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Accurate crowd counting in natural images has become in-

creasingly attractive owing to its numerous real-world appli-

cations, e.g., crowd analysis and video surveillance. Despite

significant progress in crowd counting [1,2], challenges (such

as scale variation and background clutter) remain.

To fully utilize spatial information, existing crowd count-

ing approaches [3, 4] mainly estimate a density map, where

point annotations are smoothed via a Gaussian kernel to

generate probabilities indicating the presence of a crowd.

The density map serves as the training objective, with pixel-

level supervision applied, and the sum of the predicted den-

sity map is used for evaluation. However, strictly conduct-

ing pixel-level supervision based on the ground-truth density

map has several drawbacks. (i) The size of the Gaussian ker-

nel often fails to match crowd heads of varying sizes and oc-

clusions, leading to the omission of valid content and the in-

troduction of background clutter. (ii) Point annotations are

not always marked at the exact center of heads, introducing

additional errors in pixel-level supervision. (iii) The training

objective focuses on pixel-to-pixel density maps, while the

evaluation criterion is counts, creating an inconsistency [5].

To alleviate some of these issues, prior studies have pro-

posed adaptive Gaussian kernels based on spatial distances

to nearest neighbors, accommodating variations in crowd

scale. However, these methods assume a uniform crowd dis-

tribution. Other approaches design dedicated loss functions

to optimize pixel-level subregions with high disparities to

the ground-truth density map, improving spatial awareness.

Nevertheless, pixel-level density supervision remains a core

component. Recently, some methods have introduced local

counting maps to represent the crowd number within local

patches, but these methods rely on fixed-size local counting

regions.

To effectively leverage the spatial location information

provided by point annotations, while avoiding the drawbacks

of pixel-level density estimation, we propose a self-calibrated

region (SCR) loss to calculate regional-level errors, achieving

a proper balance between pixel-level and image-level count-

ing. Considering the nonuniform distribution of crowd den-

sity, SCR loss dynamically determines and allocates subre-

gion sizes based on the principle that sparse-crowd regions

are larger, while dense-crowd regions are smaller. Further-

more, we introduce an unreliable margin attenuation strat-

egy to alleviate the adverse effects in marginal regions.

Proposed method. We propose a self-calibrated layout

method based on the principle that sparse-crowd regions

are larger, while dense-crowd regions are smaller. The pro-

cess is illustrated in Figure 1(a). Specifically, for a predicted

density map, the two-dimensional plane can be divided both

horizontally and vertically. First, we extract the crowd dis-

tribution along the x and y axes (see Figures 1(a)(ii) and

(a)(iv)). To achieve this, we use matrices of ones, 1H×1,

11×W , with dimensions H×1 and 1×W , to obtain the dis-

tribution of the number of people horizontally and vertically,

respectively (see Figures 1(a)(iii) and (a)(v)):

Sx = Dpr ∗ 1H×1, Sy = 11×W ∗ Dpr, (1)

where W , H represent the width and height of the predicted

density map Dpr, Sx ∈ R
W×1, Sy ∈ R

1×H , and ∗ denotes

the non-overlapping sliding convolution operation. Then, we

decide on the layout according to the horizontal and vertical

crowd density distributions. Here, we define two layout reg-

ulatory factors: γx and γy . We gain the dividing coordinates

ζx and ζy in the x and y axes:

ζx = Crop(Sx, γxH), ζy = Crop(Sy , γyW ), (2)

where Crop refers to obtaining the x and y coordinates when

the accumulated number of people along Sx and Sy reaches

γxH and γyW , respectively. For simplicity, we set γx equal

to γy in this study, denoted as γ. It is worth mentioning

that when γ = 0, our SCR loss is equivalent to the pixel-

level loss. Conversely, when γ is sufficiently large, the size

of the divided region becomes the entire image, and our

SCR loss transitions to image-level regression loss. This

design achieves a balance between pixel-level counting and

image-level counting. Thus, the divided subregions of self-

calibrated layout can be described as follows:

{Mpr,sl
i,k

}Kk=1 = Div(Dpr
i , ζx, ζy), (3)
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Figure 1 (Color online) (a) Self-calibrated layout process; (b) illustration of the unreliable margin attenuation strategy.

{Mgt,sl
i,k

}Kk=1 = Div(Dgt
i , ζx, ζy). (4)

The counting region is no longer set to a fixed pixel width

and height but is instead divided adaptively based on the

crowd distribution (as shown in Figure 1(a)(vi)). By con-

trast, the width and height of the image-level regression re-

gion are equal to those of the input image, while the width

and height of the pixel-level regression region are set to 1.

Clearly, after dividing adaptively, the size of the region in

sparse-crowd areas will be larger, and vice versa for dense-

crowd areas.

At the margins of the subregion grids, it is inevitable

that a head may be divided across different regions. As a

result, the ground-truth crowd number in these subregions

becomes a discrete value. The ground-truth crowd numbers

for these margin regions still depend on the ground-truth

density map, which introduces drawbacks that can have ad-

verse effects. For example, a region may visually appear

to contain 0.5 heads, but the ground-truth counting value

might be 0.85 (see Figures 1(b)(i) and (b)(iii)). While this

discrepancy may seem minor for a single region, similar sit-

uations across all marginal regions can cumulatively result

in significant errors. To address this issue, we propose an

unreliable margin attenuation strategy to reduce this nega-

tive impact. The counting error in the k-th divided region is

defined as ∆k = Cpr
k

− Cgt
k
, which is composed of errors from

the center and the margin (∆k = ∆cen
k

+∆mar
k

). Based on

this observation, the ground-truth crowd count at the cen-

ter of a subregion is more reliable than that at the margins.

In other words, the error calculated at the center (∆cen
k

) is

more trustworthy than that at the margin (∆mar
k

). There-

fore, we attenuate the unreliability error by applying a 2D

Gaussian mask G(·) centered at the location of each divided

subregion to achieve the above processes (see Figure 1(b)

for an illustration example). The weighted counting values

in a divided region are formulated as follows:

Cpr,att
i,k

=
∑

Mpr,sl
i,k

∗ G(m,n;xc, yc;σw , σh), (5)

Cgt,att
i,k

=
∑

Mgt,sl
i,k

∗ G(m,n;xc, yc;σw, σh), (6)

G(m,n;x, y; σw, σh) = e
−(

(m−x)2

2σ2
w

+
(n−y)2

2σ2
h

)
, (7)

where xc, yc, w, h represent the center coordinates, width,

and height of a divided region. Variances σw, σh of the

Gaussian mask are proportional to the height and width

of the divided region, where σw = λw+ ǫ, σh = λh+ ǫ, and

λ and ǫ are set to 1.5 and 1.0 in all experiments. Through

the above operation, we attenuate the weight of ∆mar
k

and

obtain more reliable supervision. Thus, the final SCR loss

is calculated as follows:

LSCR =
1

2N

N∑

i=1

1

2Ki

Ki∑

k=1

(Cpr,att
i,k

− Cgt,att
i,k

)
2
. (8)

Experiments. We evaluate our proposed method by ap-

plying the SCR loss to multiple baseline methods while re-

taining other configurations. Comprehensive experimental

results and analysis are provided in the supplementary mate-

rial. Our method effectively improves counting performance,

achieving competitive results compared to state-of-the-art

approaches.

Conclusion. We propose a simple and straightforward

region-level loss, termed SCR, for crowd counting. This loss

dynamically divides the predicted density map into subre-

gions based on the crowd density distribution, i.e., with

larger layouts for sparse regions and smaller layouts for dense

regions. Furthermore, we design an unreliable margin at-

tenuation strategy to mitigate the influence of unreliable

margins caused by region division, further improving the

effectiveness of crowd counting. Extensive experiments con-

ducted on five mainstream datasets demonstrate that our

method significantly improves the performance of baseline

methods and exhibits robustness to annotation inaccuracies.

In the future, we aim to explore more flexible region-level

learning strategies for crowd counting.
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