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The distributed optimization problem has drawn significant

attention recently since it has a variety of applications in the

economic dispatch of smart grids, regression of distributed

data, optimal coordination of mobile robot systems (MRSs),

and so on. Different from the traditional leaderless consen-

sus and consensus tracking problems in multiagent systems

(MASs), the typical distributed optimization problems are

not only required to achieve consensus but also to coopera-

tively minimize a global cost function [1], where the global

cost function is the sum of local cost functions and each local

cost function is only known to the agent itself.

The scholars initially focused on designing step-size-based

discrete-time algorithms to solve the distributed optimiza-

tion problem [2]. As a counterpart, many practical physi-

cal systems usually describe continuous-time dynamics. For

example, MRSs, unmanned surface vessel (USV) systems,

pendulum systems, and Euler-Lagrange systems are usually

described by continuous second-order systems with hetero-

geneous unknown nonlinear dynamics, disturbances, and un-

available parameters [3]. The asymptotic distributed convex

optimization (ADCO) problems of MASs with continuous-

time nonlinear dynamics are considered in [4, 5], while the

parameters are available. When the upper bound parame-

ters involving nonlinear functions and disturbances are un-

available, the ADCO problem of MASs with continuous-time

second-order nonlinear dynamics is difficult and requires fur-

ther study. We briefly summarize the motivation of this

work here, and a more comprehensive literature review is

given in Appendix A.

This work addresses the ADCO problem of a second-

order MAS via robust adaptive control, where the hetero-

geneous unknown nonlinear functions and disturbances are

considered. A modified command filter approach that ob-

viates the need to compute an analytic derivative of the

virtual velocity is applied to design a discontinuous robust

adaptive distributed optimization algorithm. To avoid the

chattering phenomenon caused by the proposed discontinu-

ous algorithm, a continuous robust adaptive distributed op-

timization algorithm is further designed. Both the designed

discontinuous and continuous algorithms solve the ADCO

problem in a fully distributed fashion while guaranteeing

strong system robustness.

Problem formulation. Consider that a heterogeneous un-

known second-order nonlinear MAS over a graph G and

each agent i ∈ N = {1, 2, . . . , N} has a local cost function

fi(xi) : Rn → R only available to itself. Each agent i ∈ N

has the following continuous-time dynamics:

ẋi = vi, v̇i = θiui + hi(xi, vi) + di, (1)

where xi ∈ Rn, vi ∈ Rn, and ui ∈ Rn are respectively the

position, velocity, and input of agent i, θi is a known nonzero

constant, hi ∈ R
n and di ∈ R

n are respectively the heteroge-

neous unknown nonlinearities and disturbances. This study

aims to solve the ADCO problem formulated below.

ADCO problem. Design a fully distributed algorithm

such that limt→∞ ‖xi − x∗‖ = 0, ∀i ∈ N, where x∗ ∈ R
n

is the minimizer of the following optimization problem:

min
x∈Rn

J =
N
∑

i=1

fi(x), (2)

where x is the common state, J is the global cost function.

Some assumptions are given to solve the ADCO problem.

Assumption 1. The graph G among N agents is a con-

nected undirected graph.

Assumption 2. There exist three constants ρi, ̺i, ςi > 0

such that ‖hi‖ 6 ρi + ̺i‖ϕi(xi, vi)‖ and ‖di‖ 6 ςi, where

the function ϕi ∈ Rn is available to the agent i only, and ϕi

is bounded if xi and vi are bounded, ∀i ∈ N.

Assumption 3. Each local cost function fi(xi) is twice

times continuously differentiable with respect to xi. There

exists gi(xi) = [∇2fi(xi)]
−1∇fi(xi) in the form of gi(xi) =
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ζxi + ϑiφi(xi), where the Hessian matrix ∇2fi(xi) is in-

vertible, ζ and ϑi are nonnegative constants, the function

φi ∈ R
n is available to the agent i only, ∇2fi(xi) and φi are

bounded if xi is bounded, ∀i ∈ N.

The notations and some remarks about the above as-

sumptions are obtained in Appendix B, as well as other pre-

liminaries on graph theory and useful lemmas, which are

obtained in Appendix C.

Command filter design. To solve the ADCO problem, we

first introduce a virtual velocity v∗i . Consider the command

filter in the following form:
{

żi,1 = πizi,2,

żi,2 = −2ζiπizi,2 − πi(zi,1 − v
p
i ),

(3)

where v∗i = zi,1 and v̇∗i = πizi,2 are the outputs of each

filter with the pseudocontrol signal vpi as the input, πi > 0

and ζi ∈ (0, 1] are the filter design parameters, i ∈ N.

Discontinuous controller design. For each i ∈ N, let us

define the following error variables:

ṽi = vi − v∗i , v̄i = v∗i − v
p
i , zi = xi − µi, (4)

where v̄i and zi are respectively the filtered error and com-

pensated tracking error, and µi is the compensating signal

used to eliminate the influence of the filtered error caused

by the command filter. It follows from MAS (1) and the

command filter (3) that ˙̃vi = θiui − πizi,2 + hi + di. Let

u∗i = θiui − πizi,2 be the virtual input. Then the input

ui =
1

θi
(u∗i + πizi,2) , i ∈ N. (5)

Consider the following discontinuous virtual input for (5):

u∗i = −liṽi − αiψisign(ṽi), (6)

α̇i = γi1 (ψi‖ṽi‖1 − σi1(αi − α̃i)) , (7)

˙̃αi = δi1(αi − α̃i), αi(0) > α̃i(0) > 0, (8)

and the compensating signal µi in (4) is formulated as

µ̇i = −kiµi − ‖v̄i‖sign(µi) + v̄i (9)

with the pseudocontrol signal vpi being designed as

v
p
i = −kiµi − γiezi − βiχisign(ezi )− gi(xi), (10)

β̇i = γi2

(

χi‖ezi‖1 − σi2(βi − β̃i)
)

, (11)

˙̃
βi = δi2(βi − β̃i), βi(0) > β̃i(0) > 0, (12)

where ezi =
∑

j∈Ni
aij (zi − zj), ψi = 1 + ‖ϕi‖, χi =

1+‖φi‖, and li, ki, γi, γi1, γi2, σi1, σi2, δi1, δi2 are positive

design parameters, i ∈ N.

Theorem 1. Under Assumptions 1–3, the discontinuous

robust adaptive distributed optimization controller (5) with

(3) and (6)–(12) solves the ADCO problem (2) of the second-

order MAS (1). Each control signal ui given by (5) is

bounded; moreover, limt→∞ αi(t) = limt→∞ α̃i(t) = α∗
i

and limt→∞ βi = limt→∞ β̃i = β∗
i , where α∗

i and β∗
i are

two positive constants, for each i ∈ N.

Proof. See Appendix D.

Continuous controller design. Consider the input ui in

(5) with the following continuous virtual input (each i ∈ N):

u∗i = −liṽi −
αiψ

2

i ṽi

ψi‖ṽi‖+ pi
, (13)

α̇i = γi1

(

ψ2

i ‖ṽi‖
2

ψi‖ṽi‖+ pi
− σi1pi

)

, (14)

ṗi = −δi1(σi1 + 1)pi, αi(0) >
γi1σi1pi(0)

δi1(σi1 + 1)
> 0, (15)

and the compensating signal µi in (4) is formulated as

µ̇i = −kiµi −
‖v̄i‖2µi

‖v̄i‖‖µi‖+ oi
+ v̄i, (16)

ȯi = −δi3oi, oi(0) > 0 (17)

with the pseudocontrol signal vpi being designed as

v
p
i = −kiµi −

βiχ
2

i ezi

χi‖ezi‖+ qi
− gi(xi), (18)

β̇i = γi2

(

χ2

i ‖ezi‖
2

χi‖ezi‖+ qi
− σi2qi

)

, (19)

q̇i = −δi2(σi2 + 1)qi, βi(0) >
γi2σi2qi(0)

δi2(σi2 + 1)
> 0, (20)

where δi3 > 0 and other parameters are the same as those

in (6)–(12), i ∈ N.

Similar to the derived main result in Theorem 1, we next

derive another main result of this work.

Theorem 2. Under Assumptions 1–3, the continuous ro-

bust adaptive distributed optimization controller (5) with

(3) and (13)–(20) solves the ADCO problem (2) of the

second-order MAS (1). Each control signal ui given by (5)

is bounded and continuous everywhere; moreover, both αi

and βi converge to some finite steady-state values asymp-

totically, for each i ∈ N.

Proof. See Appendix E.

Simulation. We consider a USV system with six vessels

as an example to illustrate the validity of the proposed algo-

rithms. The detailed results of this simulation example can

be observed in Appendix F.

Conclusion. The ADCO issue of a second-order MAS

with nonidentical nonlinear functions and disturbances has

been examined in this work. A modified command filter ap-

proach has been applied to the design of both discontinuous

and continuous singularity-free asymptotic distributed opti-

mization algorithms. The proposed distributed optimization

algorithms not only ensure all agents’ states asymptotically

converge to a global minimizer in a fully distributed fashion

but also have strong robustness. The proposed continuous

distributed optimization algorithm is free of chattering. The

extensions to the non-convex optimization problem and di-

rected topology are interesting future research topics.
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