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Appendix A Proof of Theorem 1

To facilitate the proof of Theorem 1, we present the following lemma:

Lemma 1. [1] For any constant µ > 0, there are positive, definite matrix matrices Ai ∈ Rr×r satisfying the following

condition:

Reλi(Φ(A0∼n−1)) < −
µ

2
.

There also exists a positive definite matrix P (A0∼n−1), satisfying

ΦT (A0∼n−1)P (A0∼n−1) + P (A0∼n−1)Φ(A0∼n−1) 6 −µP (A0∼n−1),

where P (A0∼n−1) = [P1, P2, · · · , Pn], Pi ∈ Rnr×r.
For convenience, e(1∼n)(t), e(0∼n−1)(t), z(1∼n)(t), z(0∼n−1)(t), H(z(0∼n−1)), and L(z(0∼n−1)) are simplified to e(1∼n),

e(0∼n−1), z(1∼n), z(0∼n−1), H, and L, respectively. Based on the above, the proof is derived as follows:

Proof: Choose the following Lyapunov function:

V (t) =
1

2
(e(0∼n−1))TPe(0∼n−1) +

1

2
θ̃T (t)θ̃(t) +

1

2
tr[W̃T (t)W̃ (t)]. (A1)

Taking derivative leads to:

V̇ (t) =
1

2
(e(1∼n))TPe(0∼n−1) +

1

2
(e(0∼n−1))TPe(1∼n) +

˙̃
θT (t)θ̃(t) + tr[W̃T (t) ˙̃W (t)]

=
1

2

{
Λ(k(0∼n−1))e(0∼n−1) −B{HT θ̃(t) + [∆f(z(0∼n−1))− ŴT (t)S(z(0∼n−1))]− λ(t)Lm+ Lv3(t)}

}T
× Pe(0∼n−1) +

1

2
(e(0∼n−1))TP

{
Λ(k(0∼n−1))e(0∼n−1) −B{HT θ̃(t)− [∆f(z(0∼n−1))

− ŴT (t)S(z(0∼n−1))]− λ(t)Lm+ Lv3(t)}
}

+
˙̃
θT (t)θ̃(t) + tr[W̃T (t) ˙̃W (t)]

=
1

2
(e(0∼n−1))T (ΛT (k(0∼n−1))P + PΛ(k(0∼n−1)))e(0∼n−1)

+ (e(0∼n−1))TP
{
−B{HT θ̃(t) + [∆f(z(0∼n−1))− ŴT (t)S(z(0∼n−1))]− λ(t)Lm+ Lv3(t)}

}
+

˙̃
θT (t)θ̃(t) + tr[W̃T (t) ˙̃W (t)]. (A2)

Based on the condition Reλi(Λ(k(0∼n−1))) < −µ
2

and Lemma 1, there exists the matrix P > 0, which makes the

following inequality hold:

1

2
(e(0∼n−1))T

{
ΛT (k(0∼n−1))P + PΛ(k(0∼n−1))

}
e(0∼n−1) 6 −

µ

2
(e(0∼n−1))TPe(0∼n−1).

Therefore, V̇ (t) can be simplified as the following form:

V̇ (t) 6 −
µ

2
(e(0∼n−1))TPe(0∼n−1) + V̇1(t) + V̇2(t) + V̇3(t), (A3)
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where

V̇1(t) =[−(e(0∼n−1))TPBHT +
˙̃
θT (t)]θ̃(t),

V̇2(t) =− (e(0∼n−1))TPB[∆f(z(0∼n−1))− ŴT (t)S(z(0∼n−1))] + tr[W̃T (t) ˙̃W (t)],

V̇3(t) =− (e(0∼n−1))TPB[λ(t)Lm+ Lv3(t)].

Next, deal with the result of the derivatives. Adding and subtracting µ
2
θ̃T (t)θ̃(t) into V̇1(t), further utilizing ξ(t) =

θ̃r0 − θ̃e0 − θ̃(t) = 0 yields:

V̇1(t) =[−(e(0∼n−1))TPBHT +
˙̃
θT (t)]θ̃(t)−

µ

2
θ̃T (t)θ̃(t) +

µ

2
θ̃T (t)θ̃(t) + (µ+ 1)ξT (t)θ̃(t)

=[−(e(0∼n−1))TPBHT +
˙̃
θTr0(t)− ˙̃

θTe0(t)]θ̃(t)−
µ

2
θ̃T (t)θ̃(t) +

µ

2
θ̃T (t)θ̃(t)

+ (µ+ 1)(θ̃Tr0(t)− θ̃Te0(t)− θ̃T (t))θ̃(t)

=[−(e(0∼n−1))TPBHT − ˙̃
θTe0(t)− (µ+ 1)θ̃Te0(t)]θ̃(t) +

˙̃
θTr0(t)θ̃(t)−

µ

2
θ̃T (t)θ̃(t) +

µ

2
θ̃T (t)θ̃(t)

+ (µ+ 1)(θ̃Tr0(t)− θ̃T (t))θ̃(t). (A4)

Therefore, using the adaptive control law (6) and Assumption 2, we have

V̇1(t) =
˙̃
θTr0(t)θ̃(t)−

µ+ 2

2
θ̃T (t)θ̃(t) + (µ+ 1)θ̃Tr0(t)θ̃(t)−

µ

2
θ̃T (t)θ̃(t)

6
1

2
‖ ˙̃
θr0(t)‖‖θ̃(t)‖ −

µ+ 2

2
‖θ̃(t)‖2 +

(µ+ 1)

2
‖θ̃r0(t)‖‖θ̃(t)‖ −

µ

2
θ̃T (t)θ̃(t)

6
1

2
[δ2

1 + ‖θ̃(t)‖2 + (µ+ 1)(δ2
0 + ‖θ̃(t))‖2)]−

µ+ 2

2
‖θ̃(t)‖2 −

µ

2
θ̃T (t)θ̃(t)

6
1

2
[δ2

1 + (µ+ 1)δ2
0 ]−

µ

2
θ̃T (t)θ̃(t). (A5)

Here, the following inequality holds:

V̇2(t) =(e(0∼n−1))TPB[−W̃T (t)S(z(0∼n−1))− ε∗(z(0∼n−1))]− tr[W̃T (t)
˙̂
W (t)]

=− (e(0∼n−1))TPBε∗(z(0∼n−1)) + σ1tr[W̃T (t)(W ∗ − W̃ (t))]

6
1

2σ2
(e(0∼n−1))T e(0∼n−1) +

σ2

2
‖PB‖2 +

σ2ε̄

2
+ σ1tr(

W ∗TW ∗

2
)−

σ1

2
tr(W̃T W̃ ), (A6)

where σ2 is an adjusted parameter. Note that in the property of hyperbolic tangent function, the following equality holds:

0 6| % | −%tanh(
%

ε
) 6 0.2785ε,

where ε > 0 and % ∈ R. We can get

V̇3(t) =− (e(0∼n−1))TPB{λ(t)Lm+ Lm̄tanh
LTBTPe(0∼n−1)m̄

ε
}

6 | (e(0∼n−1))TPBLm̄ | −(e(0∼n−1))TPBLm̄tanh
LTBTPe(0∼n−1)m̄

ε

60.2785ε. (A7)

Combining the above results (A1)-(A7) yields:

V̇ (t) 6−
µ

2
(e(0∼n−1))TPe(0∼n−1) +

1

2
[δ2

1 + (µ+ 1)δ2
0 ]−

µ

2
θ̃T (t)θ̃(t)

+
1

2σ2
(e(0∼n−1))T e(0∼n−1) +

σ2

2
‖PB‖2 +

σ2ε̄

2
+ σ1tr(

W ∗TW ∗

2
)−

σ1

2
tr(W̃T W̃ ) + 0.2785ε

6− βV (t) + C, (A8)

where β = min
{
µ− 1

σ2λmax(P )
, σ1

}
, C = 1

2
[δ2

1 + (µ+ 1)δ2
0 ] + σ2

2
‖PB‖2 + σ2ε̄

2
+σ1tr(W

∗TW∗

2
). To ensure β > 0, we chose

µ− 1
σ2λmax(P )

> 0 when designing the parameters.

From inequality (A8) and the Lyapunov stability, it was verified that the tracking error of the closed-loop system is

uniformly ultimately bounded, which indicated that the tracking error ultimately converges to nearly zero.

In the following, we will verify that the proposed event-triggered mechanism is Zeno-free. Recalling ξ(t) = ω(t)−u(t) for

t ∈ [tk, tk+1), we have:
d|ξ|
dt

= d
dt

(ξ ∗ ξ)
1
2 = sign(ξ)ξ 6 |ω̇|. Noting that f(·), H(·), and L(·) have the first-order continuous

partial derivatives, we find that ω̇ is continuous. Additionally, because all signals of the closed-loop system are bounded,

there must exist a positive constant, κ, such that |ω̇| 6 κ. By noting that ξ(tk) = 0 and limξ(t)t→tk+1 = m, we obtain the

lower boundaries of inter-execution intervals t∗, which must satisfy t∗ > m/κ > 0. Therefore, Zeno behavior is avoided.
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Figure B1 Responses of z, ż and z̈.
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Figure B2 Tracking responses.
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Figure B3 Trajectory of u.

Appendix B Simulation Studies

In this section, two examples are used to verify the effectiveness of the proposed method.

Example 1. In this example, we consider the following system:


ẋ1 = θx2

1 + x2

ẋ2 = x3

ẋ3 = u

, (B1)

which was presented in [2]. Duan [3] converted the parameter θ into a time-varying parameter. Therefore, the following

form is presented:

z(3) = 2(ż2 + zz̈)θ(t) + ∆f(z(0∼2)) + Lu(t), (B2)

where θ(t) = 2 + 0.2sin(0.1t), ∆f(z(0∼2)) = 0.01(3z2 + 2zż + 98), and L = 1. The initial values are arranged as

[z, ż, z̈, θ̂(0), θ0(t),
˙̂
θ(0)] = [3, 1, 2,−1, 1, 2]. Based on [4], to make the matrix Λ(k(0∼2)) have the eigenvalues −a ± jb

and −c, we chose a = 2, b = 1, c = 4 for K = [c(a2 + b2), a2 + 2ca+ b2, 2a+ c]T . After combining this with Lemma 1 and

the aforementioned conditions, the parameter vector K and the positive definite symmetric matrix P were chosen as

K =


20

21

8

 , P =


18.3235 9.6176 0.9412

9.6176 8.5662 0.8897

0.9412 0.8897 0.1985

 .
In addition, other parameters were selected as µ = 2, σ = 0.01, ε = 0.01, m = 2, m̄ = 2.5, and yd(t) = sin(t). The

simulation results are shown in Figures B1, B2, and B3, which illustrate the effectiveness of the controller scheme proposed

in this article. Figure B2 shows the trajectory of tracking responses, which demonstrates that the proposed method has good

tracking performance. Figure B3 displays the trajectory of the controller, in which event-triggered strategy is significant in

practical production, especially in energy conservation.

Example 2. In this example, the RLC circuit system was used to verify the effectiveness of the proposed method. Based

on the Kirchhoff’s Law of Voltage and Current, the RLC circuit can be modeled as

LCẍ+ ∆(x, ẋ) +RCẋ = u,

where x = ucV, ẋ = duc
dt

V/t, ẍ = d2uc
dt2

V/t2, u = urV. Other parameters were chosen as L = 0.5H, C = 1F, R = 0.5Ω,

∆(x, ẋ) = −(0.25sin(x2) + 0.5ẋ2). The above expression can be transferred into the following HOFA form:

z̈ = f(z(0∼1)(t)) + ∆f(z(0∼1)(t)) +HT (z(0∼1)(t))θ(t) + L(z(0∼1)(t))u(t),

where f(z(0∼1)(t)) = −2ż, ∆f(z(0∼1)(t)) = 0.5sin(z2) + ż2, H(z(0∼1)(t)) = 2z, θ(t) = 1, L(z(0∼1)(t)) = 2. The objective

of this example is for all signals of the closed-loop system to approach zero. Therefore, we set the desired output as yd = 0.

The initial values were arranged as [z, ż, θ̂(0), θ0(t),
˙̂
θ(0)] = [20,−3,−1, 1, 0]. Figure B4 shows the triggering times, from

which it is apparent that the controller is triggered at different times. The state responses are shown in Figure B5, which

shows that all signals of the closed-loop system approach zero. Figure B6 shows that the parameter estimation error θ̃

converges to zero, which reflects the good performance of the proposed method.

This simulation was run on a version of MATLAB R2018b with Simulink 9.2. Based on the program tic-operation-toc, the

time required for the code’s execution was obtained as 1.1 s and 11.8 s based on an asymmetric tan-type barrier Lyapunov

function in [5], respectively. In contrast, the method based on the HOFA significantly reduces the computational burden.
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Figure B4 Trigger times.
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Figure B5 Responses of z, ż.
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Figure B6 Trajectory of θ̃.
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