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Appendix A ML-based algorithm for beamforming design

To further exploit the characteristics of the input, we map the complex-valued input to real-valued parts as

Ψ̃τ
n = M([Re{Ψτ

n}, Im{Ψτ
n}]), (A1)

where M(·) denotes the mapping function. The term Ψτ
n = [Hn−1, . . . ,Hn−τ ] is the historical channel information, where

Hn = [h0,n,h1,n, . . . ,hK,n] encompasses the channel information of all users and the target. At the output of the network,

we map the real-valued parts back to the complex-valued input as

Wn = M′(gω(Ψ̃
τ
n)), (A2)

where M′(·) represents the mapping function that generates the complex-valued beamforming matrix. gω(·) denotes the

ED network with trainable parameters ω.

The ML-based method comprises two main phases: offline training and online estimation. In the offline training phase,

we transform the unconstrained optimization problem, into a neural network loss function, i.e.,
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where ω denotes a set containing all the parameters of the neural network and w
(i)
k,n denotes the i-th element of W

(i)
k,n

generated by the EDnet. The operator max(·, ·) is the maximum operation implemented by a rectified linear (ReLU)

function [2], and Ns is the sample size. Accordingly, the EDnet can perform back propagation (BP) to optimize parameters

ω for a well-trained model.

The training set is generated by employing the Monte Carlo method, as given by

(Ψτ
n,Hn)Ns

= {(Ψτ(1)
n ,H

τ(1)
n ), . . . , (Ψ

τ(Ns)
n ,H

τ(Ns)
n )}, (A4)

where (Ψ
(i)
n ,H

(i)
n ) is the i-th training example of the proposed network with Ψ

(i)
n being estimated historical channels

from time slot n − τ to n − 1, implicitly including sensing information of interest, i.e., distance. Based on the above, the

beamforming design objective can be reformulated as the minimization of the function stipulated in (A3). Consequently,

EDnet adopts the stochastic gradient descent algorithm (e.g., Adam [1]) to optimize the parameters ω for training the

model. Based on universal approximation theorems [1], it is possible to optimize the parameters to their optimal values,

ωopt, given a sufficiently large training set.

In the online estimation phase, the test dataset (Ψ̇τ
n, Ḣn) representing historical vehicle information is fed to the neural

network. As a result, the process of online estimation can be expressed as

Ḟn = M′(gω(Ψ̇
τ(i)
n )). (A5)
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Figure B1 The comparison of CRLB performance with various baselines.
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Figure B2 The CRLB performance comparison with different antenna numbers.

Appendix B Simulation results

The system parameters are set as follows: σ2
u = σ2

v = −80 dBm, Nt = Nr = 32, and K = 2. For motion parameters,

the UAV’s position during an ISAC frame is fixed at v′
n = [0m, 0m], while the target’s initial position is given by vn =

[x0+∆x, v0+∆v], where ∆x ∼ N (0, 1) and ∆y ∼ N (0, 1) represent random variables. The stationary users1) are positioned

at [10m, 15m] and [20m, 25m], respectively. Within the observation model, the matched-filtering gain is Gm = 10, the

rate threshold is set as Rt = 2 bits/Hz, with both ρ1 and ρ2 set to 103. We employ the PyTorch deep learning framework

to implement EPDnet. The network is trained using the Adam optimizer with an initial learning rate of 10−3. To enhance

training stability, the learning rate is multiplied by 0.95 when fluctuations in the training loss are observed. Additionally,

the weight decay in the optimizer is set to 10−3. The training set is generated using the Monte Carlo method with a sample

size of 8,000.

To assess the performance of the proposed method for beamforming design, we conduct a comparative analysis with

two benchmarks. As shown in Fig. B1, we compare EDnet against both random beamforming and a perfect beamforming

design method. It is evident that random beamforming performs poorly due to the misalignment between the target and

the UAV. In contrast, EDnet demonstrates satisfactory sensing performance, achieving a CRLB value for distance that

closely approaches that of the perfect beamforming method. This enhancement is due to EDnet’s capability to effectively

map historical channel information to the desired beamforming matrix. Additionally, we observe that sensing performance

degrades as the communication rate threshold increases. This outcome is expected, as the objectives of the sensing task

and the communication task are not fully aligned within the ISAC system.

To investigate the impact of antenna numbers on sensing performance, we evaluate the CRLB values across different

transmit powers and antenna configurations. As illustrated in Fig. B2, the CRLB values consistently decrease as the

transmit power increases, eventually saturating in the high-power region. Specifically, when Nt = Nr = 16, the CRLB

decreases from 9.21× 10−2 to 3.86× 10−7, stabilizing around 3× 10−7. This is attributed to the enhanced received SNR at

the UAV, which mitigates noise effects and enables more accurate angle estimation. However, when the number of antennas

is insufficient (e.g., Nt = Nr = 4), the system exhibits degraded performance due to limited beamforming capability and

increased interference between beams, which hinders accurate target localization.
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1) In mobile user scenarios, tracking user trajectories is essential, necessitating optimization of the network architecture. Note
that such optimization does not significantly affect overall system performance, as the system’s performance is predominantly
determined by the received SINR at the users.
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