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Appendix A Supplementary Table

Table A1 The summary of represented LLMs in biological field.

Model name Parameters Base model Fitting data Prediction

Capability

Science field

DNABERT [1] 110M BERT DNA

sequence

Promoters, Splice

sites, Transcription

factor binding

sites, etc.

Genomic and

Transcriptomic

DNABERT2 [2] 117M BERT DNA

sequence

Promoters, Splice

sites, Transcription

factor binding

sites, etc.

Enformer [3] 240M BERT DNA

sequence

Gene expression

miProBERT [4]& 110M DNABERT DNA

sequence

(Promoter

area)

TATA-Promoter

identification

GROVER [5] – BERT DNA

sequence

Promoter

identification and

scanning, CTCF

motif binding.

BERT-

Promoter [6]&
110M BERT DNA

sequence

Promoter strength

BERT6mA [7] Millions BERT DNA

sequence

6mA methylation

sites prediction

iDNA-ABF [8]& 110M DNABERT DNA

sequence

Multiple type

methylation sites

prediction

iDNA-ABT [9] – BERT DNA

sequence

Multiple type

methylation sites

prediction

MuLan-

Methyl [10]

110M, 66M,

12M, Millions,

Millions

BERT,

DistilBERT [11],

ALBERT [12],

XLNet [13],

ELECTRA [14]

DNA

sequence

Multiple type

methylation sites

prediction.

Continued on next page
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Table A1 – continued from previous page

Model name Parameters Base model Fitting data Prediction

Capability

Science field

EPiGePT [15] – Transformer DNA

sequence

General epigenetic

tasks fulfilling

DNAGPT [16] 100M GPT DNA

sequence

Genomic signals

and non-coding

regions

identification,

mRNA expression,

etc.

PromoGen [17] Millions GPT DNA

sequence

(Promoter

area)

Promoter sequence

design

ENBED [18] 580M-1.2B Transformer DNA

sequence

Function

prediction

UNI-RNA [19] 25-400M BERT RNA

sequence

RNA secondary

and tertiary

structure, RNA

modification site,

etc.

RNA-FM [20] Millions BERT RNA

sequence

Evolutionary trend

analysis of

lncRNA, RNA

structure,

Function

prediction, etc.

Proteomic

RNA-MSM [21] Millions MSA-

Transformer

RNA

sequence

RNA structure,

RNA solvent

accessibility

prediction.

ERNIE-

RNA [22]

86M BERT RNA

sequence

RNA structure,

RNA-protein

binding,

modification.

scBERT [23] Millions BERTe Single-cell

RNA-seq

data

Cell type

annotation, cell

trajectory, marker

gene, etc.

scGPT [24] – GPTe Single-cell

RNA-seq

data,

scATAC-seq

data

Cell cluster, Batch

correction, Cell

type annotation,

etc.

scFoundation [25]& 100M xTrimoGene [26] Single-cell

RNA-seq

data

Gene expression

enhancement,

Medical-drug

Response

Prediction, etc.

ESM-1b [27] 650M BERT Protein

sequence

Secondary struct,

Localization,

Contact, etc.

ESM2 [28] 8M-15B RoBEATa Protein

sequence

Protein structure

Localization, PPI,

etc.

Continued on next page
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Table A1 – continued from previous page

Model name Parameters Base model Fitting data Prediction

Capability

Science field

ESMFold [28]& 15B ESM2 Protein

sequence

Protein structure

ESM3 [29] 1.4B-98B Bidirectional

Transformera
Protein

sequence,

Structure,

and Function

tokens.

Protein structure,

Protein design,

etc.

ESM-1v [30]& 650m-3.25B ESM1-b Protein

sequence

Mutation effect

predication

ESM-

IF1 [31,32]&
Millions ESM family Protein

structure

Protein sequence

design and scoring

EMNGly [33]& 650M ESM-1b Protein

sequence,

Structure

embedding.

Glycosylation sites

ProteinBERT [34] 16M BERT Protein

sequence, Go

annotation.

Protein secondary

structure, remote

homology

prediction, etc.

antiBERTy [35] 26M BERT Protein

sequence

(antibody

only)

Trajectory,

Antibody binding

site.

ProtBERT [36] 420M BERT Protein

sequence

Secondary

structure,

Molecular

fingerprint, etc.

DistilProtBert [37]&230M protBERT Protein

sequence

Secondary

structure, Real

protein

identification.

MFE [38]& – protBERT Protein

sequence,

Molecular

structure.

Protein-ligand

binding affinity.

TAPE-

Transformer [39]

38M Transformer Protein

sequence

Structure, Contact

prediction, Remote

homology, etc.

ProGen [40] 1.2B GPT Bidirectional-

Protein

sequence,

Property

token.

Protein structure,

Protein function,

etc.

ProGen2 [41] 151M-6.4B GPT Protein

sequence,

Protein

structure.

Protein design,

Protein function,

etc.

PoET [42] 201M GPT Protein

sequence

concatenated

by family.

Variant function,

Mutation

scanning, Protein

design.

ProtT5 [36] 3B T5 Protein

sequence

Localization, PPI,

Secondary

structure, etc.

Continued on next page
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Table A1 – continued from previous page

Model name Parameters Base model Fitting data Prediction

Capability

Science field

ProtST [43]& – ProtBert,

ESM-1b,

ESM-2,

PubMedBERT

Protein

sequences,

Biomedical

annotation

text.

Protein property

and functional

protein retravel.

ProstT5 [44]& 3B T5, ProtT5 Protein

sequence,

Structure

token.

3D structure,

binding sites,

interaction, etc.

SaProt [45]& 650M BERT Protein

sequence,

Structure

token.

Mutation effect,

PPI, Ion Binding,

etc.

Deeploc2.0 [46]& 650M,3B ESM2, ProtT5 Protein

sequence

Localization

ProtLoc-

Mex [47]&
650M ESM2 Protein

sequence

Localization,

Feature extraction

tool

AFP-MFL [48]& 3B ProtT5 Protein

sequence

Antifungal

peptides

identification

DeepProSite [49]& 3B ESMFold,

ProtT5

Protein

sequence

Protein binding

site

EasIFA [50]& 650M ESM2, SaProt Protein

sequence,

SMILES

sequence [51],

Structure

graph

Enzyme site

annotation

EvoDiff [52] – Diffusion modelb Protein

sequence,

MSA input

token.

Protein design,

Functional scaffold

design.

AlphaFold2 [53] Millions Evoformerc Protein

sequence,

structure

datad

Protein structure

AlphaFold3 [54] – Evoformer-

Pairformer-

Diffusion

Sequence

(include

DNA/RNA,

Protein,

Atom, etc.),

Protein and

molecular

structure

data.

Protein-Protein

complexes

structure,

Protein-molecular

complexes

structure.

CATHe [55]& 420M,3B ProtBERT,

ProtT5

Protein

sequence

Remote homology

searching

PLMSearch [56]& 650M ESM-1b Protein

sequence

Remote homology

searching

a: Structure tokenizer adopts VQ-VAE [57] as the backbone frames, and only applied for generating structure token. Encoder
composed by stacking transformer block, Geometric attention are introduced in some transformer block. Decoder are adopted
for protein structure design and generation.
b: one type of generation model differs from Transformer, generating data through denoising
c: Evoformer is similar to Transformer, based on attention block with adding special block, for instance MSA (Multiple Sequence
Alignment) [58] and protein pair block. Typically, AlphaFold family does not belong to LLMs, but famous in the domain of
biological science.
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d: Protein sequence as input, then conduct searching in Genetic database for MSA representation. Meanwhile, combining
sequence and information from structure database for pair representation.
e: Embedding layer apply gene expression bin token to replace positional token.

&: Represent domain Fine-Tune model based on pretrained LLMs.
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