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Appendix A Related Work
Appendix A.1 Efficient Convolution Algorithms

Efficient convolution algorithms have been developed to improve the computational complexity of convolutional operations.
The Winograd algorithm [11] and fast Fourier transform (FFT) [12] are two particularly prominent algorithms for acceler-
ating CNNs. Pioneering work [2, 13] established FFT’s potential as a computational kernel, which successfully accelerated
deep neural networks. Furthering the contributions of Winograd’s minimal filtering algorithm [11], Lavin et al. [1] adapted
it for 2D CNNs, resulting in significant acceleration and superior performance over FFT for small convolutions. The Wino-
grad algorithm was further extended by Wang et al. [14] to accelerate the inference of 3D CNNs. The effectiveness of the
Winograd convolution is also evidenced by its integration into mainstream acceleration frameworks. Despite their ability
to accelerate computations, these fast convolution algorithms inherently do not reduce the model size or parameter count,
offering no storage savings.

Network pruning represents a technique orthogonal to efficient convolution algorithms. To further reduce computational
demands, efficient convolution algorithms combined with network pruning could be considered. This approach integrates
the computational efficiencies of algorithms like the Winograd algorithm with the model-size reduction benefits of network
pruning, promising not only faster but also more compact neural network models.

Appendix A.2 Spatial-Domain Pruning

Spatial-domain pruning is the practice of removing parameters from an existing network. It may entail removing individual
parameters, a.k.a. weight pruning, or parameters in groups such as filter pruning and block pruning. For weight pruning,
individual weights are measured by a certain criterion such as weight magnitude [3, 9, 15], higher-order information [8, 16–
18], and so on. These methods are demonstrated to well preserve model performance. However, the resulting irregular
sparse matrix requires specialized hardware/libraries to achieve practical speedups. For filter pruning, the entire filters are
removed by standards such as ℓ1/ℓ2-norm [19–21], activation sparsity [22], lasso regression-based channel selection [23],
and rank of feature maps [24]. In contrast to weight pruning, filter pruning advantages in acceleration but causes more
performance drops. Therefore, block pruning, where a block of weights is removed simultaneously, has received recent
research focus [10, 25] for its better performance than filter pruning as well as hardware-friendly deployment than weight
pruning.

However, vanilla spatial pruning methods cannot be directly combined with the Winograd convolution because the
Winograd transformation diminishes the sparsity obtained by pruning [7]. To tackle this problem, some studies performed
pruning operations directly in the Winograd domain to avoid the influence of Winograd kernel transformation.

Appendix A.3 Winograd-Domain Pruning

Though vanilla spatial pruning fails to cooperate with the Winograd convolution, its main pruning principles have been
extended to remove parameters in the Winograd domain. Liu et al. [26] removed Winograd-domain kernels, meanwhile, they
retained kernels from the original network. However, dimension inconsistency arises since the Winograd-domain kernels
are of a higher dimension than the spatial-domain kernels. Li et al. [5] introduced Winograd layers in exchange for the
standard convolutional layers. The pruning and training are simultaneously conducted in the Winograd layers. Thus, the
dimension inconsistency issue is eliminated and the sparsity in Winograd domain also increases. Liu et al. [6] introduced
the ReLU operation to the Winograd domain to derive sparse transformed activations. It improves the possibility of sparse
element-wise products in the Winograd domain. Yu et al. [7] specified that different locations of the Winograd layers
contribute differently to the output activations. Despite the progress, these studies lead to hardware-unfriendly irregular
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sparse patterns, causing imbalanced workloads among the data flows. To leverage the multiplication reduction from sparsity,
some methods [27,28] devised sparse patterns that benefit more from speedups on specialized hardware.

Despite these efforts to optimize Winograd-domain pruning for 2D CNNs, extending these methods to 3D CNNs intro-
duces substantial challenges. Firstly, 3D Winograd transformation causes considerable parameter increase. Taking F(2,
3)-based Winograd algorithm as an example, a typical 3D convolutional kernel of shape 3 × 3 × 3 is often replaced by a
4 × 4 × 4 Winograd kernel, leading to 2.37× more parameters while it is only 1.78× for 2D case. More parameters from
Winograd transformation do not always benefit model capacity but cause model redundancy. Also, the increase in trainable
parameters poses a serious challenge to the cost of resources. Secondly, existing methods fail to accelerate Winograd trans-
formation while conducting pruning in the Winograd domain. Similar to the weight pruning [3,8,9], prior implementations
derive irregular sparse weight matrices, which received very limited speed gains since the irregularity barely takes advantage
of vector processing architectures such as single instruction multiple data (SIMD), and poorly utilizes memory buses [10].

In light of these challenges, our study introduces a novel approach that significantly reduces the quantity of training
parameters introduced by the Winograd transformation, while also proposing an acceleration-friendly sparse pattern for
the Winograd model. Our method integrates the Winograd algorithm with network pruning, substantially reducing model
computational demands and achieving tangible accelerations.

Appendix B Preliminaries
We first introduce some necessary preliminaries of the Winograd transformation for 3D CNNs. Consider a 3D convolution
involving a kernel G ∈ RCo×Ci×rd×rh×rw and a 4D input data I ∈ RCi×Di×Hi×Wi , where Co and Ci represent the output
and input channels, (rd, rh, rw) forms the kernel size and Di, Hi, Wi correspond to the depth, height, and width of the
input I. This operation generates an output feature map O ∈ RCo×Do×Ho×Wo , where Do, Ho, and Wo represent the
depth, height, and width of O, respectively.

The above 3D convolution can be decomposed into several basic convolutions and optimized using the 3D Winograd
algorithm [14]. The input data I is disassembled into overlapping tiles I1, I2, ..., where each tile Ik ∈ RCi×td×th×tw is a
sub-matrix of I. Each tile It is convoluted with G, yielding a basic output tile Ot ∈ RCo×md×mh×mw that is a sub-matrix
of O. Any two output tiles Ok and Os are non-overlapping, and the output feature map O can be obtained by reassembling
the output tiles in order. Notice in what follows, we introduce r = rd = rh = rw and t = td = th = tw for brevity since
current networks often have a uniform kernel size such as 3×3×3 across different dimensions, and also the basic output tile
is characterized with m = md = mh = mw. We denote the disassembled O, I as Õ ∈ RT ×Co×m×m×m, Ĩ ∈ RT ×Ci×t×t×t,
where T = DiHiWi/t3 is the number of disassembled tiles. For computational efficiency, the 3D Winograd transformation
is applied to optimize the convolution operation as follows:

Õ(k, n, :, :, :) = TO

( Ci−1∑
c=0

TK

(
G(n, c, :, :, :)

)
⊙ TI(Ĩ(k, c, :, :, :)

)
, (B1)

where ⊙ denotes the element-wise product. In Eq.(B1), the kernel G(n, c, :, :, :) and input tiles Ĩ(k, c, :, :, :) are transformed
into the Winograd domain of the same shape using the Winograd kernel transformation TK(x) = (KxKT )RKT and the
Winograd input transformation TI(x) = (BT xB)RB, respectively. The Winograd-domain kernel and input tiles are then
multiplied in an element-wise manner, the results of which are transformed back to the spatial domain using the Winograd
output transformation TO(x) =

(
(AT xA)RA

)R
. Here, (·)R notation denotes clockwise dimension rotation; K, B, and A

are transformation matrices determined by F (m×m×m, r×r×r). A thorough comprehension of Winograd transformation
and the specific formats for transformation matrices can be referred to Lavin et al. [1] and Wang et al. [14].

In this study, we extend the concept of Winograd layer [5] to 3D. Specifically, we introduce a Winograd-domain weight
GW ∈ RCo×Ci×t×t×t and initialize it with TK(G) to replace original Winograd kernel transformation. In this way, we can
reduce the huge computational cost in 3D Winograd transformation by sparsifying the GW (i.e., performing sparse train-
ing). In the following, we refer to the model with Winograd layers as the Winograd model and the one with convolutional
layers as the spatial model for short.

Appendix C Proposed Method
Appendix C.1 Low-Rank Winograd Transformation

The sparse training process of the Winograd model follows a two-step pipeline similar to the spatial model: (1) pruning
unimportant weights and (2) retraining the model to restore its accuracy. However, the 3D Winograd layer will introduce a
greater number of parameters for training compared to the 1D&2D counterparts, presenting significant challenges for sparse
training. To solve this, we first propose a low-rank Winograd transformation to reduce the number of trainable parameters
in the 3D Winograd layer.

For a better illustration, we first rearrange the Winograd kernel GW ∈ RCo×Ci×t××t, the input tiles Ĩ ∈ RT ×Ci×t×t×t,
and the output tiles Õ ∈ RT ×Co×m×m×m into 2D matrices GW ∈ RCoCi×t3 , Ĩ ∈ RT Ci×t3 , and Õ ∈ RT Co×m3 accordingly.
After rearrangement, the Winograd transformations can be expressed as matrix multiplications: TK(x) = xTK ,TI(x) =
xTI , and TO(x) = xTO, where TK ∈ Rr3×t3 , TI ∈ Rt3×t3 , and TO ∈ Rt3×m3 are rearranged transformation matrices1).

1) A comprehensive derivation of rearranged transformation matrices TK , TI , and TO is available in Appendix E.
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Figure C1 Singular value analysis. (a) Cumulative proportion of singular values of GW . GW is extracted from the last Winograd
layer of R3D-18 and C3D. (b) Ratio of singular value changes post/pre Winograd transformation for the r3 largest values. The
GW is obtained through the Winograd transformation of G, which is randomly initialized with different channel sizes.

The forward process of the rearranged 3D Winograd layer is defined as:

Õ =
(

GW ⊙̃V
)

TO. (C1)

For simplicity in description, we denote the result of Winograd input transformation ĨTI as V and use ⊙̃ to represent
the consecutive operations of element-wise product and summation over the output channel in Eq. (B1). The rearranged
Winograd-domain weight matrix GW is directly inherited from the rearranged pre-trained spatial-domain weight matrix
G ∈ RCoCi×m3 transformed into the Winograd domain, i.e., GW = GTK . To this end, the problem of pruning the 3D
Winograd layer is converted into a task of sparsifying the weight matrix GW .

To better guide the sparsifying process, we first conduct redundancy analysis on GW using singular value decomposition
(SVD). The terms in GW occupy a t3-dimensional subspace where it can be determined as GW =

∑t3−1
i=0 σiu⃗iv⃗i

T , where
u⃗i, v⃗i and σi represent the left, right singular vectors and the i-th largest singular value, respectively. The singular value
analysis is further illustrated in Fig. C1.

In Fig. C1(a), we observe that the cumulative proportion of the first r3 (r3 = 27 in Fig. C1) singular values of GW

nearly encompasses the total sum of the singular values. Specifically, the first half within r3 holds the majority of this
cumulative proportion, which indicates that significant information is primarily concentrated in the subspace of the first
half. Fig. C1(b) further shows that after Winograd kernel transformation, the leading singular values are amplified, while
the trailing ones are diminished in the first r3 singular values, indicating a shift in the importance of subspaces towards the
head. These observations underscore the effects of over-parameterized weights in the Winograd domain, suggesting that
training within the full domain is unnecessary and weight updates should concentrate along the principal directions within
the entire Winograd space.

Given the pre-trained Winograd-domain weight GW , we denote the fine-tuned weight as GW + ∆GW , where △GW ∈
RCoCi×t3 denotes the updates from the GW to the eventual fine-tuned ḠW . Recent studies [29,30] showed that the update
∆GW is supposed to have a low “intrinsic rank” if the pre-trained weight GW is over-parameterized. In light of this, we
freeze the pre-trained dense Winograd weight GW first and then achieve low-rank update ∆GW by a low-rank decomposition
∆GW = GrGc where Gr ∈ RCoCi×s and Gc ∈ Rs×t3 (s ≪ t3). Therefore, our low-rank Winograd transformation can be
finally described as:

Õ =
(

(GW + GrGc)⊙̃V
)

TO. (C2)

During sparse training, we freeze GW , and only update Gr and Gc. In this fashion, the amount of trainable parameters
is reduced from CoCit

3 to CoCis + st3 in the Winograd domain. To enhance the training efficiency of Gr and Gc, and put
the focus on the primary direction of GW , we initialize Gr by Gr(:, i) = ασiu⃗i and Gc by Gc(i, :) = v⃗i

T , where α is a scalar
hyper-parameter that controls the amplitude of the update and is set to 0.1.

Appendix C.2 Low-Rank Oriented Sparse Granularity
The above low-rank Winograd transformation has significantly reduced the trainable parameters. Furthermore, we introduce
the notion of low-rank oriented sparsity to decrease the computation cost resulting from the element-wise product during
inference. By virtue of the transformation in Eq. (C2), the element-wise products can be reduced if most elements in the
resulting GW + GrGc are zeros. Li et al. [5] imposed a sparse constraint upon GW given that only GW is involved in
the element-wise product of Eq. (C1). However, sparse constraints often cause irregular weight matrices that receive little
acceleration, a scenario which prevents the practicality of our settings in Eq. (C2). Instead, we propose the notion of low-
rank oriented sparsity to obtain effectual speedups. Our motivation mainly stems from the work of Yu et al. [7] where the
measurement of the element importance of 2D Winograd kernel using a score matrix and removal of low-scoring weights
can lead to distinct sparsity at different locations. We also intend to measure the weight importance but in a more regular
way. For ease of presentation, we denote our dense 3D Winograd weight as GW + GrGc = [α1, α2, ..., αt3 ] ∈ RCoCi×t3
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where each column αi ∈ RCoCi×1. Our sparse granularity consists of a single column location in GW + GrGc. In other
words, pruning based on column locations results in removing the entire column elements.

Specifically, the process of sparse training to achieve low-rank oriented sparsity consists of two stages: location scoring and
weight retraining. The aim of these stages is to filter out pruned target column locations and to recover the pruned model
performance, respectively. In the former stage, we freeze the Winograd parameter GW and initialize trainable parameters
Gr and Gc as introduced in Sec. Appendix C.1. Then, we introduce a score sequence S ∈ Rt3 , which is initialized with
zeros, to evaluate location importance. Alike to Taylor pruning [38], we opt to accumulate the location magnitude and
gradient in each training iteration to update the values of S:

St =St−1 +
1

C2
i C2

o

( CiCo−1∑
u=0

|GW + GrGc|t−1 (u, :)
)

⊙
( CiCo−1∑

v=0

|
∂L

∂Gr

∂L
∂Gc

|t−1(v, :)
)

, (C3)

where the superscript t denotes the training iteration. Here, no additional parameters are introduced while determining
S. With the score sequence S, we can finally derive a location set P = {p1, p2, ..., pl} that contains locations whose scores
within the top-l largest, leading to a sparsity rate of (t3 − l)/t3. Then, we can obtain a binary mask M ∈ Rt3 as:

M(i) =
{

1, i ∈ P,

0, Otherwise.
(C4)

The location scoring stage feeds back a fixed binary mask M . In the retraining stage, M is applied to remove low-scoring
column locations and we only need to fine-tune the trainable parameters Gr and Gc in the pruned model. Therefore, the
computation of input tiles becomes:

Õ =
((

(GW + GrGc) ⊙ M
)

⊙̃V

)
TO. (C5)

After retraining, GW is finally updated by GW = (GW + GrGc) ⊙ M = [⃗0, αp1 , 0⃗, αp2 , · · · , αpl , 0⃗], where 0⃗, αp represent
the pruned column and the reserved important column, respectively. Unlike Taylor pruning, which targets entire filters,
our method prunes units based on specific positions within Winograd kernels, applying a consistent pruning pattern across
corresponding positions in all kernels, thereby achieving a more regularized form of sparsity. Fig. 1(b) in the main article
gives an illustrative example of the sparse training process of our method.

Appendix C.3 Inference Speedup and Compression Mechanism

Unlike the irregular sparse patterns of previous studies [5–7], the proposed low-rank oriented sparse granularity removes
the entire column elements. Therefore, it can functionally support practical speedups in inference by performing multipli-
cation operations on non-zero columns in the implementation. The pruned model can be easily compressed by storing the
corresponding reserved columns. We illustrate the inference process after applying the low-rank oriented sparse granularity
in Fig. 1(c) of the letter article, detailing the process as follows.

Similar to GW , the transformed input tiles can be represented as t3 columns: V = [β1, β2, ..., βt3 ], where βi ∈ RT Ci×1,
and output transformation matrix can be represented as t3 rows: TO = [ξ1; ξ2; ...; ξt3 ] where ξi ∈ R1×m3 . Based on
Eq. (C1), the output can be given as:

Õ =
(

[⃗0, αp1 , 0⃗, αp2 , · · · , αpl , 0⃗]⊙̃V
)

TO

= (αp1 ⊙̃βp1 )ξp1 + (αp2 ⊙̃βp2 )ξp2 + · · · + (αpl ⊙̃βpl )ξpl

= (ḠW ⊙̃V̄ )T̄O.

(C6)

Recall that P = {p1, p2, ..., pl} contains column locations with their scores within the top-l largest. Therefore, in the
inference stage, we only need to store a compact Winograd weight ḠW = [αp1 , αp2 , ..., αpl ] ∈ RCoCi×l as well as the location
set P to extract the columns V̄ = [βp1 , βp2 , ..., βpl ] ∈ V and rows in T̄O = [ξp1 ; ξp2 ; ...; ξpl ] ∈ TO which are operated with
the corresponding columns in GW . The cost of data extraction is negligible compared to the large percentage of reduction
on element-wise products, i.e., (l/t3). We follow the steps in 3D ResNet [32] and C3D [33] to generate training samples
with 16-frame length, which are cropped to 112 × 112. For R3D and C3D, we replace all the 3D convolutional layers with
3 × 3 × 3 kernels and a stride of 1 (except the first layer) with 3D Winograd layers (t = 4) and prune on 3D Winograd layers
with our proposed low-rank Winograd transformation. The sparsity of 3D Winograd layers is defined as (t3 − l)/t3, where
l denotes the number of remaining columns after pruning. The training epochs are set to 50, of which the first 2 epochs are
used for location scoring and the remaining ones are used for weight retraining. The initial learning rate is 1e-4 for C3D
and 5e-4 for R3D during location scoring and is divided by 10 for every 15 epochs during weight retraining. Stochastic
gradient descent (SGD) serves as the optimizer and cross-entropy loss is adopted.
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Table D1 Results of different pruning methods on UCF101, where * denotes our re-implementation and LR represents low-rank
Winograd transformation, respectively. The experiment is conducted using C3D (baseline accuracy 81.6%) and R3D-18 (baseline
accuracy 83.5%) and the speedup ratio is computed by GFLOPs reduction.

Model Methods Speedup Accuracy(%)↓

C3D

FP* [38] 1.6× 1.6
FP* [38] 3.7× 10.1
DPR [39] 2.0× 3.3
DPR [39] 4.0× 6.6
RT3D [25] 2.6× 1.0
RT3D [25] 3.6× 1.4
MRP [40] 3.8× 0.4
MRP [40] 4.3× 1.1

Ours (w/o LR) 4.3× 0.8
Ours (w LR) 4.3× 0.6

Ours (w/o LR) 5.8× 1.3
Ours (w LR) 5.8× 0.9

R3D-18

FP* [38] 1.6× 2.6
FP* [38] 4.0× 8.5

DPR* [39] 2.0× 3.4
DPR* [39] 4.0× 5.0
MRP [40] 3.2× 0.1
MRP [40] 3.8× 1.2

Ours (w/o LR) 4.3× 0.2
Ours (w LR) 4.3× 0.1

Ours (w/o LR) 5.0× 0.7
Ours (w LR) 5.0× 0.5

Table D2 Results of different pruning patterns on UCF101 and HMDB51 datasets. The experiment is conducted using R3D-18
and R3D-34.

Model Pruning Domain Sparsity Regularity Pruning Pattern
Accuracy (%)↓

UCF101 HMDB51

R3D-18
Spatial

- - - - (83.5%) - (55.5%)
0.40 Irregular Weight 0.2 0.1
0.40 Regular Filter 2.6 2.6
0.75 Irregular Weight 0.7 0.2
0.75 Regular Filter 8.5 9.6

Winograd
0.40 Regular Ours 0.2 0.1
0.75 Regular Ours 2.9 3.6

R3D-34
Spatial

- - - - (85.6%) - (57.0%)
0.40 Irregular Weight 0.3 0.1
0.40 Regular Filter 3.2 3.3
0.75 Irregular Weight 0.8 0.4
0.75 Regular Filter 9.2 10.6

Winograd
0.40 Regular Ours 0.4 0.1
0.75 Regular Ours 1.9 4.2

Appendix D Experiments
Appendix D.1 Experimental Setup

Our methodology is applied on 3D CNN models including 3D ResNet [32] (denoted as R3D) and C3D [33], which consist of
plentiful 3D convolution layers with 3 × 3 × 3 kernels and a stride of 1. We use pre-trained R3D and C3D on the Kinetics
dataset [34] and Sports-1M dataset [35] and fine-tune upon the UCF101 [36] and HMDB51 [37] datasets, results of which
serve as the dense models.

Appendix D.2 Result Analysis

Pruning Performance. We compare the proposed method with state-of-art methods of pruning 3D CNNs in the different
domains, such as FP (Filter Pruning) with Taylor-FO [38], RT3D (Group Pruning) [25], DPR (Stripe Pruning) [39] in
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Figure D1 Results of R3D-18 and R3D-34 pruned with our proposed low-rank oriented sparse granularity under different sparsity
levels. Experiments are conducted on UCF101(left) and HMDB51(right).

Table D3 Inference latency among different strategies. The experiment is conducted using C3D on a Redmi Note 10 mobile
phone equipped with MediaTek 700 CPUs.

Acceleration Strategy Sparsity Accuracy(%) CPU(ms) Acceleration Ratio

Img2col - 81.6 2970 -

Winograd - 81.6 1211 2.5×

MRP
0.5 80.0 915 3.3×
0.7 79.4 934 3.2×

Ours

0.0 81.6 1144 2.6×
0.3 81.0 873 3.4×
0.5 80.7 789 3.8×
0.7 79.8 715 4.2×
0.9 70.6 594 5.0×

the spatial domain, and MRP [40] in the Winograd domain. Table D1 displays their results. As can be seen, compared
with pruning in the Winograd domain, spatial-domain pruning methods suffer the most performance degradation while
achieving the same or even lower speedups. In contrast, our proposed Winograd-domain pruning pattern achieves the
highest speedup ratio and even obtains the highest accuracy for both C3D and R3D-18. For example, when pruning C3D,
our method achieves 5.8× speedups with an accuracy loss of 0.9% while MRP achieves 4.3× speedups with an accuracy
loss of 1.1%, and RT3D achieves only 3.6× speedups with an accuracy loss of 1.4%. Similarly, our method also outperforms
other methods by a large margin when pruning R3D-18. In addition, employing low-rank transformation in sparse training
enhances the performance of the sparse models on both C3D and R3D-18 architectures, which emphasizes the effectiveness
of the low-rank transformation.

We extend our comparison to include various pruning patterns and employ the same metrics as the baselines to evaluate
the significance of different granularity units. The results are shown in Table D2. Due to the fine granularity of weight
pruning, it achieves optimal performance. However, weight pruning leads to irregular sparse weights, which complicates
achieving practical acceleration, especially on mobile devices. On the other hand, while filter pruning maintains regular
granularity, it incurs significant performance penalties. In contrast, our method finds a middle ground: at a sparsity level of
0.40, it achieves performance comparable to weight pruning. Furthermore, it consistently outperforms filter pruning across
all sparsity levels. The regularized granularity of our pruning approach not only enables practical acceleration but also
provides a superior balance between performance and usability.

To further investigate the effect of sparsity in our proposed method, we evaluate low-rank oriented sparse granularity
on R3D-18 and R3D-34 on UCF101 and HMDB51 datasets. Fig. D1 demonstrates the performance results of R3D-18 and
R3D-34 under different sparsity ratios. As can be seen, our method is capable of maintaining performance drops within
1% when the sparsity ratio < 0.5. However, due to the extremely regular sparse granularity of our pruning pattern, our
method degrades drastically if the sparsity ratio > 0.8.

Acceleration Performance. The acceleration capacity of our proposed method is evaluated on CPUs-based platforms.
We first compare our proposed method against both Img2col and Winograd algorithms, which are commonly employed to
accelerate convolutional operations. Additionally, we contrast the proposed approach with MRP [40], as it bears the closest
resemblance. For a fair comparison, the inference code for our method and the compared methods are all implemented based
on the mobile inference framework of Tencent ncnn2) and optimized by advanced SIMD (Single Instruction, Multiple Data).
We respectively deploy C3D with different acceleration methods to obtain the end-to-end network inference latency on the
Redmi Note10 platform. Table D3 highlights the impressive speed gains achieved by the proposed method. In comparison

2) https://github.com/Tencent/ncnn.

https://github.com/Tencent/ncnn
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Figure D2 Comparison of the inference latency in Winograd domain between our low-rank Winograd convolution and dense
Winograd convolution. The experiment is conducted using different layers of C3D on a Redmi Note 10 mobile phone equipped with
a MediaTek 700 CPU (left), and the computing platform of RK3568 equipped with Cortex-A55 CPUs (right).

Table D4 Results of sparse models (pruned in the proposed sparse pattern) trained without and with low-rank Winograd trans-
formation. The experiments are conducted using R3D-18 pruned with different sparsity levels on UCF101.

Trainable Parameter (Mb) Memory Overhead (Mb)
Sparsity

0.1 0.3 0.5 0.7 0.9

w/o Low-rank 170.0 732.6 83.3 83.3 82.9 80.7 73.4
w Low-rank 28.6 348.0 83.4 83.4 83.1 80.7 73.3

to Img2col, the Winograd algorithm [14] significantly reduces multiplications, achieving a 2.5× speedup. Besides, our
approach further minimizes inference latency, attaining around 3.4× and 5.0× acceleration ratios at sparsity levels of 0.3
and 0.9, respectively. In contrast to MRP, our method offers enhanced performance due to our optimization which addresses
redundancies in the 3D Winograd layers and allows integration of the advanced sparse training and granularity.

For Winograd convolution, the element-wise products in the Winograd domain occupy a vast majority of the inference
time. The core acceleration mechanism of our method is to reduce a large number of operations in the Winograd domain by
pruning Winograd-domain weights. Due to our proposed regular sparse pattern, extracting the corresponding arithmetic
data only introduces a very small amount of overhead which makes sure that the sparsity obtained by pruning can be
converted into actual speedups. Fig. D2 manifests the Winograd-domain inference latency of our method and its dense
Winograd counterpart. As can be seen from the table, our proposed pruning pattern effectively translates the sparsity into
actual speedups in the Winograd domain across different layers of C3D.

Reduction of Trainable Parameters and Memory Overhead. One of the major advantages of our low-rank
Winograd transformation is that its space-efficient matrices significantly reduce both trainable parameters and memory
overhead during pruning in the Winograd domain. Additionally, our low-rank Winograd transformation enhances the
model’s performance after pruning by eliminating redundant training parameters. Table D4 compares the results for pruning
R3D-18 in our proposed sparse pattern with and without low-rank Winograd transformation on the UCF101 dataset. As
can be observed, low-rank Winograd transformation offers a reduction factor of 5.94× w.r.t. trainable parameters and 2.11×
w.r.t. memory overhead while achieving better performance when sparsity < 0.7. In the case of a large proportion (sparsity
> 0.7) of redundant parameters pruned in the Winograd domain, low-rank Winograd transformation can still achieve
nearly the same performance as the full Winograd-domain parameters. Results in Table D4 well validate the effectiveness
of low-rank Winograd transformation for pruning the redundant Winograd-domain parameters and reducing the space
requirement.

Appendix D.3 Ablation Study

Rank Selection. To further explore the effect of ranks on low-rank Winograd transformation, we have tried different
settings of rank s for Gr and Gc. For R3D, we set ranks based on different blocks, and for C3D, we set ranks based on
different layers. Specifically, for a rank set S = {s1, · · · , sl}, si denotes the concrete rank for i-th Winograd layer or i-th
block containing Winograd layer and l denotes the total number of Winograd layers/blocks. Table D5 shows the effect
of rank setting. As can be observed from the displayed table, a modest increase in ranks will improve the performance
of low-rank Winograd transformation and deeper layers tend to require larger ranks than shallow layers. Considering the
overall effect, we finally choose S = {2, 4, 8, 12} for R3D model and S = {1, 1, 2, 4, 8, 12, 12} for C3D model to perform our
experiments in this study.

Metric of Location Importance. In the stage of location scoring, the score sequence S updated by different metrics
will produce different pruned columns, result of which greatly affects the performance of the sparse model. We compare
several different metrics on C3D and R3D-18 models in Table D6. The results show that when selecting pruned columns,
gradient-based score (Sgrad) has a greater impact on the assessment of selecting locations than magnitude-based score
(|GW | and |GrGc|), while the combination of the two gives the best results.
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Table D5 Comparison of performance on R3D-18 and C3D pruned with different rank settings (with sparsity = 0.75), where ⋆

denotes our chosen rank setting. The experiment is conducted on UCF101.

Model Rank Setting Trainable Parameters Accuracy (%)

R3D-18

{2,2,2,2} 5.3M 80.0
{8,8,8,8} 21.3M 80.4

{12,12,12,12} 31.9M 80.4
{12,8,4,2} 7.4M 80.2

{2,4,8,12}⋆ 28.6M 80.6

C3D

{2,2,2,2,2,2,2} 7.8M 78.2
{8,8,8,8,8,8,8} 31.3M 78.4

{12,12,12,12,12,12,12} 46.9M 79.3
{12,12,8,4,2,1,1} 9.9M 77.9

{1,1,2,4,8,12,12}⋆ 34.7M 79.3

Table D6 Comparison of performance on R3D-18 and C3D pruned with different indicators of location importance (with sparsity
= 0.75), where Sgrad = ∂L

∂Gr
∂L

∂Gc
and ⋆ denotes our chosen indicator. The experiment is conducted on UCF101.

Model
Metric

|GrGc| |GW + GrGc| |Sgrad| |GrGc| ⊙ |Sgrad| |GW + GrGc| ⊙ |Sgrad|⋆

C3D 74.5 76.6 78.5 78.4 79.2
R3D-18 73.6 76.9 79.8 80.4 80.6

Appendix D.4 Effectiveness of the low-rank Winograd transformation

We further evaluate the effectiveness of the low-rank Winograd transformation during dense training and analyze its validity.
Low-Rank Winograd Transformation for Dense Training. We conduct experiments to evaluate the performance

of low-rank transformation for dense training. The experiment is conducted by pre-training R3D and C3D on the Kinetics
dataset [34] and Sports-1M dataset [35], and fine-tuning upon the UCF101 via different training methods. We compare
the results of fine-tuning upon the full spatial domain, vanilla full Winograd domain, and our proposed low-rank Winograd
domain.

Fig. D3(a) shows the fine-tuning results on R3D-18. As can be seen, the vanilla Winograd transformation performs the
worst almost across the whole fine-tuning stage. Quantitatively, it results in a 1.7% drop in accuracy at the end, which well
demonstrates our claim that increasing parameters introduced by Winograd transformation do not always benefit model
capacity but cause model redundancy. In contrast, our low-rank Winograd transformation manifests supreme performance
in comparison with the vanilla version, even on par with the spatial model. The performance gains mostly come from the
fact that we drive weight updating towards the main directions of the whole Winograd space. Fig. D3(b) continues the
results on C3D. Similar to R3D, the vanilla Winograd transformation suffers the most performance drops, around 0.1%
over the spatial model. On the contrary, by removing the redundancy, our low-rank transformation achieves the same
performance as the spatial model. These results again demonstrate the value and the feasibility of our method.
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Figure D3 Comparison among fine-tuning in the full Winograd domain (FW), fine-tuning in the full spatial domain (FS), and
fine-tuning in the low-rank Winograd domain (LR) on R3D-18 and C3D. The experiment is conducted on the UCF101 dataset.

Validity of Low-Rank Winograd Transformation. In this section, we analyze the validity of low-rank Winograd
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transformation. We fine-tuned R3D-18 and C3D in the vanilla full Winograd domain on UCF101. After fine-tuning,
we can get the updates △GW from the pre-trained weight GW to the eventual fine-tuned ḠW by △GW = ḠW − GW .
And then we perform singular value decomposition on △GW . By this way, △GW can be represented by t3 subspaces:
△GW =

∑t3−1
i=0 △σi△u⃗i△v⃗i

T , where △σi, △u⃗i/△v⃗i are the i-th singular value, left/right singular vector of △GW . The
magnitude of △σi can be regarded as the importance of the subspace △u⃗i△v⃗i

T .
To explore how the model performance would be affected if only a few parts of the subspace were retained, we directly

test the accuracy of the model by adding
∑s−1

i=0 △σi△u⃗i△v⃗i
T to the pre-trained weight GW , where s is the number of

reserved subspaces. The result is shown in Fig. D4. As can be observed, the accuracy of the model does not decrease
significantly until s < 8, when s reduces from 64 to 27, the model accuracy even increases. This suggests that a large
part of the space introduced by the Winograd transformation may have hindered the training of the Winograd model. The
training process only needs to focus on a small portion of the subspaces, which just fits our proposed low-rank Winograd
transformation.
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Figure D4 The accuracy of R3D-18 and C3D on UCF101 when only the top-s subspaces of △GW are reserved.
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Table D7 Experimental results of the proposed method on X3D. The experiment is conducted using X3D-S on the Kinetics
dataset (baseline accuracy 72.9%). The speedup ratio is computed by GFLOPs reduction.

Model Speedup Accuracy(%)↓

X3D
2.2× 0.0
2.7× 0.1

Table D8 Comparison of computational complexity required for convolution designs under varying input sizes.

Kernel Type
Input Size (D × H × W )

8×32×32 8×64×64 8×128×128

Standard 3D 145.8K 583.2K 2.33M

(2+1) D 81.0K 324.0K 1.30M

Winograd 43.2K 172.8K 691.2K

Ours (Sparsity = 0.4) 25.9K 103.7K 414.7K
Ours (Sparsity = 0.7) 13.0K 51.8K 207.4K

Appendix D.5 More Information

To demonstrate the broader applicability and generalization capability of our method beyond standard 3D convolution
kernels (with demonstrated effectiveness and practicality in Appendix D.2), we extend our evaluation to networks employ-
ing 3D convolutions with non-uniform stride patterns and present a comprehensive analysis of computational complexity
across different convolution configurations. Specifically, we evaluated our method on X3D [41], which features a distinctive
implementation of 3D convolutions with different temporal and spatial strides (spatial stride = 2, temporal stride = 1).
As shown in Table D7, our method demonstrates robust performance on X3D, achieving a 2.2× speedup with no accuracy
degradation and a 2.7× speedup with minimal accuracy loss (0.1%). These results validate the effectiveness of our approach
across different convolution configurations.

We further conducted a detailed computational complexity analysis for different convolution designs under varying input
sizes, using multiplication operations as the primary metric for computational complexity. We compare our optimized
3D kernel with three baseline kernel types: standard 3D convolution (3 × 3 × 3, stride = 1), which is widely adopted
for three-dimensional data processing; Winograd-optimized 3D convolution; and (2+1)D convolution, which factorizes 3D
convolution into spatial (1 × 3 × 3) and temporal (3 × 1 × 1) components for improved efficiency. For fair comparison,
all computation costs were analyzed excluding input and output channels. As illustrated in Table D8, although (2+1)D
convolution reduces computational cost through decomposition, Winograd-based 3D convolution achieves even greater
efficiency, requiring approximately 70% fewer operations than standard convolution across all input sizes. Our method
further reduces computational complexity by applying pruning techniques to Winograd convolution, with the reduction
scaling proportionally with input dimensions. We demonstrate this with two carefully selected sparsity levels: sparsity
= 0.4, which represents an optimal trade-off point that fully preserves model performance, and sparsity = 0.7, which
aggressively reduces kernel operations for deployment scenarios where moderate accuracy trade-offs are acceptable. These
results demonstrate the superior efficiency of our optimized kernel design.

Appendix E Derivations of the Rearranged Winograd Transformation and Transformation
Matrices.

To derive the rearranged Winograd transformation in Eq. (C1), we need to derive the form of the Winograd transformations
after rearranging G, Ĩ. We first introduce the conclusion, after rearranging G, Ĩ, the Winograd transformations TK(·),
TI(·), and TO(·) are supposed to be modified accordingly:

TK(G) = (KGKT )RKT , G ∈ RCo×Ci×r×r×r →

TK(G) = GTK , G ∈ RCoCi×r3
, (E1)

TI(Ĩ) = (BT ĨB)RB, Ĩ ∈ RT ×Ci×t×t×t →

TI(Ĩ) = ĨTI , Ĩ ∈ RT Ci×t3
, (E2)

TO(V) =
(

(AT VA)RA
)R

, V ∈ RT ×Co×t×t×t →

TO(V ) = V TO, V ∈ RT Co×t3
, (E3)

where TK , TI , and TO are transformation matrices that we need to derive.
We start with the 2D version. Giving a convolution weight g ∈ Rr×r and it is transformed into Winograd weight
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gW ∈ Rt×t by gW = KgKT . Here, we introduce an equation derived by Yu et al. [7]:

gW (j, k) =
r−1∑
v=0

r−1∑
w=0

K(j, v)K(k, w)g(v, w). (E4)

Eq. (E4) indicates that each element of the Winograd weight can be represented by elements of the convolution weight.
This conclusion still holds in the 3D case.

Back to the 3D-version, the 3D convolution weight G ∈ Rr×r×r is transformed into Winograd weight GW ∈ Rt×t×t

by (KGKT )RKT . We further divide (KGKT )RKT into three steps: Q = KGKT ,Q̂ = (Q)R, and GW = Q̂KT . For
Q = KGKT , we have:

Q(i, j, k) =
r−1∑
v=0

r−1∑
w=0

K(j, v)K(k, w)G(i, v, w), (E5)

where 0 ⩽ j, k ⩽ t − 1, 0 ⩽ i ⩽ r − 1. Then we rotate Q clockwise to Q̂, element of which can be further represented by:

Q̂(j, k, i) =
r−1∑
v=0

r−1∑
w=0

K(j, v)K(k, w)G(i, v, w). (E6)

After that, each element of GW can be calculated by elements in Q̂ and G:

GW (x, y, z) =
r−1∑
u=0

K(z, u)Q̂(x, y, u)

=
r−1∑
u=0

r−1∑
v=0

r−1∑
w=0

K(x, v)K(y, w)K(z, u)G(u, v, w),

(E7)

where 0 ⩽ x, y, z ⩽ t − 1. We then rearrange G and GW into vectors:

G ∈ Rr×r×r → G = [a1, a2, · · · , ar3 ], G ∈ R1×r3
,

GW ∈ Rt×t×t → GW = [b1, b2, · · · , bt3 ], GW ∈ R1×t3
.

(E8)

Let us describe Eq. (E7) in another way where each position in GW (GW ) can be calculated by the combination of
coefficients of positions in G (G):

bi = a1c1i + a2c2i + · · · + ar3 cr3i. (E9)

Therefore, GW and G can be related by matrix multiplication:

[b1, b2, · · · , bt3 ] = [a1, a2, · · · , ar3 ] ·


c11 c12 · · · c1t3

c21 c22 · · · c2t3

...
...

. . .
...

cr31 cr32 · · · cr3t3

 , (E10)

and it can be further abbreviated as:

GW = TK(G) = GTK , TK =


c11 c12 · · · c1t3

c21 c22 · · · c2t3

...
...

. . .
...

cr31 cr32 · · · cr3t3

 . (E11)

Combining with Eq. (E7), each element of TK (kernel transformation matrix) can be calculated as follows:

TK(i, j) = K(x, v) · K(y, w) · K(z, u),

i = r2u + rv + w,

j = t2x + ty + z,

(E12)

where 0 ⩽ i ⩽ r3 − 1, 0 ⩽ j ⩽ t3 − 1, 0 ⩽ u, v, w ⩽ r − 1 and 0 ⩽ x, y, z ⩽ t − 1.
So far, we have complemented the derivation of Eq. (E1). The above process can also be applied to derive Eq. (E2) and

Eq. (E3) and acquire transformation matrices TI and TO. Finally, we obtain Eq. (E13) by substituting Eq. (E1), Eq. (E2),
and Eq. (E3) into Eq. (3) of Sec.3.1:

Õ(kn, :) =
( Ci−1∑

c=0

G(Cin + c, :)TK ⊙ Ĩ(kCi + c, :)TI

))
TO. (E13)
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We denote the Winograd input transformed result ĨTI as V and use ⊙̃ to represent the consecutive operations of element-
wise product and summation over the output channel in Eq. (E13) for ease of the following representation. Eq. (E1) can be
simplified as:

Õ =
(

GTK⊙̃V
)

TO. (E14)

Finally, by using the rearranged Winograd-domain weight GW ∈ RCo×Ci×t×t×t to directly perform element-wise products
with the Winograd-domain input tiles, we complete the derivation of Eq. (C1).

Appendix F Discussion
Through our experimental results, we have demonstrated that the low-rank Winograd transformation can successfully
extend the Winograd algorithm to 3D dimensions and effectively combine it with network pruning to significantly reduce
the computational load of 3D CNNs and accelerate them in real-edge scenarios. However, there are areas for improvement
or expansion in our current method, which we aim to address in future work:

• Although our current work has achieved significant reductions in parameters and computational costs of 3D CNNs, it
primarily focuses on specific kernel sizes. Moving forward, we plan to explore how to further optimize this transformation
method to accommodate a broader range of kernel sizes and different types of deep learning models, such as those with
larger kernels.

• We have validated our proposed method on mobile CPUs, demonstrating the practical acceleration of 3D CNNs.
Theoretically, this method is also applicable to hardware devices such as GPUs and FPGAs. A future effort worth pursuing
is the development of operators for these hardware platforms to enable broader deployment and application of our proposed
method.

• While our proposed pruning pattern is more effective for weights in the Winograd domain than in the spatial domain,
we believe that applying this pruning pattern to network layers with location-sensitive characteristics, such as attention
layers, might be a promising research direction.

We believe our method presents great possibilities and opportunities for optimizing 3D CNNs and offers viable approaches
for deploying efficient 3D CNNs across various platforms. We plan to explore more possibilities in the field of model
optimization and acceleration in the future.
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