] extracted residue-level features from ProtT5 and ESM2 (650M) and aggregated them using self-
attention to build a subcellular localization model. MFE [121] used cross-attention to integrate sequence
features (from ProtBERT) with molecular surface point cloud features for protein-ligand binding affinity
prediction.

For amino acid residue-level tasks, fine-tuning typically avoids aggregating residue features into a
single representation. Instead, task-specific models are used to process relationships between residue
features directly. Elnaggar et al. [7] extracted amino acid features from ProtT5 and employed a CNN
to predict per-residue secondary structure labels. DeepProSite [24] extracts protein sequence features
from ProtT5 and structural features of proteins from ESMFold [17], then integrates these cross-modal
features by a graphic Transformer to predict protein binding sites. In contrast, when directly fitting
LLMs to downstream sequence-level and residue-level tasks, it is crucial to first determine whether the
task involves new sequence or residue (token) generation. Generally, sequence-level tasks do not require
generative modeling. Instead, these tasks leverage features extracted from special tokens like the CLS
(classification) token or global average pooling. These features are then processed by a multi-layer
perceptron (MLP) for prediction. For residue-level tasks, the approach varies depending on whether
generative modeling is involved. Non-generative tasks (e.g., protein binding site prediction) resemble
named entity recognition (NER) tasks in NLP, where models like BERT process residue-level features
sequentially through an MLP to assign labels. Conversely, generative residue-level tasks require training
with a generative head or decoder. In such cases, GPT models, owing to their generative pre-training
paradigm, require minimal architectural modifications during fine-tuning to handle these tasks.

In summary, feature extraction-based methods have demonstrated success across various tasks, as fea-
tures can be fine-tuned independently of the larger model. Designing features based on specific attributes
or integrating multimodal features (e.g., MFE, DeepProSite, and EasIFA [122]) can further enhance
downstream model performance. Additionally, selecting the appropriate downstream model is critical.
Refs. [10, 22, 25, 105] have shown that simpler models, such as support vector machines (SVMs), ran-
dom forests (RFs), or logistic regression classifiers, can offer competitive predictive performance while
effectively reflecting the properties of feature representations. Furthermore, the characteristics of the fine-
tuning dataset, including class balance, significantly influence downstream model performance. Besides,
directly fine-tuning the LLM parameters for downstream tasks can achieve superior performance, but
often requires robust open-source support for the models. Direct fine-tuning involves backpropagation,
which is computationally intensive and demands substantial GPU memory, making it less accessible to re-
searchers not involved in the pre-training phase. Although feature extraction methods are predominantly
used with the ESM-family and ProtTrans-family, solutions such as PEFT techniques and model distil-
lation methods, like DistilProtBERT [123], offer promising alternatives for researchers facing resource
constraints.
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4.2.3 Evolutionary information representation algorithms

Proteins are not merely static sequences; they carry rich evolutionary information, which is essential
for improving model performance and deepening our understanding of protein functionality. Capturing
this evolutionary information has become a key focus in protein representation learning (PRL) [10, 16,
25, 116], including applications leveraging LLMs. Classical methods, such as multiple sequence align-
ments (MSA) [124], position-specific scoring matrices (PSSM) [125], and BLOSUM62 [118], have been
widely used to represent protein features that reflect evolutionary information. These techniques ef-
fectively capture conserved regions and mutation patterns across protein families, enabling downstream
tasks like function prediction, structure determination, and protein design. Recent advancements have
incorporated the MSA module directly into deep learning architectures to enhance protein representa-
tion learning. For instance, AlphaFold leverages MSA-based representations to significantly improve
protein structure prediction accuracy. EvoDiff [126] integrates MSA modules to capture evolutionary
relationships, demonstrating the utility of explicit evolutionary information in model performance.

While LLMs were originally designed to generate general protein representations, certain architectural
modifications enable explicit incorporation of evolutionary information, even without relying on MSA
matrices. PoET [15] introduces sequence concatenation from protein families as input, enabling the
model to explicitly capture hierarchical evolutionary relationships. This approach infuses evolutionary
information into the model through task-specific design, bridging the gap between LLMs and traditional
alignment-based methods. Interestingly, research has also revealed that LLMs without explicit evolu-
tionary modules can implicitly capture the evolutionary properties of proteins. This phenomenon likely
stems from two key factors.

(1) Diverse pre-training data: LLMs are trained on extensive protein datasets spanning broad evolution-
ary distances, allowing them to learn patterns that inherently reflect evolutionary relationships [14, 17].

(2) Self-supervised learning objectives: Tasks like reconstructing masked residues or predicting subse-
quent residues during pre-training allow LLMs to infer reconstruction rules. These rules often parallel
the natural evolutionary processes that shape proteins [14].

It is noteworthy that in the field of NLP, LLMs have exhibited emergent capabilities when their param-
eter scale surpasses a certain threshold—an observation known as “emergence” [127] and a key aspect of
scaling laws theory. Similarly, the expansion of ESM3 to 98 billion parameters has significantly enhanced
protein representation performance and improved accuracy in downstream tasks [14]. Notably, ESM3 has
demonstrated robust generative capabilities across evolutionary distances, suggesting that scaling laws
may give rise to “emergent” abilities in extracting evolutionary information from protein sequences. This
insight, based on the 7-billion-parameter version used in recent experiments, holds considerable implica-
tions for advancing protein-focused large language models. Such findings could guide future algorithmic
research aimed at encoding evolutionary information within models and improving protein design by mir-
roring evolutionary principles. The unique GFP protein generated by ESM3 exemplifies this potential,
as it represents a remarkable achievement in life sciences research and spans an evolutionary distance of
over 500 million years [128].

While MSA-based methods remain foundational in evolutionary information modeling, LLMs offer a
complementary pathway by learning evolutionary relationships directly from large-scale data. Future
research may focus on the following.

• Developing hybrid approaches that integrate explicit alignment-based evolutionary modules with
LLMs’ implicit learning capabilities.

• Scaling parameter counts in LLMs to explore emergent properties further.
• Designing tasks and architectures that better reflect evolutionary rules, enabling LLMs to generate

novel proteins with precise evolutionary context.

4.2.4 Application in synthetic biology

LLMs are emerging as transformative tools in synthetic biology research. In this field, three progressively
advanced tasks highlight their potential: decoding and annotating protein functions, high-precision struc-
ture prediction, and functional-oriented protein design. First, LLMs excel in predicting protein functions
and generating high-quality annotations [129]. By leveraging extensive pre-trained knowledge, they enable
large-scale and accurate functional analysis of proteins. Second, LLMs have proven adept at capturing
the rules governing protein structure prediction [7,14,17,112,113]. Models such as AlphaFold and ESM-
Fold have redefined structural biology by accurately predicting protein 3D conformations. Finally, LLMs
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demonstrate remarkable capabilities in functional-oriented protein design [14, 15, 103, 130, 131]. This in-
cludes designing functional scaffolds, engineering structural motifs tailored for specific applications [15],
and generating entirely novel proteins not found in nature [17]. With their breakthrough abilities, LLMs
are becoming indispensable tools for realizing the long-sought vision of programmable protein design [132],
revolutionizing synthetic biology, and expanding its horizons.

4.2.5 Application in evolutionary biology

Integrating evolutionary information into protein representation models has the potential to profoundly
advance the field of protein research by enriching model understanding of sequence-function relation-
ships. Evolutionary signals, such as residue conservation and co-evolution, provide critical context for
identifying functionally important regions, predicting the effects of mutations, and inferring structural
and interaction features. These enriched models can lead to more accurate annotation of uncharacter-
ized proteins, improved variant interpretation in clinical genomics, and enhanced capabilities in rational
protein engineering and drug design. Additionally, leveraging evolutionary data across species supports
comparative proteomics and the reconstruction of ancestral proteins, deepening our understanding of
protein evolution and diversity.

In the field of protein evolutionary biology, LLMs are becoming a research hotspot [14,26,132]. These
models excel at embedding evolutionary information and providing high-quality representations of pro-
tein sequences. As a result, fine-tuned LLMs are highly effective in accomplishing tasks related to protein
evolution analysis, such as identifying conserved structural domains [133] and conducting homology com-
parisons [134]. For instance, Yeung et al. [133] utilized LLMs like ProtT5, ESM-1b, and ESM2 to extract
protein feature representations, which were then input into downstream prediction models to estimate
protein sequence conservation domains. Similarly, CATHe leverages feature representations extracted
from ProtT5 to detect distant homologs within the CATH superfamily. PLMSearch [26], a protein lan-
guage model-based framework, achieves high speed and sensitivity in homologous protein searches while
excelling at detecting distant homologs. A significant emerging trend involves calculating the similarity
of protein feature representations in vector space for evolutionary modeling, rather than relying on tra-
ditional sequence alignment methods. This approach exemplifies a bioinformatics revolution powered by
LLMs, enabling more efficient and scalable evolutionary analyses.

4.3 Database

Most protein datasets primarily store amino acid sequences (protein primary structure), while some
protein databases also include multimodal data such as 3D spatial structures. Table 2 [27,41,133,135–155]
delineates commonly employed datasets for pretraining or fine-tuning LLMs in the domain of proteomics,
highlighting the datasets’ attributes, application, and scenarios.

4.4 Summary

This section delves into the utilization of LLMs in proteomics, highlighting their purpose, various model
pre-training and fine-tuning methods, and the differences in algorithms rooted in evolutionary informa-
tion representation. The cutting-edge applications of LLMs in proteomics are also examined, alongside a
summary of relevant datasets. As the latest advancement in the protein language model (PLM) [7] family,
LLMs have significantly improved the modeling of protein sequences and the integration of multimodal
data in proteomics. These models, however, are now encountering new challenges from emerging archi-
tectures, such as diffusion models [126]. Therefore, future efforts may need to focus on enhancing LLM
architectures and exploring integration with other models to further advance their capabilities [44, 156].

5 Challenges in current biological LLMs and future directions

While significant breakthroughs have been achieved with LLMs in genomics, transcriptomics, and pro-
teomics, several challenges remain. These include issues related to interpretability, causality, data quality,
computational resources, hallucinations, and security.
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Table 2 Summary of datasets in the proteomics field. Seq: protein sequence; Fam: protein family; Dom: protein domain; Cluster: protein cluster information; Func: functional annotations;

Struc: protein structure; IHC: immunohistochemistry.

Database Data type Scale (protein)
Cross-multiple

species
Feature

Model fit
example

Pre-training

UniRef100 [135,136]
Seq, Cluster,

Func annotation
412M Yes

Cluster identical sequences
and fragments

ProtTrans-family

UniRef90 [135,136]
Seq, Cluster,

Func annotation
192M Yes

Cluster sequences with 90%
identity, 80% overlap within

the UniRef100 database
ESM-family

UniRef50 [135,136]
Seq, Cluster,

Func annotation
66M Yes

Cluster sequences with
50% identity, 80%
overlap within the
UniRef100 database

ESM-family, POET

Pfam [137]
Seq, Fam,
Dom info

50M Yes
Protein family datasets,

MSA-based search
PLMSearch

Swiss-Prot
(UniProtKB) [138]

Seq, annotation (Loc,
PPI, Go, etc.)

570k Yes

Database for protein storage,
manually curated with
high-quality protein

sequences and annotations

ProGen, DeepLoc 2.0

TrEMBL
(UniProtKB) [138]

Seq, Annotation (Loc,
PPI, Go, etc.)

250M Yes
Database for protein storage,
computationally annotated in

protein sequence
–

PDB [27] 3D structure, annotation 214k Yes
High-resolution 3D structures
from X-ray crystallography,

NMR, and cryo-EM

AlphaFold-family,
ESM-family, ProstT5

AlphaFoldDB [41, 139] Predict Struc 214M Yes
Provides high-confidence structural

predictions, but not
experimentally determined

AlphaFold-family,
ESM-family

BFD [140, 141] Seq, Cluster 2.5B Yes
Storing large and comprehensive

sequences sourced from
multiple databases

ProtT5, ProtBERT

UniParc [142] Seq – Yes
Non-redundant and large
protein sequence database

ProGen, TransPTM [133]

Fine-tuning

GO [143]
Annotation

(BP, CC, MF)
1.5M Yes

Dynamic, hierarchically structured
biological ontology knowledge

base
Protein BERT

EC [144]
Enzyme classification

annotation
2.6M Yes

Provides a systematic way
of naming and categorizing

enzymes based on the
reactions they catalyze

PLMs-based Framework
(Guisheng Fan, etc.) [145]

HPA [146]
Annotation (Loc, etc.),

metadata (IHC, RNA-seq)
– Human

Benchmarks for evaluating
sub-localization prediction

DeepLoc 2.0

STRING [147]
Seq, annotation

(PPI, etc.)
59M Yes

Benchmarks for evaluating
protein-protein interaction

ProLLM [148]

CATH [149]
Dom and Fam
annotation

151M Yes
Hierarchical classification based

on structure and
evolutionary relationships

ProstT5

TAPE [150]
Secondary Struc,annotation
(contact, landscape, remote

homology)
120k Yes

Benchmarks for evaluating
protein representation

PTG-PLM [151]

ProteinGym [152]
Deep mutational scanning

(DMS) assays
300k Yes

Benchmark for evaluating protein
design and fitness, predicts

how mutations affect
protein stability and function

Saprot

FLIP [153]
Annotation (Adenovirus Stability,

Stability of Protein Domain
B1, Fam, etc.)

320k Yes
Benchmarks for evaluating

protein landscape prediction
–

PLMD [154]
Annotation: post-translational

modifications (PTMs) of
lysine residues

121k ubiquitination sites
across 25k protein Seq

Yes
Datasets for PTMs

prediction
–

CPLM 4.0 [155]
Annotation: post-translational

modifications (PTMs) of
lysine residues

592k modification events,
463k unique lysine residues,

105k protein Seq
Yes

Benchmarks for
PTMs prediction

–
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5.1 Data quality and computational resources

High-quality data are essential for training large models, but obtaining such datasets in biological omics
is challenging due to issues like batch effects in RNA-seq data [29] and the impact of sequence mutations
on tokenization [72]. There are also concerns about the potential for bias in training data. Biological
datasets, especially those derived from public repositories, often reflect skewed sampling across species,
tissues, or disease types, which may lead LLMs to learn and propagate these biases. This could result in
inaccurate predictions or reduced generalizability to underrepresented biological contexts. As LLMs are
increasingly applied in clinical and biomedical settings, mitigating such biases through data augmentation,
balanced sampling, or fairness-aware learning techniques will be crucial.

Additionally, pre-training LLMs is resource-intensive, and scaling large models is often beyond the reach
of resource-limited research groups, particularly in the biological domain. For example, most biological
LLMs have fewer than 10 billion parameters, with the largest models not exceeding 100 billion parameters,
while general LLMs such as Llama3 have up to 405 billion parameters. Fine-tuning larger models is also
difficult due to higher-dimensional feature vectors and the vast number of tokens in biological sequences,
which create extensive feature matrices that burden LLM inference and fine-tuning processes. Developing
more efficient architectures, parameter-efficient fine-tuning strategies (such as LoRA or adapters), and
model distillation techniques may help democratize access to powerful biological LLMs while reducing
resource consumption.

Future direction. To address the scarcity of high-quality data, approaches like zero-shot and few-shot
learning [157,158] may be useful. Additionally, to mitigate resource consumption during pre-training and
fine-tuning, methods such as deploying variational autoencoders (VAE) to reduce dimensionality [22] or
employing distillation techniques [123] to train high-accuracy smaller models could serve as alternatives
to large models.

5.2 Hallucinations and security

Generative models like LLMs and diffusion models face challenges related to “hallucination” issues [44,
126]. These issues not only affect the quality of generated outputs but also pose security risks, as they can
result in incorrect functional labels for proteins, leading to potentially misleading or harmful biological
research outcomes. Furthermore, these models can also amplify biases [159], raise privacy concerns,
and present other ethical dilemmas. For example, protein drugs generated with the aid of these models
may exhibit differential effectiveness across ethnic groups if the training data are skewed towards specific
demographic sensitivities [31,160]. There is also the potential risk of sensitive genomic data leakage [161].
Moreover, these models could facilitate the development of biochemical weapons by enhancing the analysis
and prediction of synthetic functional structures.

Future direction. To address these issues, potential solutions may include aligning models with
techniques such as retrieval-augmented generation (RAG) [15] and reinforcement learning with human
feedback (RLHF) [1] to improve model reliability and safety.

5.3 Interpretability and causality

LLMs have the potential to “replace” intricate and often unknowable gene expression regulation processes,
thus facilitating a range of downstream tasks, such as predicting phenotypes (illustrated in Figure 4).
However, biological research seeks not only to construct predictive models but also to understand the
complex mechanisms of gene regulation [162]. It aims to explore how models “comprehend” biological
data [22, 99]. Despite their utility, LLMs often lack interpretability and cannot directly capture causal
relationships within the data, rendering them “black boxes” (illustrated in Figure 4).

Future direction. To enhance interpretability, one approach involves developing self-explanatory
LLMs, also known as “white-box” models [163]. Another approach could involve extracting feature se-
mantics using sparse autoencoders (SAE) [3], and applying feature attribution methods like SHAP [164],
LIME [165], and attention mechanisms, which may help in interpreting LLMs [22]. However, feature
attribution methods can face challenges in robustness and were not initially designed for LLMs interpre-
tation. For integrating causal inference into LLMs, a potential solution could involve incorporating causal
knowledge of gene expression regulation into structured causal language data and then fitting LLMs to
these data using a chain-of-thought (COT) inference framework [166]. This emerging field, known as
causal machine learning, holds promise for future advancements in this area [167].
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Figure 4 (Color online) LLMs as a tool to elucidate the biological process linking genes to phenotypes. The black box indicates

that both the gene expression regulation processes and the predictive decision-making mechanisms of LLMs are too complex to

allow for complete or reasonable explanations. The gray box (mediator), represented by RNA and protein, signifies that biological

experiments can leverage these intermediate processes in the pathway from genes to phenotypes. Research on RNA and proteins can

partially address the black-box nature of phenotype regulation. This concept could inform future LLM advancements, emphasizing

the integration of DNA, RNA, and protein data to enhance understanding and predictive accuracy in biological research.

5.4 Future directions in LLM integration

A promising, yet developing application is the integration of general-purpose LLMs such as ChatGPT [1],
Claude [3], and Gemini [168] within the biological omics research space. This is demonstrated by the
development of single-cell annotation protocols based on the OpenAI GPT-4 API [169], conducting
biological knowledge retrieval via natural language [170], and using GPT-4 to generate protein structures
using prompts alone [171]. The potential of model APIs or natural language interaction via prompt
engineering [172], which enables general LLMs to be transferred into new bioinformatics and omics
research areas without fine-tuning, is a highly promising direction.

Moreover, integrating more multimodal and interdisciplinary data related to biological phenotypes,
such as data from animals [173], plants [64], and clinical samples [160, 174, 175], could enable LLMs
to better address challenges in genomics, transcriptomics, and proteomics. This potential is supported
by the vast information compression capabilities of LLMs and the demonstrated versatility of existing
general models, such as GPT-4, trained across multiple domains. Since biological organism phenotypes
represent the final expression of genomic, transcriptomic, and proteomic data, one question that arises is
whether increasing the data volume will lead to greater knowledge and result in more powerful models.

Specifically, some research has explored the combination of biological omics data with clinical and
pathological data for disease diagnosis and treatment [176–179]. Among these, image data (e.g., whole-
slide images, or WSI) play a critical role in the clinical domain. As Transformers are capable of learning
from visual sequences, audio sequences, and other data represented in sequential form [180], recent
advancements have focused on segmenting images into patches, which are then treated as tokens to
construct sequences [181, 182]. These sequences are modeled by Transformers, leveraging a pretraining-
finetuning approach to create unified multimodal models that integrate imaging and sequential data [183]
(known as computational pathology LLMs). These models have already been successfully applied to
clinical downstream prediction tasks. Moving forward, integrating biological sequence data and RNA-seq
data with image data to develop foundational computational pathology models holds great promise. Such
models could unify information representation through contrastive learning across multimodal data and
disciplines.

Finally, the open-source availability of LLMs is crucial for the sustained integration of these large-scale
models into biological research. A key example in the open-source community is the ESM family, including
ESM-1b, ESM2, ESM3, and fine-tuned models such as ESM-IF1, ESM-1v, and ESMfold. These models
play a critical role in the open-source ecosystem of proteomic LLMs and facilitate model utilization and
redevelopment across a broad spectrum.
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6 Conclusion

This review thoroughly explores the mission, architecture, datasets, and advanced applications of deploy-
ing LLMs in the fields of genomics, transcriptomics, and proteomics. We provide detailed introductions
to the basic architecture of LLMs and discuss the modifications required to adapt these models for biolog-
ical applications, focusing on how they handle complex sequence-based and non-sequence-based domain
data. We also examine the applications of LLMs in downstream tasks across these fields, highlighting
the technical nuances that arise when using these models in biological research. Furthermore, the signifi-
cance of transfer learning and the techniques behind transfer methods are essential to understanding the
success of LLMs in biological omics tasks. Finally, we address several challenges and future directions
for the use of LLMs in biological omics research. These challenges include issues related to data quality,
interpretability, and computational resources, as well as concerns about model hallucinations and secu-
rity. Despite these challenges, the future of LLMs in this domain holds immense potential, particularly
with the integration of multimodal data and the scaling of models to better capture the complexities of
biological systems.

Humanity has long sought to decode the vast information encoded in the living world, from the simplest
“progenitor cells” to the diverse species present today. Just as humans have created intricate systems for
storing and communicating information, such as language and imagery, the advent of LLMs in AI marks
a significant leap forward in our ability to understand and utilize this information. As AI continues to
advance, it may enable machines to better decode the mysteries of life’s information, enhancing both our
understanding of biology and the technologies we use to study it. This ongoing evolution in AI research
represents a promising path toward further unraveling the complexities of life and our place within it.
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87 Dreos R, Ambrosini G, Périer R C, et al. EPD and EPDnew, high-quality promoter resources in the next-generation

sequencing era. Nucleic Acids Res, 2013, 41: D157–D164
88 Lv H, Dao F Y, Zhang D, et al. iDNA-MS: an integrated computational tool for detecting DNA modification sites in multiple

genomes. iScience, 2020, 23: 100991
89 Katsonis P, Lichtarge O. CAGI5: objective performance assessments of predictions based on the evolutionary action equation.

Hum Mutat, 2019, 40: 1436–1454
90 Pan X, Fang Y, Li X, et al. RBPsuite: RNA-protein binding sites prediction suite based on deep learning. BMC Genomics,

2020, 21: 884
91 Yamada K, Hamada M, Arighi C. Prediction of RNA-protein interactions using a nucleotide language model. Bioinf Adv,

2022, 2: vbac023
92 Zheng G X Y, Terry J M, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun,

2017, 8: 14049
93 Xu Z, Wang W, Yang T, et al. STOmicsDB: a comprehensive database for spatial transcriptomics data sharing, analysis

and visualization. Nucleic Acids Res, 2024, 52: D1053–D1061
94 Zvyagin M, Brace A, Hippe K, et al. GenSLMs: genome-scale language models reveal SARS-CoV-2 evolutionary dynamics.

Int J High Perform Comput Appl, 2023, 37: 683–705
95 Liu Y, Rosikiewicz W, Pan Z, et al. DNA methylation-calling tools for Oxford Nanopore sequencing: a survey and human

epigenome-wide evaluation. Genome Biol, 2021, 22: 295
96 Zhao E, Stone M R, Ren X, et al. Spatial transcriptomics at subspot resolution with BayesSpace. Nat Biotechnol, 2021, 39:

1375–1384
97 Zahedi R, Ghamsari R, Argha A, et al. Deep learning in spatially resolved transcriptomics: a comprehensive technical view.

Brief Bioinf, 2024, 25: bbae082
98 Goodsell D S. The Machinery of Life. New York: Springer, 2009. 371–402
99 Mastropietro A, Pasculli G, Bajorath J. Learning characteristics of graph neural networks predicting protein-ligand affinities.

Nat Mach Intell, 2023, 5: 1427–1436
100 Blom N, Sicheritz-Pontén T, Gupta R, et al. Prediction of post-translational glycosylation and phosphorylation of proteins

from the amino acid sequence. Proteomics, 2004, 4: 1633–1649
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