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Abstract In indoor navigation tasks, the use of floor plans is an efficient and cheap way to provide globally consistent

metric and topological information about various environments. However, most studies on floor-plan-based navigation have

relied on LiDAR rather than RGB cameras because of the difficulty of performing cross-modality matching. In this paper, we

instead focus on the visual indoor navigation problem and propose VF-Nav, a visual floor-plan-based point-goal navigation

algorithm combining a brain-inspired localization method with a topological planning technique. In the proposed approach,

continuous and accurate localization is achieved by combining the metric information provided by the floor plan with a

brain-inspired localization model. Then, the global path to the point goal is generated by building the topological map from

the floor plan, and a short-term target is provided at each step. Finally, a reinforcement learning control module guides the

robot to reach each short-term target. The experimental results on a simulated point-goal navigation dataset demonstrate

the excellent performance of the proposed approach in a complicated indoor environment. Our method achieves a success

rate of up to 88% and a success weighted by path length of 71%.
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1 Introduction

Autonomous navigation is one of the most crucial tasks for intelligent mobile robots. Navigation tasks can
be categorized into point-goal, image-goal, object-goal, and exploration tasks, among others. Traditional
navigation methods typically rely on precise occupancy maps generated by LiDAR to implement plan-
ning and control strategies, requiring carefully designed control algorithms [1, 2]. Such approaches limit
navigation flexibility, whereas vision can provide richer semantic and contextual information. Therefore,
this paper focuses on point-goal navigation tasks with a vision-only sensor setting commonly used in
many robotics applications (i.e., [3–5]). In particular, the navigation strategy instructs a robot equipped
with an RGB camera to reach a given target specified by its coordinates [6].

Recently, learning-based methods have been developed to solve the point-goal navigation task [5,7,8],
and promising results have been obtained by training networks through reinforcement learning (RL)
in simulated environments [3, 4, 9, 10]. However, all relevant previous studies were based on a critical
assumption that the robot can achieve perfect localization using absolutely accurate GPS+Compass
sensors. This is obviously not feasible for robots in practical indoor applications where the key gap
is to address the accurate localization problem. Traditional methods for visual localization, such as
simultaneous localization and mapping (SLAM) [11, 12], may suffer from position drift, especially in
environments with weak textures and over long-distance trajectories. The introduction of a prior map
is an effective way to eliminate drift, while the commonly used point cloud map typically requires large
storage and significant labor costs to generate an accurate point cloud map. For indoor applications, a
floor plan can serve as a prior map; it is readily available for many architectures and only requires a small
amount of storage. Moreover, the topological information provided by floor plans can be used for path
planning, facilitating more efficient navigation.
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Figure 1 (Color online) System flow of our navigation framework. Our framework consists of three components: localization

module, planning module, and control module.

Most of the current studies on floor-plan-based localization or navigation rely on the use of LiDAR
[13–15]. However, LiDAR is costly and lacks robustness against object occlusion or furniture movement.
To reduce deployment costs, visual floor plan localization approaches have been proposed recently [16,17],
but only a single image retrieval problem has been considered. The direct use of such methods suffers
from navigation performance degradation when indoor environments have rooms with similar structures.
Motivated by the observation that previous studies have performed less robustly in environments with
weak textures or similar structures, we integrate continuous attractor networks with feature extraction
and matching methods proposed previously [16] to obtain an accurate and robust localization result. A
vision-only learning-based method with a complete localization and navigation pipeline is proposed to
realize the point-goal navigation task using floor plan maps as prior information.

More specifically, we adopt the classical architecture of “localization-planning-control” as our frame-
work, as shown in Figure 1. In the localization module, visual descriptors and a brain-inspired neural
model are utilized to achieve cross-modal localization with the visual input, odometry input, and floor
plan. Simulation results verify that the accuracy of the proposed localization method is significantly su-
perior to those of pure odometry and similarity matching methods. In the planning module, a topological
map is created from the floor plan, which is used for global path planning. In the control module, using
the generated global path and current image input, we employ a deep RL network to output discrete
actions for the robot. A safe route is then generated to reach the local target while avoiding potential
obstacle collisions. The main contributions of this study are as follows.

• Based on a floor plan, a localization method that integrates learning-based visual features with
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continuous attractor neural networks (CANNs) is proposed for indoor navigation.
• We present a comprehensive floor plan-based indoor navigation framework VF-Nav that integrates

localization, planning, and execution.
• Through experiments and ablation studies, we demonstrate that VF-Nav surpasses existing indoor

navigation strategies and exhibits robustness against errors introduced by odometry and floor plans.

2 Related work

2.1 Point-goal navigation

In a point-goal navigation task, a robot is given the coordinates of a target point with respect to the
starting position, and the objective is to navigate to the target point using its sensory input [6]. Tra-
ditional approaches divide this problem into the geometric mapping of environments [11, 12] and path
planning [18,19] to the target point. However, recent studies have indicated that learning-based solutions
might be more robust. For example, neural networks have been introduced to construct a cognitive map
from RGB-D images and plan paths to a target point [5, 7, 8]. Along with the rapid development of
simulation platforms [3, 9, 20] and RL algorithms such as proximal policy optimization (PPO) [21] and
decentralized distributed PPO (DD-PPO) [4], end-to-end networks extensively trained by RL in simulated
environments have shown strong performance. In this respect, a previous study [3] presented Habitat,
a simulation platform for training and evaluating virtual robots, which employed PPO to train robots
for learning point-goal navigation capabilities. Furthermore, a larger dataset [9] and a training approach
utilizing additional computational resources [4] enabled robots to achieve nearly perfect performance in
point-goal navigation tasks. Nevertheless, all these studies operated under the crucial assumption that
robots can attain excellent localization using impeccably accurate GPS+Compass sensors. In practical
applications, especially for indoor robots, this is obviously unfeasible.

Current studies on realistic point-goal navigation problems, such as the case without global positioning
equipment, mainly rely on a convolutional neural network visual odometry at every step to obtain the
current localization result [10, 22, 23]. However, the main issue with such methods is that the localiza-
tion accuracy inevitably drifts and results in the failure of navigation tasks in long-distance applications.
Moreover, the simulations conducted in the current literature primarily considered cases where the start-
ing and target points were distributed in nearby rooms, reducing their applicability in real environments.
We also demonstrate that, when navigating through multiple rooms, end-to-end RL networks achieve
suboptimal performance. Instead of end-to-end approaches, we propose a modular navigation method
where each module handles a specific subtask. This reduces the performance requirements and train-
ing complexity for each network component. In fact, modular methods have been shown to outperform
end-to-end approaches in other navigation tasks [24, 25], and we follow such a framework in this paper.

2.2 Floor-plan-based localization

As mentioned above, it is unfeasible for indoor robots to be equipped with absolutely precise GPS+
Compass in reality. Traditional solutions for estimating robot position are SLAM algorithms, such as
ORB-SLAM2 [11] and LSD-SLAM [12], which rely on feature point extraction and may suffer from sparse
texture scenes and long-term pose drift. Therefore, a natural idea is to introduce a map to enhance
localization accuracy, and classical solutions in this respect include iterative closest point (ICP) [26] and
normal distributions transform [27]. However, these methods are computationally costly and heavily
rely on hard-to-generate high-quality point clouds. Meanwhile, leveraging readily available architectural
floor plans, which primarily represent the fixed elements of buildings such as walls, windows, and doors,
can serve as a cheap and effective way to improve localization accuracy and avoid accumulated drift.
Previous studies [13–15] primarily utilized LiDAR to perceive the surrounding environment and achieve
localization within a floor plan using particle filters [28] or ICP [26]. Considering that LiDAR is expensive
and such geometric-measurement-based methods have limited robustness when facing object occlusions,
the use of RGB images can lower the deployment cost and provide additional semantic information to aid
navigation tasks. The floor-plan-based localization problem has previously been considered using RGB
images as input [16,17,29]. These studies used a learning-based approach to separately calculate feature
descriptors for the image and the points in the map and obtain the localization result by comparing their
similarity. For instance, previous studies [16, 17] sampled points in a map and rendered their feature
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descriptors using a learned codebook or a network, whereas another study [29] directly generated a latent
floor plan from an original floor plan using a U-Net [30]. These methods demonstrated their capability
to learn a common feature space for two distinct modalities (i.e., vision and floor plan). We extend the
above studies from a single image retrieval problem to the case of continuous trajectory estimation by
combining the descriptors obtained from a brain-inspired localization model.

2.3 Brain-inspired SLAM

In contrast to geometric technologies, numerous animals exhibit the ability to robustly map and nav-
igate within unfamiliar environments by relying on their brain activity. The navigation capability of
mammals’ brains is thought to depend on the hippocampus, which has been shown to achieve spatial
localization based on the integration of self-motion signals and calibration from visual signals [31]. The
hippocampus contains several kinds of spatially encoding cells that have strong spatial characteristics
when rodents are moving. Some specific place cells are activated when rodents reach corresponding lo-
cations in their environment and fire to a lesser degree as they move away [32]. Head direction cells are
activated when a rodent’s head is at specific global orientations, and their activity is not influenced by the
rodent’s position [33, 34]. With the discovery of the spatial neural mechanism in the brain, some brain-
inspired methods based on place and head direction cells have been developed to achieve localization
in two-dimensional (2D) or three-dimensional (3D) environments. For instance, previous studies [35–37]
developed RatSLAM, a rodent brain-inspired SLAM algorithm, which successfully performed localiza-
tion, mapping, and navigation in suburb and office environments. Using 3D spatial representation in the
brains of bats, rats, and humans, other studies [38, 39] expanded the RatSLAM to 3D using a 3D place
cell model. Among these brain-inspired studies, CANNs play a crucial role in modeling the behavior
of place and head direction cells. CANN is a type of neural network model with fixed weights between
neural units and can converge to specific states in the absence of external input. Although existing brain-
inspired localization models have demonstrated good performance, they primarily rely on loop closure
detection, which is only available when robots encounter previously visited locations. In this work, we
introduce a methodology that integrates floor plans to enable the continuous calibration of localization
at each step rather than limiting it to occurrences of loop closure.

3 Problem formulation and system overview

In the point-goal navigation task, the target position relative to the initial point is supposed to be known
and the action space of the robot is considered to be discrete—comprising stop, move forward, turn left,
and turn right. In our setting, noise is added to the robot’s actuation. The 2D architectural floor plan
denotes walls, doors, and windows of a floor of a building, whereas unstructured elements like tables
and chairs are not considered. The robot is equipped with a panoramic camera and noisy odometry. In
real-world scenarios, the odometry sensor can be provided by a wheel encoder, IMU, or other equipment.
In our simulation environment, we simulate odometry by adding noise to the true relative pose between
two steps.

The system overview is shown in Figure 1. The system comprises a localization module, a planning
module, and a control module. In particular, the localization module comprises a visual front-end per-
ception module and a brain-inspired model. In the visual front-end perception, feature descriptors for
sampled points in the floor plan are prepared before the task. Simultaneously, the feature descriptor of
the observed panoramic image is computed at each step and used to calculate a score map to indicate
the possibility of each location. Then, the score map, along with the odometry information, is processed
by the brain-inspired model to update the robot’s position. The planning module utilizes the topological
graph abstracted from the floor plan to plan a path to the target point and determine the short-term
target on the basis of the estimated position. Finally, the control module outputs the appropriate action
according to the current observation and relative position to the short-term target.
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4 Methods

4.1 Visual front-end perception

In this part, we uniformly sample points from the floor plan and employ two networks to learn the feature
descriptors of the observed panoramic image and sampled points in the floor plan. The similarities
between these learned feature descriptors are used to compute a score map representing the current
perception of the environment for subsequent localization.

Circular feature. We represent the features of a panoramic image or a point sampled in a map using
circular feature descriptors suitable for floor-plan-based localization, as proposed by LASER [16]. Each
feature descriptor is in the form of a circular vector:

F = {fk|k = 0, . . ., V − 1}, (1)

where V is the number of feature segments and fk ∈ R
D is a D-dimensional vector that represents the

field of view within the range of [ 2πk
V

, 2π(k+1)
V

). The reason for designing such circular feature vectors
is that the leftmost and rightmost regions of the panoramic image correspond to the same orientation
angle.

Similarity measurement. The similarity measurement between two circular features Fi = {fk
i |k = 0,

. . ., V − 1} and Fj = {fk
j |k = 0, . . ., V − 1} is defined as

Ssimilar(Fi, Fj) =

∑V−1
k=0 cos(fk

i , f
k
j )

2V
+ 0.5, (2)

where cos(·, ·) is the computation of the vector cosine similarity. The value 0.5 is used to make the
similarity measurement value belong to [0, 1]. Because the comparison between a panoramic image and
a sampled point is related to not only the position but also the direction, a rotation function R(F, θ) is
defined as below to rotate a circular descriptor with a given angle θ, where

R(F, θ) = {f (k+V θ
2π

)%V |k = 0, . . ., V − 1}. (3)

Map branch. To achieve accurate robot localization within the floor plan, we sample a grid of points
across the floor plan, where each sampled point is associated with a circular feature descriptor. The
circular descriptors are generated on the basis of the features along the boundary of the surrounding
walls. The readers can refer to a previous work [16] for more details.

Image branch. We utilize a ResNet50 encoder [40] to generate a feature map from the panoramic
image. Subsequently, the feature map is vertically squeezed to obtain circular feature descriptors and
then undergoes another round of average pooling in the horizontal direction to generate a consistent
number of feature segments.

Training. We use triplet loss [41] to train the networks in the map branch and image branch. A
triplet consists of three data points: an anchor, a positive example, and a negative example:

Ltriplet = 2 ·max(Ssimilar(FI , F
−)− Ssimilar(FI , F

+) + 0.5, 0), (4)

where the anchor is a circular feature descriptor FI of a panoramic image, the positive example is the
map circular feature descriptor at ground-truth pose F+ = R(Ftgt , θgt), and the negative example is the
map circular feature descriptor at a random pose F− = R(Ftrand , θrand).

Score map. By calculating the descriptors of the current observed image and every sampled map
point, we can obtain a score map covering the entire map area and all directions using

S = {si,j,k|i = 0, . . . , X − 1, j = 0, . . . , Y − 1, k = 0, . . . , V − 1}, (5)

si,j,k = Ssimilar

(

FI , R

(

Fmi,j
, 2π

k

V

))

, (6)

where (X,Y ) is the size of the grid of sampled points in the floor plan map and Fmi,j
is the descriptor of

the sampled point at coordinate (i, j).
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Figure 2 (Color online) Architecture of the proposed brain-inspired model. The system consists of grid cells and head direction

cells. They input odometry (dt, θt, αt) and the visual front-end score map S to obtain the current estimated pose (xt+1, yt+1, ϕt+1).

4.2 Brain-inspired model

The proposed brain-inspired model consists of a grid cell network and a head direction network, whose
architecture is shown in Figure 2. We follow Yu et al. [39] in their use of a 2D-CANN and a one-
dimensional (1D)-CANN to model the grid cells and head direction cells, respectively. The robot’s pose
(xt, yt, ϕt) in the 2D environment can be represented by the activity of the cells in the two networks. At
each step, the noisy odometry information is given by adding Gaussian noise to the ground truth, and
their detailed definitions are given in Subsection 4.2.1. The brain-inspired model inputs the score map S
obtained from the visual front-end feature descriptors and odometry information, updating their activity
state and obtaining the current position of the robot.

4.2.1 Motion model

To estimate the movement of the robot at every step with the cell networks, the motion update model is
defined as follows, and the illustration can be found at the top-left corner of Figure 2:

(xt+1, yt+1, ϕt+1) = (xt + dtcos(ϕt + αt), yt + dtsin(ϕt + αt), ϕt + θt), (7)

where dt is the distance moved by the robot, αt denotes the direction of movement, and θt represents the
change in orientation.
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4.2.2 2D grid cell network

The grid cell model is a 2D CANN, which mimics mammalian brain spatial representation, as shown in
Figure 2. Cells are distributed in a grid pattern and interconnected with each other. Each cell represents
a particular position (x, y) in the 2D environment and has an activity value P gc

x,y. At each step, the
network performs path integration, activation, and attractor dynamics sequentially.

Path integration. Path integration shifts the activity of grid cells in the 2D environment on the
basis of the previous estimated orientation ϕt from head direction cells, the direction of movement α,
and the movement distance d. The activity of a cell located at (x, y) after path integration is calculated
as follows:

P gc′

x,y =

δx0+1
∑

i=δx0

δy0+1
∑

j=δy0

γi,jP
gc
x+i,y+j , (8)

where δx0, δy0 represent the integer part of the translation coordinates and γi,j is the residual coefficient.
In addition, the decimal parts are defined as δxf , δyf :

[

δx0

δy0

]

=

[

⌊d cos (ϕt + α)⌋
⌊d sin (ϕt + α)⌋

]

, (9)

[

δxf

δyf

]

=

[

d cos (ϕt + α)− δx0

d sin (ϕt + α) − δy0

]

. (10)

Then the residual coefficient γi,j in (8) is defined as

γi,j = f(δxf , i− δx0)f(δyf , j − δy0),

f(a, b) =

{

a, if b = 1,
1− a, if b = 0.

(11)

Activation. Previous studies [35,36,39] maintained local view libraries and energizing cells upon rec-
ognizing familiar views. However, despite their effectiveness for loop closure, they exhibited accumulated
drift in the absence of familiar images. In the proposed algorithm, we employ a front-end score map to
activate cells at each step, enabling continuous calibration and limited localization error. As the size of
the score map is X×Y×V (as mentioned in Subsection 4.1), we calculate the score map for the grid cells
by taking the maximum value of the scores in different directions at each step:

{

si,j = max
k

si,j,k|i = 0, . . . , X − 1, j = 0, . . . , Y − 1

}

. (12)

The score map for the grid cells represents the position estimation based on the current visual obser-
vation. We inject the activation into the entire 2D-CANN based on this estimation, correcting errors
introduced by noisy odometry in path integration. To reduce the influence of locations with similar
structures, we design an inhibition matrix Q as

Qi,j = 1/σ
(

σ − e(η
√

(i−i0)2+(j−j0)2)
)

,

i0, j0 = argmax
i,j

P gc
i,j ,

(13)

where σ and η are constants controlling the activation strength from the score map. Then, the activity
of a grid cell is updated by

P gc′

x,y = P gc
x,y +Qi,jsi,j . (14)

Attractor dynamics. The attractor dynamics of a 2D CANN consists of three stages: local excitation,
local and global inhibition, and normalization. During the process of attractor dynamics, each cell excites
the cells around it and injects activity into them according to the weights ǫgci,j , which follow a 2D Gaussian
distribution. Meanwhile, each cell is inhibited by nearby cells with the 2D Gaussian inhibition weights
Φgc

i,j and a global inhibition φgc. Then, each cell’s activity is updated by

P gc′

x,y =

(

X−1
∑

m=0

Y−1
∑

n=0

ǫgcm−x,n−yP
gc
m,n − Φgc

m−x,n−yP
gc
m,n

)

− φgc. (15)
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Figure 3 (Color online) Spatial topology information abstracted from the floor plan. (a) Topological graph built from the floor

plan by treating each room and each door as a topological node and edge, respectively; (b) planning based on the built topological

graph.

Finally, normalization is performed according to

P gc′

x,y = max(P gc′

x,y , 0),

P gc
x,y =

P gc′

x,y
∑

x

∑

y P
gc′
x,y

.
(16)

4.2.3 1D head direction cell network

The head direction cell network is a circular 1D-CANN that mimics the direction cognition of mammals,
as shown in Figure 2. A cell represents a particular direction in the 2D space and has an activity value
P hdc
ϕ . Because of its circular structure, we have P hdc

ϕ+kV = P hdc
ϕ . The steps of the head direction cell

model are similar to those of grid cells.
Head direction update. In this stage, the activity of head direction cells is shifted by the turning

angle θ. The detailed computational process can be considered a 1D version of the path integration
mentioned in the 2D grid cell part.

Activation. As with the activation of grid cells, head direction cells are activated by the score map
for head direction, which is achieved according to the score map S and the position estimated by grid
cells (xest, yest). We obtain the score map for the head direction by taking the maximum similarity in
each direction within the vicinity of the position obtained from the grid cells:

{

sk = max
|i−xest|<th,|j−yest|<th

si,j,k|k = 0, . . . , V − 1

}

, (17)

where th represents the size of the sampling range in the vicinity. The score map is extracted only in
the vicinity of the current estimated position to avoid the influence of the scores in other locations. The
score map contains the current perception of the robot’s direction and is used to calibrate the error from
the odometry. Then, the score map is added to P hdc to realize activation.

Attractor dynamics. The attractor dynamics of the head direction cells is the 1D version of that
in grid cells (see (15) and (16)), which also consist of three stages: local excitation, local and global
inhibition, and normalization.

4.3 Planning module

Despite the success of end-to-end networks in point-goal navigation, they mainly consider cases where the
starting and target points are in nearby rooms, limiting their applicability in the real world. When facing
navigation tasks that involve traversing multiple rooms, the performance of such end-to-end methods
tends to degrade as they fail to leverage spatial information for more efficient navigation. In this respect,
we propose a planning method that extracts topological information from floor plans. We represent each
room as a topological node, whereas the doors (assumed to be passable) serve as edges connecting the
rooms (as illustrated in Figure 3(a)). We extract topological nodes and edges from the map through
connected component detection. The topological graph can be defined as G = (V,E). In particular,
V = {vi} is the set of vertices/nodes, where vi represents the entire spatial coverage of a room and
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Algorithm 1 Short-term goal planning.

1: vx = l2t(x), vf = l2t(gf );

2: if vx = vf then

3: gs = gf ;

4: else

5: {pi}i=1:n = Dijkstra(vx, vf );

6: gs = p1;

7: end if

8: while |x − gf | > 0.3 m do

9: vx = l2t(x), vf = l2t(gf );

10: if vx = vf then

11: gs = gf ;

12: continue;

13: end if

14: if |x− gs| < 0.3 m then

15: {pi}i=1:n = Dijkstra(vx, vf );

16: gs′ = p1;

17: if |gs′ − x| < 0.3 m then

18: if n < 2 then

19: gs = gf ;

20: else

21: gs = p2;

22: end if

23: else

24: gs = gs′ ;

25: end if

26: end if

27: end while

E = {(ej, rj , sj)} is the set of edge tuples, with each edge ej representing the door connecting the nodes
rj and sj. We utilize component detection to extract the set of rooms V = {vi} and generate the
connecting edges.

Using the estimated position obtained from the localization module, we first determine the topological
nodes to which the current estimated location x and the final goal location gf belong using the topological
graph, where x and gf represent the 2D coordinates of the corresponding points. Then, the current and
the goal topological nodes can be obtained by vx = l2t(x) and vf = l2t(gf), respectively. Subsequently,
we employ the Dijkstra algorithm to plan the shortest path {pi}i=1:n from the current node to the target
node. The position of the door associated with the first edge along the chosen path is selected as the
short-term goal gs and passed to the control module, as shown in Figure 3(b). When the estimated
position is within a distance of less than 0.3 m from the short-term target point, the robot is considered
to have reached the short-term target point, and the next target point is planned. The detailed planning
procedure in navigation is given in Algorithm 1.

Instead of regarding the floor plan as an occupancy map for path planning, we use doors as edges
to connect the room nodes and construct a topological graph. This choice addresses the challenge of
incomplete spatial knowledge from the floor plan alone. Leveraging known door passability improves
navigation efficiency, enabling smoother movements between rooms. This approach ensures safer paths
and avoids potential collisions.

4.4 Control module

We utilize the model proposed by Wijmans et al. [4] as the control module. This model comprises a
ResNet50 [40] encoder and a two-layer long short-term memory (LSTM) [42]. Training is conducted using
DD-PPO [4] within the Habitat platform [3]. We choose this method as our control strategy because it is
trained on the simulation platform with 2.5 billion steps of RL, equipping it with generalized navigation
skills. It has been shown to perform well across diverse environments [4,10]. The control module receives
three inputs: the previous action (stop, move forward, turn left, and turn right), the goal coordinates
relative to the current position (a vector of length 2), the RGB image captured by the forward-facing
camera (a vector with a shape of 3×256×256), and the state vector (of length 512) output by the LSTM
at the previous time step. Then, the control module outputs the action decision (stop, move forward,
turn left, and turn right) and the state vector of the LSTM at the current time step. The reward for the
control module is calculated using the reduction in the distance to the goal: rt = dt−1 − dt − 0.01. When
the robot reaches the goal, an additional reward rreach = 2.5 is obtained. The computation flow and the
reward function of the control module are shown in Figure 4. Our control module is trained specifically
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Figure 4 (Color online) Computation flow and reward function of the control module.

for idealized point-goal navigation tasks, assuming that the robot is equipped with GPS+Compass.
Notably, according to Partsey et al. [10], action models trained for idealized point-goal navigation tasks
demonstrate good transferability across different environments. Therefore, our control module is only
trained within the Habitat platform, and no fine-tuning is implemented.

5 Experimental evaluation

5.1 Simulation environment and metrics

In our experiment, we incorporate a total of 248 point-goal navigation episodes within four simulated
indoor environments constructed using the Unity engine. These simulated environments primarily consist
of meticulously designed indoor house scenes [43], as shown in Figure 5. Each navigation task features
distinct starting and target points located in different rooms, requiring traversal across multiple rooms
to reach the objective.

To evaluate the navigation method, we select four primary metrics.
(1) Success rate, where a navigation attempt is considered successful if the robot reaches the target

point within a 0.3-m range and a failure if it exceeds 500 steps without reaching the target.
(2) Success weighted by the path length (SPL) [6], which is defined as

SPL =
1

N

N
∑

i=1

Si ·
li

max(zi, li)
, (18)

where Si = 1 if the navigation task is successful; otherwise, Si = 0. li represents the total length of the
robot’s path, and zi is the length of the theoretically shortest path from the starting point to the target
point (the shortest path is provided by the NavMeshAgent component in the Unity engine).

(3) SoftSPL [22] is SPL with binary success being replaced by progress toward the goal:

SoftSPL =
1

N

N
∑

i=1

(

1− dTi

d0i

)

· li
max(zi, li)

, (19)

where dTi
is the distance to the target point at the end of the episode (on both successes and failures)

and d0i is the initial distance to the target point.
(4) dG, which represents the distance between the robot and the target point at the end of the episode.

5.2 Experimental details

In the localization module, we set the hyperparameters of networks asG = H = 32, V = 16, andD = 128.
We sample the map with a 0.1-m interval and establish the grid cells network with a 0.1 m × 0.1 m
uniform grid. We choose a sampling interval of 0.1 m to balance the computation speed and localization
accuracy. To validate the performance of our method in real-world scenarios, Gaussian noise is added
with a standard deviation of (0.02 m, 2◦, 2◦) to the odometry (d, θ, α). Regarding the robot’s actuation,
Gaussian noise is added to the forward distance and rotation angle for each step, with standard deviations
of 0.02 m and 2◦, respectively. For the parameters of the brain-inspired model, we set the parameters of
Q in (13) as σ = 10 and η = 80. In (15), ǫgc and Φgc meet the Gaussian distribution with a standard
deviation of 1.5 and 2, respectively. We set φgc = 0.015. Unlike conventional neural networks, the
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brain-inspired model we proposed is based on CANN, which does not require training, and we do not
need to change the parameters for different scenarios. The number of visual front-end perception model
parameters is 31.4 million, whereas the number of control model parameters is 26.8 million.

5.3 Navigation performance

We evaluate VF-Nav against several existing methods for indoor point-goal navigation tasks.

DD-PPO(GT) [4]. This is a policy trained with large-scale RL in the simulation platform. Notably,
this method requires robots to obtain the current ground-truth position.

ANS [24]. This is a hierarchical, modular policy proposed for exploration tasks and can be easily
adapted for point-goal tasks. It estimates egocentric occupancy and aggregates maps into a global top-
down map, which is then used for planning. We use the point-goal version of this method for evaluation
and collect data from our environment for training.

IMN [10]. This method proposes a learning-based visual odometry for point-goal tasks and develops
data augmentation techniques to train neural models. Visual odometry takes RGB-D images and action
information as input and outputs the relative translation and rotation between two frames.

NeuroSLAM [39]. This method utilizes the CANN models of 3D grid cells and multilayered head
direction cells to realize localization in 3D environments. NeuroSLAM maintains a sequence of visual
templates and achieves loop closure by activating cells corresponding to familiar visual templates. We
deploy the 2D variant of NeuroSLAM in our test environment.

A*. Many navigation methods based on occupancy maps use A* [44] or fast-marching [45] methods for
path planning within a map. However, the floor plan we use only includes basic architectural information
(doors, windows, and walls) and is not a precise occupancy map. It lacks information on obstacles within
rooms, like tables, chairs, and sofas. Nevertheless, we experiment with such methods by treating walls
as occupied areas and doors as passable regions using the A* algorithm to plan a path from the current
position to the goal point and picking an intermediate goal (within 1.5 m) to navigate to.

D* Lite. Similar to the A* algorithm, by treating walls as occupied areas and doors as passable
regions, we use D* Lite [46] for path planning and use the following strategy: when the robot finds its
forward path blocked, it marks the area ahead as occupied grids on the map and replans the route.

Notably, the methods mentioned above did not utilize topological planning, and some of them had
access to the ground-truth position and depth camera. Therefore, we also report the performance of
VF-Nav without the topological planning module. The navigation performance of the different methods
is presented in Table 1. ANS heavily relied on the accuracy of occupancy map estimation, and odometry
noise significantly degraded its map accuracy. Meanwhile, although IMN employed data augmentation
techniques for training, the results indicate that such an odometry method inevitably produces drift.
NeuroSLAM’s use of visual template matching for loop closure was too naive and struggled to provide
adequate support for navigation. The reason for the poor performance of the A* method was the lack
of occupancy information for all obstacles in the floor plan. This sometimes resulted in short-term goal
points being planned in locations occupied by obstacles, leading to a decline in navigation performance.
Although D* Lite used a more advanced path planning algorithm, its performance remained poor because
of its inability to obtain accurate occupancy information. Meanwhile, VF-Nav(wo topo) achieved perfor-
mance nearly identical to that of DD-PPO(GT) and significantly outperformed other approaches. This
demonstrates that the proposed localization module exhibits highly robust performance in navigation
tasks.

Furthermore, Table 1 shows that VF-Nav, with topological planning, achieves the best navigation
performance in terms of all metrics, especially SPL and SoftSPL. This indicates that incorporating
spatial topological information from the floor plan significantly benefits navigation efficiency. Figure 6
illustrates examples of the generated trajectories. Without the topological planning module, the robot
tends to wander back and forward, resulting in decreased navigation efficiency. Through extensive RL
training, the network acquires a certain level of intelligence and the ability to navigate and autonomously
explore. Although end-to-end networks utilize the hidden state of LSTMs to store information about
a robot’s history exploration of the environment, such memory is limited. Our results indicate that
the intelligence of the end-to-end network (DD-PPO) is insufficient for navigation tasks that involve
traversing multiple rooms and passing through multiple doors, where the robot repeatedly explores the
same area and exhibits poor navigation performance. Meanwhile, in the proposed method, the utilization
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Figure 5 (Color online) Simulated environments used to test

the proposed navigation method.

Figure 6 (Color online) Qualitative results in the indoor envi-

ronment. Only VF-Nav, VF-Nav(wo topo), and DD-PPO(GT)

can reach the goal, with VF-Nav being the most efficient way.

Table 1 Navigation performance results. The best and second-best results are in bold and underlined, respectively.

Method Success rate (%) SPL (%) SoftSPL (%) dG (m)

DD-PPO(GT) 78.23 56.39 52.88 1.42

ANS 9.27 2.80 0.70 5.34

IMN 36.29 26.09 35.51 2.30

NeuroSLAM 38.31 24.54 25.65 2.79

A* 63.71 39.67 38.79 1.67

D* Lite 66.13 47.68 50.93 1.43

VF-Nav(wo topo) 79.84 54.32 51.83 1.26

VF-Nav 88.71 71.54 68.33 0.77

of topological information reduces the demands on the control module, enabling it to focus on short-term
planning and obstacle avoidance.

5.4 Ablation study

In Table 2, we show the ablation study over different navigation framework components. VF-Nav repre-
sents the complete algorithm. VF-Nav(wo topo) removes the topological planning module and directly
inputs the final target point into the control module. VF-Nav(wo topo wo CANN) removes the topologi-
cal planning module and uses a maximum likelihood matching method for localization. VF-Nav(wo topo
wo loc-module) removes the topological planning module and uses odometry accumulation to determine
the current location. The topological planning module demonstrates its advantages in improving the nav-
igation success rate and efficiency. The poor result of the method that relies solely on odometry without
our localization module indicates that our method does not require high-accuracy odometry. Compared
with the method without the CANN models and solely relying on maximum similarity matching, the
proposed approach still demonstrates superior performance in navigation tasks. This is primarily be-
cause the mapping search method tends to fail in localization when structurally similar sampled points
exist in the map, causing worse navigation performance, whereas our proposed method is robust in such
cases. The failures of the two comparison methods in localization are discussed in greater detail in
Subsection 5.5.
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Table 2 Ablation study over framework components. Without CANN, the map sample point with the highest similarity to the

current image feature descriptor is selected as the localization point. Without the localization module, the current position is

obtained by accumulating the results from the noisy odometry. The best results are in bold.

Method Success rate (%) SPL (%) SoftSPL (%) dG (m)

VF-Nav 88.71 71.54 68.33 0.77

VF-Nav(wo topo) 79.84 54.32 51.83 1.26

VF-Nav(wo topo wo CANN) 68.95 44.85 42.89 1.75

VF-Nav(wo topo wo loc-module) 43.55 26.70 31.39 1.92

Figure 7 (Color online) Examples of localization results of

the proposed brain-inspired localization method (red) and ac-

cumulation of noisy odometry (blue), where the ground-truth

trajectories are in black.

Figure 8 (Color online) Some examples of localization failure

in the maximum similarity matching method. The red dots rep-

resent estimated positions, whereas the black crosses represent

true positions.

5.5 Localization performance

We compare the proposed localization module with the methods that separately use noisy odometry and
maximum similarity matching for localization. Their deployment details are as follows.

Odometry. The current position is obtained by accumulating results from noisy odometry and deriva-
tion at each step following (7). For evaluation convenience, the noise of odometry is set to be consistent
with that in the motion model of the brain-inspired model.

Matching. This method selects the map sample point with the highest similarity to the current image
feature descriptor as the localization point.

In Figure 7, we present some examples of the results of the proposed localization method and the
accumulation of noisy odometry. Although the level of noise is the same, the proposed method effectively
corrects the accumulated position drift caused by the noise. In longer trajectories, the drift of the
accumulation of the noisy odometry becomes more pronounced to the extent that the estimated position
may even be in a different room from the real position, thereby adversely affecting navigation tasks.
This indicates that the proposed method does not have high requirements for odometry and that robust
localization can be achieved using just a low-accuracy odometry.

To further evaluate the proposed localization module, we collected trajectories whose total length
was 6103.08 m and evaluated the localization accuracy. We conducted tests on the proposed method,
the maximum similarity matching method, and the noisy odometry method. Table 3 shows that the
proposed brain-inspired localization method had an outstanding performance, with almost no significant
drift. Because of the presence of structurally similar sampled points in the map, the maximum similarity
matching method may fail, as shown in Figure 8. This is why the mapping search method performs poorly
in navigation. However, the proposed localization method integrates structural information from the floor
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Table 3 Localization performance results. The proposed brain-inspired localization method has outstanding performance on the

trajectories whose total length is 6103.08 m, achieving near-perfect recall. The best results are in bold.

Metric Ours Matching Odometry

t error (m) 0.18 0.65 0.88

r error (◦) 12.80 21.96 20.66

1-m recall (%) 98.75 87.22 73.67

0.5-m recall (%) 97.06 84.11 55.13

0.25-m recall (%) 87.52 76.79 34.79

Figure 9 (Color online) (a) Equipment used in the real-world experiments and (b) some examples of the test scenarios.

Table 4 Real-world localization performance results. The best result is in bold.

Metric Ours VINS-Mono Wheel odometry

t error (m) 0.21 2.53 5.13

plan and positional information between consecutive frames, achieving stable long-term localization.

5.6 Real-world experiments

We validated the localization performance of the proposed algorithm in real-world scenarios by collecting
four trajectories totaling 434.73 m. A panoramic camera was mounted on an Autolabor robot, using the
Autolabor’s wheel encoder as the odometry sensor (see Figure 9). We ran a LiDAR-inertial odometry [47]
to provide ground-truth localization. Our method was compared with an existing classical geometric
visual-inertial odometry method, VINS-Mono [48], and a method that only used wheel odometry. The
experimental results are shown in Table 4. For more information about the localization trajectories,
please refer to Figure B1. The results show that our method is robust in handling real-world challenges
such as lack of texture information, odometry drift, and camera shake.

6 Conclusion

In this paper, we propose a vision-only navigation framework for point-goal navigation using a 2D floor
map as prior information. We adopt the classical localization-planning-control framework, and the pro-
posed localization module incorporates learned features into a brain-inspired model. The proposed brain-
inspired localization method surpasses the pure odometry and maximum similarity matching methods
and achieves low localization error below 0.2 m with respect to the ground truth. The planning module
leverages topological information extracted from the floor plan for the control module, guaranteeing ef-
ficient and reliable navigation and demonstrating superior robustness in complex tasks compared with
end-to-end methods.
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The proposed method still has limitations, such as the requirement of panoramic images to perform
localization. Future work aims to include the study of a localization method using a single-viewpoint
regular camera. As a single-viewpoint camera provides limited information, a possible solution is the
fusion of images from multiple time steps to achieve robust monocular-camera-based localization on a floor
plan. Some future challenges include determining the states of doors (open or closed) and incorporating
dynamic planning accordingly. Furthermore, incorporating real robots’ dynamic models requires finer
control over their movements, including velocity and angular velocity, rather than relying on a discrete
action space.
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