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Abstract A pull request (PR) is an event in Git where a contributor asks project maintainers to review code he/she wants

to merge into a project. The PR mechanism greatly improves the efficiency of distributed software development in the open-

source community. Nevertheless, the massive number of PRs in an open-source software (OSS) project increases the workload

of developers. To reduce the burden on developers, many previous studies have investigated factors that affect the chance of

PRs getting accepted and built prediction models based on these factors. However, most prediction models are built on the

data after PRs are submitted for a while (e.g., comments on PRs), making them not useful in practice. Because integrators still

need to spend a large amount of effort on inspecting PRs. In this study, we propose an approach named E-PRedictor (earlier

PR predictor) to predict whether a PR will be merged when it is created. E-PRedictor combines three dimensions of manual

statistic features (i.e., contributor profile, specific pull request, and project profile) and deep semantic features generated by

BERT models based on the description and code changes of PRs. To evaluate the performance of E-PRedictor, we collect

475192 PRs from 49 popular open-source projects on GitHub. The experiment results show that our proposed approach can

effectively predict whether a PR will be merged or not. E-PRedictor outperforms the baseline models (e.g., Random Forest and

VDCNN) built on manual features significantly. In terms of F1@Merge, F1@Reject, and AUC (area under the receiver operating

characteristic curve), the performance of E-PRedictor is 90.1%, 60.5%, and 85.4%, respectively.
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1 Introduction

The pull-based development model, a mechanism for collaboration in distributed software development,
has been widely used in open-source software (OSS) development. In this model, external developers (also
known as contributors) fork a base repository of a project and independently make their code changes.
Once the code change is ready, contributors can submit a pull request (PR) to the main repository. Then,
integrators and other developers can review the submitted code changes in the pull request and provide
some comments. Finally, the project maintainers decide to accept or reject the PR based on its quality
and the discussion among developers.

The pull-based development model is well implemented by GitHub, which is one of the most popular
OSS hosting websites. GitHub reported that they had 170 million merged PRs in 20211). However,
since reviewing pull requests requires a significant amount of effort from integrators [1], it has been a
heavy burden for integrators when the volume of pull requests increases. For example, Gousios et al. [2]
conducted a survey with 645 top OSS contributors and found that the asynchrony characteristic of the
pull-based model hinders the observability of the overall status of a project and burdens integrators. On
the other hand, the heavy workload of integrators delays the decision on PRs. We find that the average
time from PR creation to closure in our collected data was more than 37 days (see Table 1).

To reduce the effort of integrators, many researchers try to build prediction models to predict whether
a PR will be merged or not. They extract different aspects of features from PRs and other related
information, such as code changes in PRs [3, 4], comments on PRs [5, 6], and developer experience [7].
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Table 1 Statistics of top-20 popular projects.

Project name Stars PRs Commits Merged PRs Rejected PRs Merge ratio Life time Program language

flutter/flutter 128761 30150 130300 21947 8203 0.73 5 days, 8 h Dart

nodejs/node 81599 25113 59511 21228 3885 0.85 20 days, 4 h JavaScript

kubernetes/kubernetes 80718 64954 107130 50000 14954 0.77 27 days, 2 h GO

angular/angular 76300 19200 38363 3964 15236 0.21 31 days, 12 h TypeScript

mrdoob/three.js 74056 11664 30134 9194 2470 0.79 31 days, 8 h JavaScript

puppeteer/puppeteer 73159 2421 5367 1998 423 0.83 7 days, 21 h TypeScript

vercel/next.js 72941 9006 34605 7309 1697 0.81 8 days, 22 h JavaScript

tensorflow/models 71175 3320 10941 2192 1128 0.66 80 days, 0 h Python

mui-org/material-ui 70842 14060 43106 11645 2415 0.83 4 days, 6 h JavaScript

PanJiaChen/vue-element-admin 70507 457 1625 324 133 0.71 10 days, 4 h Vue

laravel/laravel 66450 4024 10829 1623 2401 0.40 7 days, 17h PHP

storybookjs/storybook 64522 7330 26088 5948 1382 0.81 9 days, 9h TypeScript

nvbn/thefuck 63800 558 1365 471 87 0.84 36 days, 11h Python

moby/moby 61066 17300 27956 13921 3,379 0.80 15 days, 8h GO

gothinkster/realworld 60123 227 302 184 43 0.81 41 days, 14 h Shell

django/django 59499 14639 28361 9906 4733 0.68 29 days, 18 h Python

apple/swift 57168 38937 85932 34786 4151 0.89 14 days, 3 h C++

spring-projects/spring-boot 57034 4810 8799 3410 1400 0.71 20 days, 4 h Java

bitcoin/bitcoin 56858 15283 37883 10965 4318 0.72 36 days, 0 h C++

pallets/flask 56514 1966 3662 1274 692 0.65 30 days, 17 h Python

All projects’ mean 58147 9698 25695 7346 2352 0.69 37 days, 5 h –

Gousios et al. [3] performed an exploratory study with 291 projects and found that whether the PR
modifies recently modified code is the most important factor that affects the decision to merge a PR.
Dey and Mockus [7] built a Random Forest model based on 14 features to predict whether a PR will
be merged and achieve a promising performance (i.e., 0.95 in terms of AUC (area under the receiver
operating characteristic curve)). However, the prediction models in most of these prior studies are built
on the data after PRs are submitted for a while, such as comments on PRs. We think such prediction
models are not helpful in practice because integrators still need to inspect the PR and communicate with
contributors after a PR is created. The workload of integrators will not decrease. One possible solution
is to predict whether a PR will be merged or rejected when it is created. Thus, integrators can receive
immediate feedback, then estimate their efforts and prioritize PRs they are working on.

In this study, we take a new direction in predicting whether a PR will be merged or rejected when
it is created. Thus, the prediction results can help integrators estimate the effort of pull requests and
prioritize them immediately. On the other hand, contributors can also receive quick feedback and take
action to improve their pull requests immediately. We proposed E-PRedictor to predict whether a PR
will be merged using the information when it is created. First, similar to the previous studies [7, 8], E-
PRedictor extracts three dimensions of manual features, including developer profile, specific pull request,
and project profile. Also, it leverages deep semantic features by using BERT models [9] to encode a PR’s
description and code changes. Finally, we use XGBoost [10] to build a prediction model by combining
both manual and deep semantic features.

We collected 475192 PRs from the most popular OSS project on the GitHub to evaluate the performance
of E-PRedictor. We also chose some classical classifiers (i.e., Logistic Regression, Decision Tree, Random
Forest, and XGBoost) and a deep neural network classifier (i.e., VDCNN) built on the manual features
as the baselines. The experiment results showed that E-PRedictor can effectively predict whether a PR
will be merged or rejected when created in terms of F1@Merge, F1@Reject, and AUC. The F1-scores of
E-PRedictor for merged and rejected PRs are 90.1% and 60.5%, respectively. E-PRedictor outperforms
the baselines by a statistically significant margin. We also evaluate the importance of each dimension of
features in E-PRedictor and the effectiveness of E-PRedictor in the cross-project setting.

Our paper makes the following contributions.

(1) Based on previous work and manual inception, we proposed an updated PR merge detection
approach. We build a dataset containing 475192 PRs from 49 popular OSS projects. We provide a
replication package of our dataset and the proposed approach, which is available at https://github.com/

https://github.com/ckxkexing/pr-acceptance
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ckxkexing/pr-acceptance.

(2) We propose a prediction model named E-PRedictor, which can predict whether a PR will be
merged or rejected when it is created. E-PRedictor is built on 46 manual features from three dimensions
(contributor profile, specific pull request, and project profile) and 30-dimensional deep semantic features
based on the description and code changes of the PR.

(3) We evaluate E-PRedictor on our collected PRs. The experiment results show that E-PRedictor
can effectively predict the acceptance of PRs in terms of multiple metrics (e.g., F1@Merge, AUC). E-
PRedictor outperforms several baselines (e.g., XGBoost built on manual features) significantly. We also
find that the deep semantic features from the PR description are the most important dimension in E-
PRedictor.

Paper organization. Section 2 introduces the concepts of prediction models used in our study. Sec-
tion 3 shows the process of the data collection and analysis. Section 4 describes our approach. Sections 5
and 6 present our experiment setup and results, respectively. Section 7 discusses the implications and
threats to validity of our work. Section 8 presents related work. Section 9 concludes the paper and
discusses the future work.

2 Background

In this section, we will introduce the background knowledge of PR early characteristics, pre-trained
models, and classification models used in our study.

2.1 Pull request early characteristics

Gousios and Zaidman [11] first presented a heuristic to determine whether a PR on GitHub has been
merged. He also categorized the features of PRs into three dimensions: PR-specific, project-specific,
and developer-specific. The PR-specific characteristics include the change in the number of lines and
the characteristics of the files modified. The project-specific characteristics include the number of lines
of code and the number of project members. The developer-specific characteristics include the number
of PRs and the number of followers the developer has before creating a new PR. In total, there are 27
features, out of which 21 are related to when the PR is created.

Dey and Mockus [7] mined pull request in NPM repository. The pull request features were classified
into five categories, comprising a total of 50 features, namely PR creator, specific PR, NPM package
repository, specific head repository, and base repository. After performing random tree cross-validation,
14 valid features were identified, out of which 10 were related to early PR features. On their randomly
split 7:3 dataset, they achieved an area under curve-receiver operating characteristics (AUC-ROC) of
0.77 and an accuracy of 0.72.

Zhang et al. [12] expanded on Gousios and Zaidman’s [11] work and proposed a total of 95 features
across the three types of PR features, out of which 33 were relevant at the time of PR creation.

We summarize these features that are not used in our approach as follows.

At the developer level, we do not use the features that are a combination of the other features. For
example, prior interaction [12] is based on the number of issues events, PR events, commits, etc., which
have been included in our features. Another similar feature is social strength [12]. Additionally, although
several features are missing, some features in our study are highly correlated with them. For example,
core member [12] indicates whether a developer is a project committer, or has permission to merge and
close PRs. We believe that the features in the developer profile dimension of our study can indicate the
expertise of a developer, which is similar to core member [12] and prior review num [12].

At the PR level, we do not use the number of added files [11], deleted files [11], and modified files [11].
But these features are very similar to the number of committed touch files we use. Moreover, some
features in these previous studies are project specific or not suitable for the projects in our dataset, such
as intro branch [7], and the lines of code (LOCs) of test files [11].

At the project level, we use prs cnt in month and issue cnt in month instead of open issue num [12]
and open pr num [12]. Additionally, Zhang et al. reported that sloc, test lines per kloc, pushed delta,
and project age are not the factors that explain pull request decisions the most. So we do not include
these in our datasets.

https://github.com/ckxkexing/pr-acceptance
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2.2 BERT family

BERT (bidirectional encoder representations from transformers) [9] has gained great attention in natural
language processing tasks. Compared with other pre-training model structures, BERT considers the two-
way relationship between each word in the input text. It uses the encoder structure of Transformers to
train the two tasks of mask language model (MLM) and next sentence prediction (NSP) on the English
Wikipedia dataset. It achieves state of the art on 11 downstream tasks. Experiments have proven that
BERT has outstanding ability in word understanding and context understanding.

RoBERTa [13] is a pre-training model with robustness optimization based on BERT. Thus, we use
the RoBERTa model instead of the BERT model to encode the description of pull requests. Its training
dataset size is ten times that of the original BERT and uses larger byte-pair encoding (BPE) [14]. It uses
a dynamic MASK mechanism to replace the static MASK mechanism for model training, which improves
the shortcoming that the BERT model needs a duplicate dataset in training. Moreover, increasing the
trained batch size and training epoch on this model is conducive to improving the performance of the
model.

CodeBERT [15] has the same structure as RoBERTa, but it is a multilingual programming model
trained by natural language and programming language. It uses MLM and replaced token detection
(RTD) [16] as the objective function on a dataset containing six programming languages (Python, Java,
JavaScript, PHP, Ruby, and Go). The RTD objective function requires the model to predict the original
placement of each input word, making model pre-training more efficient. Experiments have found that
the CodeBERT model has better results in natural language code search and code document generation
tasks. We use the CodeBert model to encode the code changes in pull requests.

2.3 Predict models

We choose several classical prediction models, including Logistic Regression, Decision Tree, Random
Forest, and XGBoost in our study, which have been used in the previous studies that investigate whether
a PR will be merged [7, 12, 17, 18]. In addition, we also used a deep neural network (i.e., VDCNN) since
deep learning techniques have shown promising performance in many software engineering studies.

Decision Tree is a tree model used for prediction or regression tasks. The internal nodes of the tree
represent the judgment of a feature, each branch represents the output of a judgment result, and finally,
each leaf node represents a classification result. Decision Tree is created from top to bottom on the
training data set, and each node split is based on the change of entropy. All prediction nodes are in the
same tree, and the closer the internal nodes are to the root node, the greater the impact on the prediction
result. Therefore, it is easier to find out the key features in the trained Decision Tree.

Random Forest [19] is an ensemble learning method that uses multiple Decision Trees to perform
prediction tasks together. The model will randomly select some data for training a Decision Tree, and
this Decision Tree only randomly selects some features for the calculation of entropy changes in node
splitting. Finally, a large number of different Decision Trees trained by this method constitute Random
Forests. Random Forest randomly selects features and training data during training, which alleviates the
problem of over-fitting and is conducive to improving the prediction performance.

XGBoost [10] is a kind of tree boosting model. Its principle is to integrate many weak classifier models
to form a strong classifier. XGBoost algorithm uses a new cart regression tree model to fit the residual
results of the previous tree so that the sum of the predicted value of each tree is close to the ground truth
values. As a result, the prediction result is the weighted sum of the value of the corresponding node of
the input in each tree.

VDCNN [20] is a very deep convolutional network applied to text processing. It uses a VGG-like
or ResNet-like architecture to go deeper because, in the field of computer vision, deep convolutional
networks like ResNet have excellent classification capabilities. The model uses text characters as input
and calculates the results through stacked convolutional blocks. Tests on different data sets show that
VDCNN using 29 convolutional blocks can achieve better results.

3 Data collection and analysis

In our study, we focus on popular engineered software projects [21]. Specifically, we used GitHub Restful
API to collect the top-100 popular projects regarding the number of stars (in September 2021). Then
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we filtered the projects using the following criteria: (1) non engineered software projects, such as the
collection of study materials and tutorials, which are not within the scope of our study; (2) the forked
projects; (3) the main code development activities of the project are not carried out on the GitHub
platform, which only serves an open-source role on GitHub. For example, Google/Guava is Google’s
internal repository which shares source code and PRs in GitHub masked by copybar-service2). So we
removed Google/Guava and Keras-team/Keras. To apply the first filter, we removed the projects with
the following keywords in their descriptions: “awesome”, “tutorial”, “education”, etc. Finally, we select
the top 49 projects from the result list to get a controllable number of PRs. Compared with the previous
study that only used NPM projects [7], we believe that our collected projects are diverse.

For each project, we used data from GHTorrent [22] in our study. Specially, we analyzed GHTorrent’s
MySQL database snapshot of 2021–03–06. Beside PR data, we could get other development activities
from GHTorrent, including commits, issues, and discussions among developers. In the obtained PR data,
we removed the PRs that have not been closed since their status is not eventually determined. We
determined whether a PR was merged using the following heuristics.

(1) If the field “merged at” (indicating the merged time for a PR) of the PR from GitHub Restful API
is not null.

(2) If one commit of the PR is included in the project.
(3) The last three comments in the PR can be matched by the keywords indicating the merge action

(e.g., “merged”, “landed”, “pushed”, “included”, and “committed”) and contain a commit identifier.
Sometimes a pull request cannot be applied correctly, or when project-related policies do not permit
automatic merging sometimes [3]. For example, the code change of a PR3) in the project nodejs/node is
included in another PR, which is mentioned in the comments. In our dataset, 6066 PRs (about 1.3% in
our datasets) were identified as merged through the use of this checker approach. We randomly selected
and manually verified 20 PRs that were identified as merged from each project. It is important to note
that we only examined projects with more than 20 such PRs. We find that the detection accuracy was
found to be 75.8%. Given that only 1.3% of our dataset consists of this type of merged PRs, we believe
that these discrepancies have minimal impact on our study.

(4) The PR is mentioned by a commit in the repository. Because sometimes integrators can create a
patch copied from the PR and commit it to the repository [3].

For the remaining PRs, we regarded them as rejected.
A PR contains two parts: the textual description and a set of commits. For the textual description of

PR, we removed the noisy information in the body content, such as tags and special characters (e.g., ‘#’)
in the markdown files. For the commits in the PR, we extracted the file names and the corresponding
code changes. We only kept the source code files and discarded other types of files (e.g., configuration
files). For the code changes, we only kept the added and deleted lines.

Table 1 presents the statistics of the selected projects in our study. Due to the page limitation, we
only list the top 20 popular projects in Table 1. As shown in Table 1, except for a few projects (e.g.,
PanJiaChen/vue-element-admin), most projects have a large number of PRs. The average number of PRs
among the selected projects is 9698. The mean percentage of merged PRs in these projects is 0.69, which
indicates that our dataset is imbalanced. But there are several projects whose merged ratio is low, such
as angular/angular. This might be because such projects have high criteria to accept a PR in the main
branch. Among the selected projects, JavaScript is the most used programming language (16 projects),
followed by Python (8 projects). Moreover, we compute the time interval between the creation time and
the closure time of a PR. On average, the life time of PRs in our dataset is about 37 days, which might
indicate a heavy workload of integrators.

4 Approach

In this section, we introduce the process of E-PRedictor, which is shown in Figure 1. First, E-PRedictor
extracts three dimensions of manual features (i.e, contributor profile, specific pull request, and project
profile) based on the development activities in GitHub. Second, it uses BERT models to convert the
description and code changes of PRs into encoding features. Finally, we build an XGBoost classification
model based on the manual features and deep semantic features.

2) https://github.com/apps/copybara-service.

3) https://github.com/nodejs/node/pull/28048.
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Figure 1 (Color online) Overall framework of E-PRedictor.

Table 2 Manual features used in E-PRedictor.

Dimension Feature name Description

Contributor profile

before pr user projects Number of projects owned by the contributor before the submitted PR

before pr user commits Number of the contributor’s commits before the submitted PR

before pr user pulls Number of the contributor’s PR submitted before the submitted PR

before pr user issues Number of the contributor’s issues submitted before the submitted PR

before pr user followers Number of the contributor’s followers before the submitted PR

before pr user commits proj Number of projects the contributor had contributed before the submitted PR

bot user Whether it is a robot account

issue created in project by pr author Number of issue created in the project before the submitted PR

issue created in project by pr
author in month

Number of issue created in the project within one month before the submitted PR

issue joined in project by pr author Number of issue joined in the project before the submitted PR

issue joined in project by pr author
in month

Number of issue joined in the project within one month before the submitted PR

number of created pr in this proj before pr Number of created PR in the project before the submit created by the contributor

number of merged pr in this proj before pr Number of merged PR in the project before the submit created by the contributor

number of closed pr in this proj before pr Number of closed PR in the project before the submit created by the contributor

ratio of merged pr in this proj before pr Ratio of merged PR in the project before the submit created by the contributor

Specific pull request

is this proj first Is it the first PR of the contributor for the project

pr desc len Length of the description of the submitted PR

check pr desc mean
Is the length of the description of the PR greater than the average length of
created PRs

check pr desc medium
Is the length of the description of the PR greater than the medium length of
created PRs

pr commit count Number of commits in the submitted PR

commit add line (sum/max/min) Lines of the added code in the commits of the submitted PR

commit delete line (sum/max/min) Lines of the deleted codes in the commits of the submitted PR

commit total line (sum/max/min) Lines of the added and deleted lines in the commits of the submitted PR

commit file change Number of changed files in the commits of the submitted PR

whether pr created before commit Whether a commit already exists when the PR is created

contain test file Whether the change contains a test file

contain doc file Whether the change includes a document file

Project profile

before pr merge cnt Number of merged PR contributors had contributed before the submit

before pr closed cnt Number of closed PR contributors had contributed before the submit

before pr merge ratio Ratio of merged PR contributors had contributed before the submit

before pr project commits Number of commits in the project before the submitted PR

before pr project commits in month Number of commits of the project within one month before the submitted PR

before pr project prs Number of PRs in the project before the submitted PR

before pr project prs in month Number of PRs of the project within one month before the submitted PR

before pr project issue Number of issues in the project before the submitted PR

before pr project issue in month Number of issues of the project within one month before the submitted PR

before pr project comments in pr Number of comments on all the PRs in the project before the submitted PR

before pr project comments in pr in month
Number of comments on PRs in the project within one month before the
submitted PR

before pr project issues comment Number of comments on all the issues in the project before the submitted PR

before pr project issues comment in month
Number of comments on issues in the project within one month before the
submitted PR

4.1 Manual feature extraction

In this section, we follow the previous studies in software analytics [7, 8] to extract different dimen-
sions of features to build prediction models, including contributor profile dimension, specific pull request
dimension, and project profile dimension. Table 2 shows the details of these features, which are as follows.

Contributor profile dimension. This dimension refers to features extracted from the overall infor-
mation of a contributor when he/she creates a pull request, which is dependent on his/her development
activities in GitHub. Similar to the study of Dey and Mockus [7], we use six features to measure a contrib-
utor’s profile, which are as follows. The before pr user project feature quantifies the number of projects
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owned by the contributor. The before pr user commits, before pr user pulls, before pr user issues fea-
tures quantify the number of commits/pull requests/issues submitted by the contributor before he/she
creates a new pull request, respectively, which indicates his/her history activities in GitHub. The be-
fore pr user followers feature quantifies the number of developers who follow the contributor, indicating
the programming and social ability of the contributor. The before pr user commits proj feature is an
indicator of the contribution that the developer contributed to the project before. These features might
indicate the professional experience and ability of a contributor in the open source community. The
bot user is based on the user’s login name to differentiate between fewer bot accounts that perform regu-
lar tasks. In addition, issue-related features indicate the developer’s enthusiasm for participating in open
source. And contributors’ past PR submissions on the same project indicate their experience level. An
experienced developer might be more likely to be familiar with the requirements of a project and submit
high-quality pull requests. Therefore, we believe that these features might affect a pull request to be
merged or rejected.

Specific pull request dimension. This dimension refers to features computed based on the infor-
mation of the submitted pull request, which might indicate the quality of a pull request. This dimension
has been adopted in previous studies [7, 23]. We collect several types of information for a pull request.
First, we check whether it is the first time for the contributor to submit a pull request in the project
(is this proj first). Many OSS projects have specific requirements (e.g., using a pull request template) for
submitting pull requests. A developer’s first pull request in the project might be rejected since he/she is
not familiar with such requirements. Second, we compute some metrics based on the description of pull
requests because a low-quality description of pull requests might hinder the understanding and readability
of pull requests for integrators. For example, a pull request with a short sentence might be rejected due to
a lack of enough information. We calculate the length of the description of a pull request (pr desc len),
and determine whether the length of the description is greater than the mean and median length of
all pull requests in a project (check pr desc mean and check pr desc median), respectively. Third, we
calculate several metrics based on the commits in the pull requests. The code change in a pull request
is the most important factor that affects whether it is to be merged or rejected. We count the number
of commits in a pull request (pr commit count), the number of added lines (commit add line), deleted
lines (commit delete line), and the total changed lines (commit total line) in commits. Also, we count
the number of changed files in commits of a pull request (commit file change). Some PRs are created
earlier than the first commit. We use the weather pr created before commit to record it. Inspired by
Yue et al. [24], whether PR modifies documents and tests files (contain test file and contain doc file) are
also checked.

Project profile dimension. This dimension refers to features extracted from the overall infor-
mation of a project when a contributor creates his/her pull request, which is similar to the macro-
climate of a project (e.g., workload) used in previous studies [8, 25]. In Adam’s research [26], dif-
ferent projects have different governance styles, which affects the acceptance rate of PRs. We count
the number of merged PRs (before pr merge cnt) and closed PRs (before pr closed cnt), and calculate
merge ratio (before pr merge ratio). Dey and Mockus [7] also reported that the number of pull re-
quests that existed prior to the submission of a pull request has an impact on its accepted results.
We count the number of commits, issues, and pull requests in the project before the specific pull re-
quest is created (before pr project commits, before pr project issues, and before pr project prs). We
also count the number of comments on pull requests (before pr project comments in pr) and issues (be-
fore pr project issues comments) in the project because the discussion between project maintainers and
contributors is an indicator of the activeness and openness of a project. Additionally, we also count these
metrics within one month before the specific pull request is created (e.g., before pr project commits in
month). Because we think that recent development activities are good indicators of the working environ-
ment in an OSS project [8].

4.2 Deep textual feature extraction

Figure 2 presents the structure of the encoder module in E-PRedictor. For the description of PRs,
we use RoBERTa to generate encoding features since RoBERTa is a pre-trained model with robustness
optimization based on BERT. For the code changes of PRs, we use CodeBERT to generate encoding
features because CodeBERT has shown better performance on some tasks related to the source code
than the original BERT. We use RoBERTa and CodeBERT to map the description and code changes of
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Figure 2 (Color online) Encoder module.

PRs into a deep semantic vector space with a simple fine-tuning process.

To fine-tune the BERT models, we simply use the labels of PRs (merged or rejected) as the training
targets. The description and code changes of PRs through the encoder module will be encoded into
two 768-dimensional encoding vectors, which is too high for the classical classifier used in E-PRedictor.
Hence, the two vectors will be spliced together and passed through a fully connected layer to generate
a 30-dimensional vector. Then, we pass the encoded vector through an auxiliary fully connected layer
to get a two-dimensional vector for calculating the loss with the ground truth. We use the BCE (binary
crossentropy) loss function, which is used for binary classification tasks. Finally, given the description
and code change of a PR, we use the encoder module to generate 30-dimensional encode features.

4.3 PR acceptance prediction

After extracting manual features and deep semantic features, we obtain a total of 76 features, including
46 manual features and 30 deep semantic features. Then, we build an XGBoost model based on these
features. We use the default parameters for all XGBoost models in our study.

5 Experiment setup

In this section, we describe the baselines and evaluation metrics used in our study. We evaluate our
proposed approach on the collected dataset, containing 475192 PR from 49 OSS projects. We run the
experiment on an Ubuntu 20.4 LTS machine with an Intel (R) Xeon (R) CPU with 16 cores and an
Nvidia GeForce RTX 3090 graphics card with 24 gigabytes of memory.

5.1 Baselines

Many previous studies have used traditional classifiers to predict the chance of acceptance for PRs,
such as Random Forest [7] and Logistic Regression [12]. These traditional classification models based
on multiple dimensions of manual features have achieved promising performance in the prediction of PR
acceptance. Therefore, in this study, we choose four classical classifiers (i.e., Logistic Regression, Decision
Tree, Random Forest, and XGBoost) based on the manually extracted features as the baseline models.
Furthermore, there are several deep encoding techniques for textual data and source code. To verify the
effectiveness of the encoder module in E-PRedictor, we use the VDCNN model instead of the BERT
models in E-PRedictor. We use the default training optimizer for VDCNN, i.e., SGD (stochastic gradient
descent optimizer), with a learning rate of 0.01 and momentum of 0.9.
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5.2 Evaluation metrics

For each pull request, there would be four possible outcomes: a merged pull request can be classified as
merged (TP) or rejected (FP), while a rejected pull request can be classified as rejected (TN) or merged
(FN). Based on these possible outcomes, we calculate precision, recall, and F1-score for each label to
evaluate the performance of E-PRedictor and baseline models. We also use AUC (area under the receiver
operating characteristic curve) to evaluate the effectiveness of the proposed prediction models.

Accuracy is the number of correctly classified PRs (both merged and rejected) over the total number
of PRs, i.e., TP+TN

TP+TN+FP+FN .
Precision@Merge is the proportion of PRs that are correctly labeled as merged among those labeled

as merged PRs, i.e., TP
TP+FP .

Recall@Merge is the proportion of merged PRs that are correctly labeled, i.e., TP
TP+FN .

Precision@Reject is the proportion of PRs that are correctly labeled as rejected among those labeled
as rejected PRs, i.e., TN

TN+FN .

Recall@Reject is the proportion of rejected PRs that are correctly labeled, i.e., TN
TN+FP .

F1-score is the summary measure that combines precision and recall, i.e., the harmonic mean of preci-
sion and recall. We compute F1-scores for each label, which is widely used in many software engineering
studies [7, 8, 17, 27–30].

AUC is an independent threshold measure, which is different from threshold-dependent measures (e.g.,
F1-score) that often rely on a probability threshold (e.g., 0.5). The value of AUC ranges from 0 to 1.
The higher an AUC value, the better the performance of a classifier. Previous studies consider an AUC
value of 0.7 as a promising performance score [31, 32].

6 Experiment results

In this section, we present the experiment results by answering the following research questions.
RQ1: Can E-PRedictor effectively predict whether a PR would be merged?

Approach. First, we used 10-fold cross-validation to evaluate the results of the prediction models
used in the study. In 10-fold cross-validation, we randomly divide the dataset into ten folds. Of these
ten folds, nine folds are used to train the classifier, while the remaining one fold is used to evaluate the
performance. The class distribution in the training and testing datasets is kept the same as the original
dataset to simulate real-life usage of the algorithm. Second, we also use time-aware validation to evaluate
these prediction models, which is also used in the previous studies [8, 27, 28]. In this setting, PRs are
sorted in chronological order of the created time and then divided into 10 non-overlapping windows of
equal sizes. We use the first n windows as the training data and the (n + 1)-th windows as the testing
data (n from 1 to 9). The reported performance of the models is the average of the results of all runs for
both validation settings. We also apply Wilcoxon signed-rank test [33] with Bonferroni correction [34] to
investigate whether the improvements of E-PRedictor over the baselines are statistically significant. We
used the default configuration of scipy.stats.wilcoxon, which is paired, two-tailed with 0.05 Alpha.
And we use Cliff’s delta [35], which is a non-parametric effect size, to measure the amount of difference
between the performance of E-PRedictor and the baselines.

For BERT models, we fine-tune them on the training set with the input word length of 128 and the
batch size of 100. We use AdamW provided by Hugging Face [36] as the optimizer and set the initial
learning rate to 1E−5.

Results. Tables 3 and 4 present the performance of E-PRedictor and baseline models in terms of the
metrics used in this study for 10-fold cross-validation and time-aware validation, respectively. As shown
in Tables 3 and 4, E-PRedictor achieves the best performance in terms of all metrics. In terms of AUC,
the performance of E-PRedictor is promising, i.e., 85.4% and 81.6% for 10-fold and time-aware validation
settings, respectively. The F1@Merge of E-PRedictor is 90.1% and 89.3% for 10-fold cross-validation and
time-aware validation, respectively. However, in terms of F1@Reject, the performance of E-PRedictor is
not high (i.e., 60.5% and 53.4%). This is because our data set is slightly imbalanced (the ratio of merged
PRs to rejected PRs is approximately 7:3, see Table 1). But the Precision@Reject of E-PRedictor is
75.1% in 10-fold cross-validation, which is acceptable.

Among the classical classifiers, Logistic Regression achieves the worst performance, while XGBoost has
the best performance in terms of all metrics. We also find that the performance of the prediction model
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Table 3 Results of each prediction model using 10-fold validation.

Models Accuracy (%)
Precision

@Merge (%)
Recall

@Merge (%)
F1@Merge (%)

Precision
@Reject (%)

Recall
@Reject (%)

F1@Reject (%) AUC (%)

Logistic Regression 76.0 76.0 100.0 86.4 61.4 0.10 0.20 55.7

Decision Tree 79.5 83.5 91.0 87.1 60.2 43.3 50.3 74.0

Random Forest 80.6 85.4 89.8 87.6 61.5 51.4 56.0 79.5

XGBoost 82.4 83.8 95.3 89.2 73.6 41.9 53.4 82.5

VDCNN 82.4 83.8 95.2 89.1 73.2 41.9 53.3 82.5

E-PRedictor 84.1 85.8 94.7 90.1 75.1 50.6 60.5 85.4

Table 4 Results of each prediction model using time-aware validation.

Models Accuracy (%)
Precision

@Merge (%)
Recall

@Merge (%)
F1@Merge (%)

Precision
@Reject (%)

Recall
@Reject (%)

F1@Reject (%) AUC (%)

Logistic Regression 76.7 77.0 99.3 86.7 65.9 1.40 2.20 55.6

Decision Tree 74.5 81.9 85.9 83.8 44.5 36.7 40.0 64.1

Random Forest 74.6 82.7 84.6 83.6 45.5 41.3 43.1 68.6

XGBoost 80.6 83.0 94.0 88.1 65.7 35.8 46.0 78.3

VDCNN 81.2 83.2 94.6 88.5 67.4 36.3 47.0 78.8

E-PRedictor 82.6 84.8 94.2 89.3 69.5 43.6 53.4 81.6

Table 5 Results of six variants of E-PRedictor using time-aware validation.

Models Accuracy (%)
Precision

@Merge (%)
Recall

@Merge (%)
F1@Merge (%)

Precision
@Reject (%)

Recall
@Reject (%)

F1@Reject (%) AUC (%)

Hide contributor profile dimension 81.8 84.0 94.3 88.8 67.5 39.9 50.0 78.4

Hide specific pull request dimension 81.9 84.4 93.8 88.8 67.0 42.2 51.7 80.4

Hide project profile dimension 82.1 85.1 93.0 88.8 66.7 45.6 54.0 81.2

Hide PR description 81.3 83.2 94.6 88.6 67.4 36.4 47.1 78.8

Hide PR code change 82.6 84.8 94.3 89.3 69.6 43.5 53.3 81.5

E-PRedictor 82.6 84.8 94.2 89.2 69.5 43.6 53.4 81.6

based on the deep features generated by VDCNN and manual features is similar to that of XGBoost
based on only manual features. For example, the F1@Merge of these two models is similar (89.2% vs.
89.1%). Therefore, we believe that the deep semantic features extracted by E-PRedictor are better than
those of VDCNN in predicting the acceptance of PRs.

We also find that all the adjusted p-values are smaller than 0.05, which indicates the improvement of
E-PRedictor over baselines is statistically significant at the confidence level of 95%, and of large effect
size.

E-PRedictor can effectively predict whether a PR would be merged or rejected based on the manual
features and deep semantic features.

RQ2: How important is each dimension of features used by E-PRedictor?

Approach. In this study, E-PRedictor uses manual features and deep semantic features to build
prediction models. Manual features consist of three dimensions, i.e., contributor profile, specific pull
request, and project profile. Deep semantic features come from both the description and the code change
of PRs. Thus, in this research question, we want to investigate the importance of each kind of feature in
E-PRedictor.

We build six variants of E-PRedictor by hiding one dimension of features. We use 10-fold cross-
validation to evaluate the performance of six variants of E-PRedictor. We also apply the Wilcoxon
signed-rank test with Bonferroni correction to measure whether the improvement of E-PRedictor over
these variants is statistically significant.

Results. Table 5 presents the results of six E-PRedictor variants obtained through 10-fold cross-
validation. As shown in Table 5, the original E-PRedictor outperforms these six variants in terms of all
metrics. This indicates that the information on each feature dimension contributes to the prediction of
PR acceptance. The improvement of the original E-PRedictor on the variants is statically significant (i.e.,
all p-values are less than 0.05) and at least of small effect size, except the variants which hide PR code
change or hide project profile dimension got negligible effect size. This may indicate that the different
PRs have less in common at the code level and project level. So less experience can be gained from
historical information.

The PR description is the most discriminative dimension, with the F1@Reject of 47.1%. This indicates
that the quality of the description of PRs might have an important impact on their acceptance. In terms
of AUC, the variant that hides the manual features in the contributor profile dimension achieves the
worst performance, i.e., 78.4%. For the other dimensions, the variants have similar performance in terms
of all metrics.

The deep semantic features from PR description and the manual features in the contributor profile
dimension are the two most important dimensions. However, using all dimensions of features is better.
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Table 6 Results of cross-project setting of E-PRedictor.

Projects
F1@Merge (%) F1@Reject (%) AUC (%)

XGBoost Ours XGBoost Ours XGBoost Ours

flutter/flutter 85.0 85.7 61.1 47.0 80.5 73.6

nodejs/node 90.9 90.5 13.3 20.0 68.1 69.6

kubernetes/kubernetes 86.3 77.9 29.0 47.2 66.4 72.5

angular/angular 46.6 41.8 71.2 57.2 73.1 74.5

mrdoob/three.js 87.8 87.1 35.2 44.8 76.8 78.7

puppeteer/puppeteer 90.0 90.1 21.5 40.8 74.9 77.6

vercel/next.js 88.7 88.8 17.5 43.3 72.4 78.1

tensorflow/models 80.0 80.4 45.5 44.8 75.9 75.8

mui-org/material-ui 90.6 89.1 27.2 32.7 74.0 76.1

PanJiaChen/vue-element-admin 82.8 78.9 56.9 67.0 80.6 86.2

Mean 82.9 81.0 37.8 44.5 74.3 76.3

RQ3: How effective is E-PRedictor in a cross-project setting?

Approach. The experiment results in RQ1 and RQ2 show the effectiveness of E-PRedictor on the
PRs in our collected dataset. However, a new project may not have enough related data for building a
model. Hence, in this RQ, we want to explore the generalizability of E-PRedictor on predicting whether
a PR will be merged or rejected in a cross-project setting. For each project, we build a prediction model
of E-PRedictor based on the PRs of the remaining projects and use the PRs of this project as the testing
data. We also use XGBoost built on the manual features as the baselines because XGBoost achieves the
best performance among the classical classifiers.

Results. Table 6 presents the results of F1@Merge, F1@Reject, and AUC of E-PRedictor and XGBoost
in the cross-project setting. Due to the page limitation, we only show the results of the prediction models
for the top-10 popular projects in our dataset (see Table 1). As shown in Table 6, the performance
of E-PRedictor is less to that of XGBoost in terms of F1@Merge (81.0% vs. 82.9%). E-PRedictor
has better performance than XGBoost for some projects (e.g., flutter/flutter), while E-PRedictor cannot
outperform XGBoost for some projects (e.g., nodejs/node). In terms of F1@Reject and AUC, E-PRedictor
outperforms XGBoost for most projects. However, the average values of F1@Reject of E-PRedictor and
XGBoost are low, i.e., 37.8% and 44.5%, respectively. This indicates that predicting whether a PR will
be rejected in the cross-project setting is difficult. The average AUC of E-PRedictor is 76.3%, which
is a promising performance score [31, 32]. Besides, the improvement of E-PRedictor over XGBoost on
F1@Reject is statically significant. Overall, E-PRedictor outperforms XGBoost built on the manual
features, which indicates that the deep semantic features play an important role in the prediction of PR
acceptance in the cross-project setting.

E-PRedictor can effectively predict the acceptance of PRs in the cross-project setting in terms of
F1@Merge and AUC. However, its performance in predicting whether a PR will be rejected is not very
good.

RQ4: How effective is E-PRedictor built on historical data of a single project?

Approach. In this RQ, we want to explore whether the prediction models built on historical data for
a specific project can effectively predict the acceptance of future PRs. We use the time-aware validation
used in RQ1 to evaluate the results of the prediction models for a single project. We also use XGBoost
built on manual features as the baseline and study the importance features of the input in it.

Results. Table 7 presents the results of F1@Merge, F1@Reject, and AUC of E-PRedictor and XGBoost
in the single-project setting for top-10 popular projects. In terms of F1@Merge and AUC, E-PRedictor
outperforms XGBoost for most projects and achieves a promising performance (i.e., 76.9% of F1@Merge
and 69.4% of AUC). However, the improvement of E-PRedictor over XGBoost on F1@Merge, F1@Reject,
and AUC is minor. In other words, interpretable manual features play a large predictive role in this RQ.
Hence, we explore the importance of manual features with XGBoost.

We found that the contributors’ previous merge experience in that project was generally of high
importance. However, as illustrated in Figure 3, the y-axis indicates the feature importance, while the x-
axis corresponds to the number of folds for time-aware ten-fold training for various projects. On different
projects, we also found different patterns of dynamic of these features’ importance in the time dimension.
The importance of ratio of merged pr in this proj before pr in project flutter/flutter is increasing, but is
decreasing in project angular/angular. It changes more smoothly in nodejs/node, but fluctuates more
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Table 7 Results of single project setting using time-aware validation.

Projects
F1@Merge (%) F1@Reject (%) AUC (%)

XGBoost Ours XGBoost Ours XGBoost Ours

flutter/flutter 83.2 83.4 40.6 42.5 74.7 75.5

nodejs/node 88.1 89.1 18.1 17.9 65.1 65.7

kubernetes/kubernetes 85.4 86.2 22.4 31.2 66.3 69.4

angular/angular 27.4 29.2 85.3 83.3 60.9 63.8

mrdoob/three.js 88.2 88.2 28.7 27.7 73.5 73.6

puppeteer/puppeteer 88.9 88.5 29.1 33.4 69.6 72.6

vercel/next.js 88.3 87.5 19.6 21.3 67.7 67.7

tensorflow/models 75.9 75.1 44.6 37.4 68.9 69.6

mui-org/material-ui 88.2 88.2 27.3 27.3 68.1 68.1

laravel/laravel 51.1 53.8 67.2 65.4 65.4 68.4

Mean 76.5 76.9 38.3 38.7 68.0 69.4
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Figure 3 (Color online) Trends of importance in XGBoost of “ratio of merged PR in the project before the submit created”.

in the tensorflow/models. These patterns may reflect changes in the demographics of developers in the
project. The changes in the importance of experiences in development cooperation may reflect changes in
the difficulty of OSS Newcomer participating. Therefore, based on these interpretable manual features,
our method can also quantify the status of the project for maintainers.

E-PRedictor built on historical data from a single project can effectively predict the acceptance of its
future PRs. Also, the manual features in it are of great help to prediction. In particular, a developer’s
experience that merged PR within the same project plays an important role in predicting. And the
dynamic pattern of manual features’ importance can be indicators of project status.

7 Discussion

7.1 Implications

We have the following implications based on the findings in the study.
Combining deep semantic features and manual features is helpful to predict whether a

PR can be merged or rejected when it is created. Most prediction models of previous studies are
built on the data after a PR is created for a while and achieves excellent performance. For example, the
AUC of the Random Forest in the study of Dey and Mockus [7] is 0.95. Compared to these previous
studies, our objective is to predict the acceptance of PRs when created and propose E-PRedictor that
combines the manual features and deep semantic features. Although E-PRedictor cannot achieve such
high performance, its performance is still promising (i.e., 85.4% of AUC in 10-fold cross-validation, see
RQ1). We also find that each feature dimension in E-PRedictor contributes to the prediction of PR
acceptance (RQ2). There are many other factors affecting the change of PRs being accepted. For
example, there are 50 variables mentioned by Dey and Mockus [7]. In the future, we will extract more
features to enhance E-PRedictor.



Chen K X, et al. Sci China Inf Sci May 2025, Vol. 68, Iss. 5, 152104:13

The quality of PR description plays an important role in the acceptance of PRs. In RQ2,
we find that the deep features of the PR description are an important dimension in E-PRedictor. We
think that the PR description gives the first impression to integrators, and its quality has a significant
impact on the acceptance of PRs. Many OSS projects on GitHub have adopted PR templates to help
contributors write a good PR description with essential information 4). Thus, we suggest that contributors
write a clear and high-quality PR description.

There is still room for improvement in predicting whether PR will be rejected. The
experiment results show that the F1@Reject of E-PRedictor is not high, e.g., only 60.5% in 10-fold
cross-validation. The reason might be the imbalance of data (the ratio of merged and rejected PR is
approximately 7:3). However, the precision of E-PRedictor in predicting rejected PRs is acceptable (i.e.,
75.1% in 10-fold cross-validation). Thus, we think E-PRedictor can still help integrators save much effort
in practice since the rate of true positives on rejected PRs is high. Some technologies (e.g., SMOTE [37])
for imbalanced data can be used to improve the performance of E-PRedictor in predicting whether a PR
will be rejected. Furthermore, we need to investigate whether there are some special factors affecting the
rejection of PRs to enhance our approach.

Furthermore, our method is a useful auxiliary tool for different participants in open source communities:
For researchers, we propose a modified merge judgment method. The PR of most projects will be merged
by GitHub merge, and commit merge is also a common form. However, there are PRs that merge through
comments, which also need the attention of researchers. In predicting the rejected PR performance,
compared with only using the historical information of a single project (38.3% vs. 38.7% in Table 7), the
PR description information across projects can improve the performance (37.8% vs. 44.5% in Table 6).
This may be that the historical data of the same project are not abundant, while the cross-project data
are abundant, and there may be similar unreasonable PR content that is helpful to detect rejected PR.
For PR authors, if the model indicates that a PR can be merged, it could encourage PR authors to
persist rather than give up easily. Additionally, the model can also expedite reminders for spam PRs
created by new contributors and prevent disruption for project administrators. The historical merge rate
is a crucial factor in motivating PR authors to persevere, as highlighted by the feature enhancement.
Because the characteristics of a developer’s past experience are one of the important parts of predicting
the PR result. For OSS newcomers, it may be possible to choose a PR with a simple task to practice
step by step. And OSS newcomer can imitate the merged PR description content to create PR. For PR
reviewers, some PRs may only be newcomer tests or spam PRs, which is particularly common in popular
projects. Perhaps through our model method, we can directly close these PRs without directly disturbing
the project integrators in the form of emails. In addition, if there is a misjudgment, the PR creator can
also reopen the PR.

7.2 Threats to validity

Threats to internal validity refer to errors in our code and experiment bias. We use default settings to
pre-train the Bert models and classifiers used in our study. Moreover, to mitigate the bias of results
selection, we run 10-fold cross-validation and time-aware validation to evaluate the performance of E-
PRedictor and baselines and report the average performance. We focus on changes in feature importance
to reduce the impact of different meanings of importance in XGBoost and reality. We also double-check
our code; however, there may be some errors that we do not notice. Another threat to internal validity is
the criteria that we determine whether a PR is merged or rejected. Since PRs can be merged in different
ways [3], we consider three heuristics to search the merged PRs by mining the PRs in a project. However,
we still might miss some PRs since the heuristics we use might not cover all merged PRs.

Threats to external validity refer to the generalizability of our findings. The PRs in our study are
from 49 OSS projects with the most stars. These projects cover different categories (e.g., front-end,
framework) and use different programming languages. The number of PRs in our study is similar to
previous studies [7]. Thus, we believe that these projects are representative. In the future, we plan to
collect PRs from more OSS projects.

Threats to construct validity refer to the suitability of our evaluation measures. We use accuracy, F1-
score, and AUC, which are widely used by prior studies to evaluate the effectiveness of prediction models

4) Creating a pull request template for your repository. https://docs.github.com/en/communities/using-templates-to-

encourage- useful-issues-and-pull-requests/creating-a-pull-request-template-for-your-repository. Accessed: Apirl 8, 2022.
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in software engineering studies [7, 8, 27, 28]. Thus, we believe that there is little threat to construct
validity.

8 Related work

In recent years, there are many studies that analyze pull requests in different ways, such as PR assignment
and prioritization, the exploratory studies of the PR quality and PR acceptance.

For example, Veen et al. [38] proposed an approach named PRioritizer to prioritize multiple concurrent
PRs by considering multiple factors (e.g., the size of code change, the existence of test cases). Gousios
et al. explored both the perspective of the PR creators [39] and the PR integrators [2] by conducting
large-scale surveys. They pointed out the challenges and practices in PR creation and merging scenarios.
There are some studies that focus on recommending appropriate reviewers for pull requests [40–42].

Many researchers also investigated factors that affect the chance of PRs getting accepted and built
prediction models based on these factors. Tsay et al. [5] collected PRs from GitHub Archive and analyzed
pull requests in different aspects, including the code changes in PR, the contributors and their social
network, and the characteristics of the project. They found that social and technical ability both affect
the acceptance of PRs. Gousios et al. [3] found that the decision to merge a pull request is mainly
influenced by whether the pull request modifies recently modified code by analyzing 291 projects. Yu
et al. [43] collected the information of the continuous integration (CI) tools to analyze the content of
PRs from 40 projects in three dimensions of features, i.e., project, pull request, and contributor. They
find that the author’s experience has a positive impact on PR, while the number of comments contained
in PR has a negative impact on PR. Dey and Mockus [7] used PRs in NMP projects to analyze the
factors affecting the acceptance of PRs. They built the Random Forest model based on 14 features from
multiple dimensions, including the individual aspects of the contributor, the PR’s own information, and
the characteristics of the NPM projects. Jiang et al. [17] proposed an approach named CTCPPre to
predict a PR will be merged. CTCPPre builds an XGBoost model based on the features of code, text,
contributor, and project. Zhang et al. [12, 44] summarized the features used in previous studies on PR
acceptance prediction and used mixed-effect Logistic Regression models to explain the impact of features
on the final state of PR. The PR acceptance in some specific projects is also investigated, such as Linux
kernel [45], Firefox [46], Apache [46], and Active Merchant (a commercial project developed by Shopify
Inc.) [6].

Compared to these previous articles that study the acceptance of PRs, our proposed approach not only
considers different dimensions of manual features including contributor, pull request, and project, but
also extracts deep semantic features using BERT models. Additionally, the prediction models of these
previous studies are built on the data after a PR is submitted for a while. Our approach performs the
prediction of PR acceptance when PRs are initially created, which is more useful in practice.

9 Conclusion and future work

Previous work on predicting the acceptance of PRs often works at the time after PRs are created for a
while, which cannot be applied in practice. In this paper, we proposed an approach named E-PRedictor
that can predict the acceptance of PRs at their creation time. E-PRedictor combines three dimensions of
manual features and deep semantic features by encoding the description and code change of PRs. Then,
it builds an XGBoost model based on the extracted features. We collected 475192 PRs from 49 OSS
projects to evaluate E-PRedictor. The experiment results show that E-PRedictor effectively predicts
whether a PR will be merged or rejected at the creation time. In future work, we plan to collect more
PRs from more OSS projects. We also want to collect more information related to PRs and try different
deep neural networks to build prediction models. We believe that rich description content and code data
can train a more general and robust E-PRedictor model. As a future direction, it would be worthwhile to
explore methods such as feature engineering to identify the optimal feature combination from the three
feature groups in order to predict the acceptance of PR with minimal manual features. Moreover, by
mining the correlation between the features when the PR is created and the dynamic features when the
PR is opening, better prediction results of the PR should be obtained.
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