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Advancements in vision-language models have made the

generation of highly realistic visual media, such as images

and videos, increasingly widespread. Meanwhile, as the ac-

cessibility of the generative foundation models technology

increases, the risk of misuse escalates, which could con-

tribute to the spread of fake information. Thus, it is cru-

cial for developing visual media forgery detection models [1].

Recent research primarily focuses on identifying authentic-

ity and fake location, with an emphasis on improving ac-

curacy and generalization. However, it often overlooks the

significance of explaining why certain results are classified as

fake or real, which is crucial for ensuring reliable traceability

and forensic analysis of forgeries. Thus, we aim to develop

a trustworthy and explainable forgery detection model.

Causal inference, which is the process of discovering the

causal relationship by eliminating spurious correlations in-

troduced by confounding factors, has gained significant at-

tention recently. In forgery detection, spurious correlations

and confounding variables can mislead detection models, re-

ducing their reliability. Causal learning provides a prin-

cipled approach to addressing these challenges by explic-

itly modeling the influence of confounders and disentangling

misleading correlations. This makes causal inference a pow-

erful tool for enhancing the robustness and interpretability

of visual media forgery detection. In fake news detection,

CLIMB [2] employs a causal framework to mitigate image-

text matching bias, while Li et al. [3] utilized soft-prompt

learning to integrate textual and numerical covariates for ef-

fective confounder representation. Inspired by these, we can

leverage causal inference to detect visual media forgery.

We propose a structural causal mode (SCM) to elucidate

the inferent objective of forgery detection from a causal per-

spective, thereby improving the accuracy of vanilla forgery

detection methods in estimating the desired causal effect.

We aim to enhance the trustworthiness of the detection by

providing transparency in the processing of identifying and

justifying potential forgeries. Specifically, we introduce a

lightweight, feature-decoupled plugin, the forgery bias elim-

inating module (FBEM), which is designed to be seamlessly

integrated into existing systems in a plug-and-play manner.

Building on FBEM, we further propose a forgery bias that

eliminates the loss function and a conditional mutual infor-

mation regularization term. These components collectively

improve the interpretability and robustness of other meth-

ods while ensuring that they are deployed locally with mini-

mal computational cost. The flexibility of our approach en-

ables effortless adoption across various applications, allow-

ing existing models to achieve enhanced performance with-

out requiring significant architectural modifications.

Problem formulation. To comprehensively understand

the intrinsic objective of forgery detection methods, we re-

evaluate the learning paradigm of forgery detection through

a causal framework and derive the corresponding SCM.

Specifically, the process of forgery detection can be described

as follows. Given the input image X, we utilize a backbone

network to obtain the deep feature representation Z, which

is then used to predict the label Y via a classification head.

Meanwhile, the feature Z can be decomposed into forgery

pattern features Zn and forgery-irrelevant features Zp. In

addition, domain knowledge K, including information such

as forgery methods and image semantics, impacts both X

and Y . Therefore, we construct the corresponding SCM of

the forgery detection process in Figure 1(a). Refer to Ap-

pendix A for an SCM introduction.

Examining the SCM presented in Figure 1(a), we can

expound the inferent objective of forgery detection from a

causal perspective as follows: capturing the causal effect be-

tween the input imageX and the prediction label Y , which is

implemented by computing P (Y | do(x)) rather than mod-

eling P (Y | X) in vanilla detection approaches [4]. Never-

theless, the undesired backdoor path X ← K → Y renders

a gap between P (Y | X) and P (Y | do(x)). To estimate

P (Y | do(x)), we can apply the back-door criterion as fol-

lows:

P (Y | do(X)) =
∑

K

P (K | X) · P (Y | K). (1)

However, K as domain knowledge represents a latent

variable that cannot be directly measured. The back-door
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Figure 1 (Color online) (a) The SCM diagram of the input image X, predicted label Y , forgery pattern features Zn, forgery-

irrelevant features Zp, and domain knowledge K. The dashed circle represents the variable that cannot be measured. (b) The

framework of the proposed method.

adjustment may not be sufficient, as we cannot condition

on K directly. To disclose this focal issue, with front-door

criterion, we perform causal intervention via front-door ad-

justment with the following formula:

P (Y | do(X)) =
∑

Zn,Zp

P (Zn, Zp | X) · P (Y | Zn, Zp). (2)

Adhering to the front door adjustment formula, the ac-

curacy of the causal effect estimate of X on Y after the

intervention is contingent upon the reliability of Zn and Zp.

Therefore, to improve the accuracy of vanilla forgery de-

tection methods in estimating the desired causal effect, we

propose a plug-and-play feature decoupled module and a

conditional mutual information regularization term.

Methodology. Since mainstream forgery detection net-

works typically consist of an encoder and a classifier, we

propose FBEM to decouple the features derived from the

encoder into Zn and ZP using two projection layers, rather

than employing additional encoders with a large number of

parameters. The overview of the method is shown in Fig-

ure 1(b). The two projection layers are represented by ϕ and

ψ, respectively. For a given image xi, the outputs of ϕ and

ψ can be interpreted as the forgery pattern features zi,n and

forgery-irrelevant features zi,p, respectively, as expressed by

the following equations:

zi,n = ϕ(zi), zi,p = ψ(zi). (3)

Subsequently, we concatenate these two features and use

the combined representation as the input for the classifier σ.

To ensure ϕ and ψ can effectively capture the correspond-

ing features, we propose forgery bias eliminating loss Lbe to

expand the available value set of the adjustment variables.

Specifically, after concatenating zi,n with zj,p from other

samples, the resulting feature should still be identifiable as

belonging to the yi class.

Lce = BCELoss(σ([zi,n; zi,p]), yi), (4)

Lbe = BCELoss(σ([zi,n; zj,p]), yi). (5)

Furthermore, to make sure that these two features can

be decoupled, we formulate a regularization term to mini-

mize the conditional mutual information (CMI) between the

forgery pattern features and forgery-irrelevant features:

Lcmi = I(zn; zp | Y ), (6)

where I(·) denotes the Shannon mutual information. In

practice, we estimate the mutual information using the im-

plementation provided in [5].
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where qij = 1 if and only if yi = yj ; otherwise qij = 0.

Overall, the final objective function for training is

L = Lce + αLbe + βLcmi. (8)

Experiments. We evaluate our method on the Face-

Forensics++, DFDC, and CelebDF-v2 datasets. In Ap-

pendix B, the experimental results show that by incorpo-

rating the proposed module into Xception and F3Net, the

model’s performance, in terms of area under curve (AUC),

improved significantly by 0.48% and 0.46%, and Accuracy

increased by 0.76% and 0.45%, while their FLOPs only in-

creased by 0.31% and 0.26%, respectively. The outcome

indicates that the addition of FBEM does not result in a sig-

nificant increase in model complexity, but rather improves

performance without overwhelming the computational cost.

Meanwhile, we also conduct ablation experiments and cross-

dataset testing, as detailed in Appendixes C and D2, includ-

ing the visualization results in Appendix D1.

Conclusion and future work. In this study, we present a

trustworthy forgery detection scheme based on the struc-

tural causal mode. The proposed method introduces

a lightweight plug-and-play module, which incorporates

forgery bias, eliminating loss, and a conditional mutual in-

formation regularization term. The experimental perfor-

mance demonstrates the effectiveness of the causal learning

approach and the lightweight effect of the plugin. The po-

tential of causal inference can be further leveraged by de-

veloping more sophisticated and reliable SCMs that bet-

ter capture the underlying causal structure of forgery de-

tection. Additionally, integrating advanced causal inference

techniques, such as instrumental variable methods or coun-

terfactual reasoning, could further improve the generaliza-

tion of emerging forgery techniques and unseen data.
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