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Thanks to its ubiquity, using radio frequency (RF) signals

for sensing has found widespread applications. In traditional

integrated sensing and communication systems, such as joint

radar-communication systems, common sensing tasks in-

clude target localization and tracking. Recently, increas-

ingly intelligent systems, such as smart agriculture, low-

altitude economy, and smart healthcare, have demanded

more comprehensive and continuous information sensing

capabilities to support higher-level decision-making. RF

sensing has the potential to offer both spatial and tempo-

ral continuity, meeting the multi-dimensional sensing needs

of these intelligent systems. Consequently, numerous ad-

vanced systems have been proposed, expanding the appli-

cation scope of RF sensing to be more pervasive, includ-

ing discrete state ubiquitous sensing tasks (such as material

identification [1]), and continuous state ubiquitous sensing

tasks (such as health monitoring [2]). With the advent of

the 6G era, it is anticipated that the sensing potential of RF

systems will be further unleashed.

However, despite the vigorous development of exist-

ing perception applications, the current evaluation schemes

mainly rely on posterior experimental evaluations. More-

over, different tasks have differences. For example, the po-

sitioning task often uses positioning error as an indicator,

while material recognition uses accuracy as an indicator.

Although experimental evaluation is a crucial evaluation

method, due to the severe impact of environmental inter-

ference on experimental results (for example, the research

by Chen et al. [3] demonstrated that simply opening a win-

dow, a minor environmental change can cause the accuracy

of indoor localization algorithms to drop by 80%) and the

high cost of conducting comprehensive experimental evalua-

tions, increasingly intelligent systems often involve multiple

types of perception tasks. If an abstract model can be used

to represent the utility of heterogeneous perception tasks,

it will help optimize the resources (such as spectrum and

computing power) of intelligent integrated sensing and com-

munication (ISAC) systems through collaborative optimiza-

tion.

Traditionally, the system sensing capability usually be

evaluated by analyzing how the received signals reflect the

channel status, such as sensing mutual information I(H;Y ),

where Y is the received signal and H is the channel sta-

tus [4]. However, it is difficult to obtain complete informa-

tion about the signal itself. We can only identify the sensory

objects by analyzing several received signal features, such

as the time-of-arrival (ToA), angle-of-arrival (AoA), and re-

ceived signal strength (RSS). The relationship between the

sensing capability of such features and the signal itself is

ambiguous. For example, when containing the same level

of noise, the orientation difference of antennas may lead to

an AoA estimation error exceeding tenfold [5]. In addition,

many sensing tasks are discrete (for example, in personnel

presence detection, there are only two states: present and

absent), so some common indicators for estimating the per-

formance of continuous parameters (such as the Cramér-rao

lower bound) cannot be directly adapted.

In this study, we propose a general sensing channel en-

coder model to help determine the sensing capability of a

discrete ubiquitous sensing system—the upper bound and

lower bound of error in restoring the sensed object from

given wireless signal features. We consider a system per-

forming discrete sensing tasks.

Definition and bounds. A typical sensing process often

comprises several components: the target status (W ) to be

sensed, the feature (Xn) designed to sense the status, the

sensing channel embedding (Y n) obtained through the sens-

ing system, and the outcome (Ŵ ) derived after processing

the signal. We analyze the sensing system as shown in Fig-

ure 1. The status W has m possible values, which together

form the set W = {w1, . . . , wm}. The probability that the

target is in the i-th status is Pr(W = wi) = p(wi). To fa-

cilitate the sensing of statuses, we construct n-dimensional

independent features Xn to represent the status W . Given
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Figure 1 (Color online) Sensing channel encoder.

the status as wi, the feature Xn(wi) is given by Xn(wi) =

[X1(wi), . . . ,Xn(wi)]. Upon transmission and subsequent

data processing, the receiver is likely to receive this feature

with a probability denoted as p(yn|xn), which we represent

as Y n. Subsequently, the receiver assesses the condition of

the sensed target utilizing the acquired features Y n and de-

coding rules g. The result is given by Ŵ = g(Y n). For

instance, in a task of material identification using RF sig-

nals, the targets possess varying materials (W ). We exploit

the characteristic that different materials affect RF signals

differently to design feature Xn, which are related to the

amplitude of RF signals. Then, using a receiver that cap-

tures electromagnetic waves in the space and processes them

according to a sensing algorithm, we acquire the sensing

channel embedding denoted as Y n. Finally, based on cer-

tain decision rules, we correlate Y n with the corresponding

Xn to ascertain the result Ŵ .

Definition 1. The discrete task mutual information

(DTMI) is defined as the mutual information between the

feature Xn and the channel embedding Y n, i.e., I(Xn; Y n).

Definition 2. The conditional error probability ξi when

the target status is wi is defined as

ξi = Pr(Ŵ 6= wi|W = wi). (1)

Definition 3. The expected value of the error, defined as

Pn
E , is articulated as follows:

Pn
E =

m∑

i=1

p(wi)ξi. (2)

Theorem 1. For a sensing task W with m statuses, we use

n independent features to describe the status of the target.

The expected value of the error Pn
E

satisfies the following

lower bound:

Pn
E >

H(W )− I(Xn;Y n)−H(Pn
E
)

logm
,

where H(Pn
E
) = −Pn

E
logPn

E
− (1− Pn

E
) log(1 − Pn

E
).

Theorem 2. For a sensing task with m statuses, we use

n independent features to describe the status of the target.

For sufficiently large n, the expected value of the error Pn
E

satisfies the following upper bound:

Pn
E 6 ε+

m∑

k=1

p(wk)
m∑

j 6=k

23nε−
∑n

i=1
I(Xi(wj);Yi(wk)).

Theorem 3. For a sensing task with m = 2nR statuses,

we use n independent features to describe the status of the

target. For a sufficiently large n, if R satisfies the following

equation:

R < min
k 6=j

I(X̄n(wk); Ȳ
n(wj)) − 3ε, (3)

where X̄(wj) and Ȳ (wj) are the mean Xn(wj) and Y n(wj),

we have ξj → 0.

The proof of the theorem is in Appendix A. It can provide

theoretical explanations for existing sensing phenomena, as

described in Appendix B.

Results. We validate the effectiveness of the proposed

sensing system model in several real-world cases, including

binary classification tasks such as Wi-Fi-based human iden-

tification and radio-frequency identification (RFID)-based

displacement detection, and multi-classification tasks such

as direction sensing based on electromagnetic signals and

device identification based on traffic features. The results of

the case study are presented in Appendix C.

Conclusion. In this study, we establish a channel model

suitable for ubiquitous sensing, where we associate the sens-

ing task with the received channel embedding through dis-

crete task mutual information. For discrete task sensing

channels, we provide upper and lower bounds for the ex-

pected error of sensing based on discrete task mutual infor-

mation, and give a sufficient condition for achieving loss-

less sensing. The abstract model we constructed can con-

sistently represent the utility of heterogeneous perception

tasks, which will help optimize the resources of intelligent

ISAC systems through collaborative optimization. We con-

duct case studies on four common sensing applications based

on experimental data and simulation data. The results show

that discrete task mutual information has a strong similarity

with sensing accuracy. This provides a theoretical evalua-

tion method for the performance of integrated sensing and

communication systems beyond experimental evaluation.
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