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Abstract This article tackles the boundary event-based bipartite consensus tracking control problem for the flexible manip-

ulator multi-agent network over a signed diagraph. Each follower agent is the flexible manipulator with unknown disturbances,

modeling uncertainties, input saturations and backlashes, and asymmetric output constraints. To reduce the continuous up-

dating of control inputs, a new dynamic event-triggering mechanism is used. Under multiple constraints, achieving the

asymptotic convergence point by point in space of the manipulator’s vibration state is a control challenge. To solve this

issue, we propose a new asymptotic convergence lemma. In control design, radial basis neural networks are employed to

estimate nonlinear uncertain terms and the barrier Lyapunov function is used to accomplish the output constraints. Based

on the Lyapunov direct method, a novel distributed boundary event-based control algorithm is designed to guarantee that

the closed-loop network can reach the asymptotical bipartite consensus tracking and vibration suppression. Moreover, Zeno

behaviors can be excluded for each agent. Finally, some numerical results are presented to demonstrate the validity and

superiority of the designed control algorithm.
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1 Introduction

The consensus control of multi-agent systems (MASs) has garnered significant attention recently because
of its extensive application in formation control, unmanned air vehicles and intelligent traffics [1–3].
Consensus tracking is a special consensus control where all agents collaborate to achieve the reference
behavior determined by the leader agent [4]. Typically, all agents reach consensus through cooperative
interactions between all nodes represented by an unsigned graph with non-negative edge weights. How-
ever, in many real-world situations, agents may interact in both cooperative and competitive ways, and a
signed graph can be used to depict a communication network in which agents engage in both competitive
and cooperative interactions [5–7]. Based on a directed signed graph, the bipartite tracking consensus
problem for high-order heterogeneous nonlinear and uncertain MASs is addressed in [8]. Under communi-
cation time-varying delays, the authors deal with the bipartite tracking consensus problem for high-order
nonlinear MASs in [9]. Nevertheless, the aforementioned research results are all derived from lumped
parameter systems (LPSs) about time variable. Actually, state variables of numerous physical systems
are typically linked not only to time, but also to space [10–12]. Flexible spacecraft, flexible manipulators,
and axially moving belts are common examples of distributed parameter systems (DPSs) [13–16]. These
studies focus on developing boundary control algorithms to suppress vibrations in a single flexible me-
chanical system, but they neglect the cooperative control of multiple flexible systems, in which the angle
consensus tracking of multiple flexible manipulators and spacecraft are typical practical scenarios.

*Corresponding author (email: auylau@scut.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-024-4293-3&domain=pdf&date_stamp=2025-3-4
https://doi.org/10.1007/s11432-024-4293-3
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-024-4293-3
https://doi.org/10.1007/s11432-024-4293-3
https://doi.org/10.1007/s11432-024-4293-3


Yao X Q, et al. Sci China Inf Sci April 2025, Vol. 68, Iss. 4, 142201:2

Compared to LPSs, DPSs present greater challenges for consensus tracking control due to their dynamic
coupling. Some results have been proposed for boundary consensus tracking based on undirected or
directed unsigned graphs [17–22]. In [23], the asymptotical bipartite angle consensus tracking problem
for multiple flexible-link manipulators is solved. The consensus tracking control of several movable flexible
manipulators is addressed in [24]. With actuator faults and input saturations, a boundary fault-tolerant
control is developed to accomplish bounded consensus tracking of multiple flexible-link manipulators
[25]. In [26], an adaptive NN-based boundary control is designed for a flexible-link manipulator network
under an undirected graph. Note that these existing results do not take the output constraints into
account. In solving this problem, the barrier Lyapunov function (BLF) offers an appealing idea: the
boundedness of the BLF realizes the output constraint of a system. Based on various BLFs, numerous
results of constrained control research have been found for LPSs [27–29]. In [30], the authors investigated
the practical fixed-time consensus tracking problem for multiple Euler-Lagrange systems with output
constraints. By using time-varying BLF, a fixed-time adaptive NN controller is proposed for unknown
robot manipulators in [31]. For DPSs, the BLF design is distinct. To eliminate some cross terms from
system dynamics, BLFs are often designed as φ2(t)F (·) in [32–34], where φ(t) is the auxiliary variable
and F (·) is the common BLF. However, these findings may not theoretically address the case of φ(t) = 0.
When φ(t) = 0, the boundedness of F (·) is not guaranteed, which is a huge theoretical challenge for
output constraint control of DPSs. The first feasible solution is to introduce a damping coefficient into
the DPS model. By designing a log-type BLF, the bounded angle tracking and vibration suppression for
a flexible manipulator with the damping coefficient are studied in [35]. The second feasible solution is to
make φ(t) = λs(t) + ṡ(t), λ > 0. When φ(t) = λs(t) + ṡ(t) = 0, s(t) = e−λts(0). If s(0) is restrained, s(t)
can also be restrained, which can overcome the theoretical challenge of the output constraints of DPSs.

It should be emphasized that the above-discussed results are driven by time-triggered control. Com-
pared with time-triggered control, event-triggered control (ETC) allows a trade-off between reducing
controller updates and preserving desired system performances, thereby compressing control costs and
saving resources [36–38]. Dynamic ETCs emerge as a need to achieve more resource-efficient and flexible
design. In [39], an adaptive boundary dynamic ETC strategy is proposed for an aerial refueling hose
system. Based on the backstepping method, the boundary dynamic ETC issue for reaction-diffusion
systems has been addressed in [40]. For a class of reaction-diffusion equations, an observer-based dy-
namic boundary ETC strategy is provided in [41]. The existing research achievements for event-based
consensus tracking control are nearly exclusively based on LPSs. Using a dynamic ETC algorithm, the
containment control problem of networked Euler-Lagrange systems is investigated in [42]. The bipartite
event-triggered consensus tracking issue is solved for linear MASs in [43]. The dynamic event-triggered
output formation-containment tracking problem for linear MASs is considered in [44]. These existing
dynamic ETCs have not completely examined the controlled system’s input-output restrictions. It has
not been discovered to examine the boundary dynamic ETC of a single flexible manipulator, let alone
the event-based bipartite consensus tracking of several flexible manipulators, when input saturations and
backlashes, output constraints, and disturbances are all simultaneously considered. Besides, achieving
the spatial point-by-point asymptotic convergence of states of DPSs with multiple constraints keeps a
control challenge since most of the existing boundary control algorithms can only achieve the ultimately
uniformly bounded (UUB) convergence of closed-loop systems.

After the above analysis, we aim to address the boundary event-based bipartite consensus tracking
control issue for a flexible manipulator agent network under time-varying disturbances, modeling uncer-
tainties, input saturations and backlashes, and output constraints. By integrating the local interaction
protocol, input-output constraint control, and dynamic event-triggering mechanism in control design, the
spatial point-by-point asymptotic vibration suppression and bipartite consensus tracking control can be
achieved over a signed diagraph. In general, the major contribution has three aspects.

(1) Compared with the existing results in [21–25], the boundary bipartite consensus tracking of flexible
manipulator agents can be further achieved on a signed graph, and the proposed consensus control
algorithm can guarantee both transient and steady-state performances, despite the influence of input
saturations and backlashes, uncertain modeling dynamics, and unknown disturbances.

(2) The adaptive neural network is used to estimate the sum of the saturation error term and the
uncertain dynamic. By doing this, the proposed control algorithm can address the input backlash effect
even if the slope of backlash is unknown, but Refs. [12, 15] cannot deal with this case. Besides, a new
boundary dynamic event-based control strategy is proposed and is composed of a relative threshold, a
non-negative L1-integrable function, and a new interval dynamic variable. Different from the dynamic
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event-based mechanisms in [39, 42, 44], the proposed triggering conditions are more difficult to meet,
resulting in some longer dwell times.

(3) Under a new inequality condition, we reveal an interesting asymptotic convergence result. It
provides a solution to realize the spatial point-by-point asymptotic convergence of vibration states for
flexible manipulator systems under multiple uncertain constraints. Hence, it can achieve steady-state
performance that converges to zero, thereby further improving the control accuracy of UUB results
in [12, 13, 15, 16, 20, 25, 26, 32–34].

The layout of this work is organized as follows. In Section 2, problem statements and some preliminaries
are introduced. Boundary event-based consensus design and stability analysis are provided in Section 3.
Simulation results are presented in Section 4. The conclusion is summarized in Section 5.

2 Problem statements and preliminaries

2.1 Signed diagraph

A diagraph is a pair G = {VG , EG}, where VG = {1, . . . , N} is the node set and EG ⊂ VG × VG is edge
set of ordered pairs of nodes. The edge (j, i) in the edge set of a diagraph denotes that node j can
obtain information from node i, but not necessarily vice versa. Moreover, self-edges (i, i) are not allowed.
A signed digraph G is a triple G = {VG , EG ,WG}, where the node set VG = {1, . . . , N}, the edge set
EG ⊂ VG ×VG , and the adjacency matrix WG = [wij ]N×N with wij 6= 0 ⇔ (j, i) ∈ EG . wij = 1 (wij = −1)
describes the cooperative interaction (antagonistic interaction) between agents. Let Ni = {j : (j, i) ∈ EG}
denote the neighbouring nodes of node i. Laplacian matrix of G is denoted by LG = [Lij ]N×N , in which
Lij = −wij for i 6= j and Lii =

∑

j∈Ni
|wij |. Signed diagraph G containing the leader node 0 is the

augmented diagraph Ḡ = {V̄G, ĒG}, where V̄G = VG ∪ {0}, ĒG ⊂ V̄G × V̄G . B0 = diag{b1, . . . , bN} is the
pinning matrix, where bi = 1 denotes node i can receive the directed information from leader 0; bi = 0,
otherwise. Then, the interaction matrix H = B0+LG . Generally, node i is called to have a directed path
to node k if there exists a distinct sequence of i1, . . . , im such that (i1, i2), . . . , (im−1, im), (im, k) ∈ ĒG .
If there exists at least one directed path in Ḡ from at least one node to all the other nodes, Ḡ is called
contains a directed spanning tree.

G is structurally balanced if: (1) there exists a bipartition of node sets VG1 and VG2 such that VG =
VG1 ∪ VG2, VG1 ∩ VG2 = ∅ and wij = 1 if (j, i) ∈ VGp(p = 1, 2), and when i ∈ VGp, i ∈ VG(3−p), wij = −1;
(2) there exists a gauge transformation matrix A = diag{a1, . . . , aN} such that ai = 1 if node i ∈ VG1

and ai = −1 if node i ∈ VG2. Based on the gauge transformation matrix A = diag{a1, . . . , aN}, G can be
converted to an unsigned diagraph with the same structure [5]. Then, G is structurally balanced if and
only if (iff) there exists a gauge transformation matrix A such that W̄G = AWGA is with all non-negative
entries, and L̄G = ALGA has all non-positive off-diagonal entries [5]. Besides, if unsigned Ḡ contains a
directed spanning tree, there exists a D = diag{d1, . . . , dN} such that H̄ = HTD+DH is positive definite
where d = [d1, . . . , dN ]T is from d = H−T1N [4].

Assumption 1. Ḡ contains a directed spanning tree rooted at node 0 and is structurally balanced.

Remark 1. By using the gauge transformation matrixA, LG can be transformed into the new Laplacian
matrix ALGA of the corresponding unsigned graph. And, AHA = B0 +ALGA is an interaction matrix
of the unsigned diagraph. Under Assumption 1, H̃ = AH̄A = (AHA)TD + DAHA is positive definite,
where d = AH−TA1N . Moreover, H̄ is also positive definite.

2.2 Problem statements

The considered follower agent is the flexible-link manipulator described in Figure 1, where it is composed
of an Euler-Bernoulli beam, a rotatable rigid hub, and a tip payload. In coordinate systems SoY and
soy, yi(s, t) ∈ R and θi(t) ∈ R characterize the vibration displacement and angle displacement of the
manipulator. The total displacement of the manipulator is xi(s, t) = sθi(t) + yi(s, t), s ∈ [0, li]. l =
li, ρi, EiIi, Ti, ci respectively denote the length of the link, mass per unit length, bending stiffness, tension
and damping coefficient. Moreover, the inertia of the hub is Ihi, and the mass of the tip payload is mi.
umi(t) is the control input force and dmi(t) is the disturbance, where m = 1, 2. It is assumed that there
exist some unknown positive constants d̄mi,m = 1, 2, such that |dmi| 6 d̄mi [35].
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Figure 1 (Color online) Schematic diagram of the i-th flexible

manipulator.

Figure 2 Input constraints. (a) Saturation; (b) backlash.

Remark 2. In the sequel, we set (∗)(s, t) = (∗)(s) and (∗)(t) = (∗), ∀s ∈ [0, l], t ∈ [0,∞). Moreover,

let (∗)′ = ∂(∗)
∂s , (∗)′′ = ∂2(∗)

∂2s , (∗)′′′ = ∂3(∗)
∂3s ,(∗)′′′′ = ∂4(∗)

∂4s , (∗̇) = ∂(∗)
∂t , (∗̈) = ∂2(∗)

∂2t .
Consider a signed multi-agent network with one leader and N followers. In network, the i-th flexible

manipulator follower agent is modeled as [35]

ρiẍi(s) + EiIiy
′′′′
i (s)− Tiy

′′
i (s) + ciẋi(s) = 0, (1a)

yi(0) = y′i(0) = y′′i (li) = 0, (1b)

miẍi(li)− EiIiy
′′′
i (li) + Tiy

′
i(li)− f1i − u1i − d1i = 0, (1c)

Ihiθ̈i − Tiyi(li)− EiIiy
′′
i (0)− f2i − u2i − d2i = 0, (1d)

where i ∈ {1, . . . , N}, and fmi = fmi(Xmi), m = 1, 2, are the continuous modeling uncertainties with
X1i = [ẋi(li), xi(li), y

′
i(li), y

′′′
i (li)]

T, and X2i = [θ̇i, θi, yi(li), y
′′
i (0)]

T.
Input saturation described in Figure 2(a) is a common actuator issue and is denoted by

umi = Sat(τmi) =











uRmi, if τmi > uRmi,

τmi, if uLmi < τmi < uRmi,

uLmi, if τmi 6 uLmi,

(2)

where τmi is the control input, uLmi < 0 and uRmi > 0 are the saturation boundary constants of umi.
Besides, input backlash described in Figure 2(b) also exists widely in systems and is modeled as

τmi =











pmi(vmi −Brmi), if v̇mi > 0 and τmi = pmi(vmi −Brmi),

pmi(vmi −Blmi), if v̇mi < 0 and τmi = pmi(vmi −Blmi),

τmi(t−), otherwise,

(3)

where m = 1, 2, pmi > 0 is the unknown slope of the line, Brmi > 0 and Blmi < 0 are the unknown
constants, and τmi(t−) denotes the backlash output τmi keep unchange when v̇mi = 0.

Based on (3), we can formulate the input backlash τmi as

τmi = ηripmi(vmi −Brmi) + ηlipmi(vmi −Blmi) + ηsiτsmi, (4)

where τsmi is a generic constant and it satisfies pmi(vmi −Brmi) 6 τsmi 6 pmi(vmi −Blmi), and ηri = 1
if v̇mi > 0, ηri = 0, otherwise; ηli = 1 if v̇mi < 0, ηli = 0, otherwise; ηsi = 1 if v̇mi = 0, ηsi = 0, otherwise.
Anyway, it always has ηri + ηli + ηsi = 1.

Consider that θ0 = θd and y0(l0) = 0 as the leader, where θd is the desired constant tracking angle.

Definition 1. The network described by (1a)–(1d) achieves the asymptotical bipartite consensus track-
ing if there holds

lim
t→∞

|θi − aiθ0| = 0, lim
t→∞

|li(θi − aiθ0) + yi(li)| = 0, i ∈ VG , (5)

where ai = 1 or ai = −1.
Define the tracking errors as

α1i = liα2i + yi(li), α2i = θi − aiθ0. (6)
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To realize bipartite consensus tracking, the following local interaction protocol is designed as

βm = (HTD +DH)αm = H̄αm, m = 1, 2, (7)

where H̄ is positive definite according to Remark 1, αm = [αm1, . . . , αmN ]T, βm = [βm1, . . . , βmN ]T.
To constrain the transient performances, α1i and α2i are required to meet the output constraints as

Ωmi =
{

βmi ∈ R

∣

∣

∣
− hmi < βmi < h̄mi

}

, t > 0, (8)

where h̄mi, hmi, m = 1, 2, are some known positive constants. It is worth mentioning that when
constraint control (8) is satisfied, we have −hm < βm = H̄αm < h̄m. Furthermore, −H̄−1hm < αm <

H̄−1h̄m.
Under multiple constraints, including input saturations and backlashes, unknown disturbances, and

modeling uncertainties, control objectives in this work are to develop a novel distributed event-based
boundary control algorithm to achieve:

(1) The asymptotical vibration suppression: limt→∞ yi(s) = 0, ∀s ∈ [0, l], and the asymptotical
bipartite consensus tracking (5), where i = 1, . . . , N ;

(2) The performance constrain control (8) and to avoid Zeno behaviors for each agent.

2.3 Useful lemmas

Lemma 1. Suppose η1(s), η2(s) ∈ R, s ∈ [0, l], it holds

η1(s)η2(s) 6 |η1(s)||η2(s)| 6
ς

2
η21(s) +

1

2ς
η22(s), ς > 0. (9)

Lemma 2 ([35]). If η(s), η′(s), η′′(s) ∈ L2(0, l) and η(0) = 0, η′(0) = 0, the following equalities are:

η2(s) 6 l

∫ l

0

[η′(s)]2ds, (η′(s))2 6 l

∫ l

0

[η′′(s)]2ds. (10)

Lemma 3 ([20]). For any continuous function f(X ) defined on a compact set X ∈ Ω ⊂ R
n, a radial

basis function neural network (RBFNN) can be adopted to approximate a function f(X ) as

f(X ) = W∗TΦ(X ) + ε(X ), (11)

where |ε(X )| 6 ε, ε > 0, W∗ is the ideal weight matrix described as W∗ = argminW∈Rn{supX∈Ω |f(X )−
WTΦ(X )|}. Moreover, X = [X1, . . . ,Xq]

T ∈ R
q is the input vector, Φ(X ) = [Φ1(X ), . . . ,Φp(X )]T ∈ R

p is
the basis function vector and Φi(X ) is chosen a Gaussian function as

Φi(X ) = e−(X−Ci)
T(X−Ci)/B

2

i , i = 1, . . . , p, (12)

where Bi is the width of the Gaussian function and Ci ∈ R
q is the center of the receptive field.

Lemma 4. Let Va and Vb be two continuously differentiable positive definite functions on [0,∞), and
V̇b is uniformly bounded on [0,∞). Suppose q ∈ L1(0,∞) is a non-negative real-valued function. If the
following inequality is satisfied as:

V̇a 6 −ιVb + q, Vb 6 Va, (13)

then limt→∞ Vb = 0 when Va(0) is bounded. Specially, when Vc = Va − Vb is a monotonic function, the
uniformly bounded requirement for V̇b can be removed.
Proof. Letting Vc = Va − Vb, it is non-negative. When Vc is not monotonic, it follows from (13) that

ι

∫ t

0

Vb(τ)dτ + Va 6 Va(0) +

∫ t

0

q(τ)dτ < ∞, (14)

which implies that Vb ∈ L1(0,∞) ∩ L∞(0,∞). Since V̇b ∈ L∞(0,∞) and using the Barbalat’s lemma
in [45], one has limt→∞ Vb = 0.
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When Vc is monotonic, by multiplying eιt on both sides of (13), we obtain

Vb 6 e−ιtVb(0) + e−ιt

∫ t

0

eιτ (q(τ) − V̇c(τ))dτ. (15)

Due to
∫ t

0 e
ιτ V̇c(τ)dτ = eιtVc − Vc(0)− ι

∫ t

0 e
ιτVc(τ)dτ , it can further follow from (15) that

Vb 6 e−ιt(Vb(0) + Vc(0))− Vc +

∫ t

0

e−ι(t−τ)(q(τ) + ιVc(τ))dτ. (16)

Next, we will prove that for any δ > 0 there always exits a t0 > 0 such that Vb < δ holds for any t > t0.
Due to q ∈ L1(0,∞), it implies there exists a t1 > 0 such that

∫ t

t1
q(τ)dτ < δ1 for any δ1 > 0. By

decomposing the integral interval at t1 for (16), one can yield

Vb < δ1 + e−ι(t−t1)

∫ t1

0

e−ι(t1−τ)q(τ)dτ + e−ιt(Vb(0) + Vc(0)) + ι

∫ t

0

e−ι(t−τ)Vc(τ)dτ − Vc. (17)

Moreover, it further derives

Vb <
[

Vb(0) + Vc(0) + eιt1‖q‖L1(0,∞)

]

e−ιt + δ1 + ι

∫ t

0

e−ι(t−τ)Vc(τ)dτ − Vc. (18)

Note that Vc 6 Va ∈ L∞(0,∞) and it is monotonic, we can know limt→∞ Vc exists. By using the
L’Hospital principle, we can observe that

lim
t→∞

ι

∫ t

0

e−ι(t−τ)Vc(τ)dτ = lim
t→∞

leltVc

lelt
= lim

t→∞
Vc. (19)

From (19), limt→∞ ι
∫ t

0
e−ι(t−τ)Vc(τ)dτ = limt→∞ Vc and thereby limt→∞(ι

∫ t

0
e−ι(t−τ)Vc(τ)dτ − Vc)

= 0. Then, there exists a t2 > 0 such that |ι
∫ t

0
e−ι(t−τ)Vc(τ)dτ −Vc| < δ2 for any t > t2 and any δ2 > 0.

Letting M0 = Vb(0) + Vc(0) + eιt1‖q‖L1(0,∞) and δ1 = δ
3 , δ2 = δ

3 and taking t0 = max{t1, t2,
1
ι ln

3M0

δ }.
Then for any t > t0, we can always obtain

Vb <
δ

3
+

δ

3
+

δ

3
= δ, (20)

which implies that limt→∞ Vb = 0.

Remark 3. This lemma provides an alternative solution to achieve asymptotic convergence of some
adaptive systems. In particular, when Vc = Va − Vb is a monotonic function (Va = Vb as a special
case), Lemma 4 can remove the bounded requirement of the time derivative of the Lyapunov function
in Barbalat’s lemma, which has potential applications in adaptive distributed observer design. When
q = 0, this proposed lemma will degrade into the differential inequality: V̇ 6 −f in [11]. Hence, our
proposed lemma is an improved result. In Lemma 4, only −ιVb rather than −ιVa need to be given on
the right-hand side of the inequality, which is more common in adaptive systems. However, one needs to
check V̇b is uniformly bounded on [0,∞).

3 Control design and stability analysis

In this section, boundary consensus control, dynamic ETC, and BLF are integrated to design the corre-
sponding control algorithm.

3.1 Boundary control algorithm design

Based on (4), we can rewrite the backlash effect (3) as

τmi = pmivmi + bmi, (21)

where bmi is the remaining term and satisfies that bmi = −pmiBrmi if v̇mi > 0; bmi = −pmiBlmi if
v̇mi < 0; bmi = τsmi − pmivmi when v̇mi = 0. Moreover, it leads to |bmi| 6 max{pmi|Brmi|, pmi|Blmi|}.
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Then, the boundary control input umi can be taken as

umi = vmi + Sat(pmivmi + bmi)− vmi = vmi −∆(vmi), (22)

where vmi is the designed control input and ∆(vmi) = Sat(pmivmi + bmi)− vmi is the saturation error.
Letting gmi(X̄mi) = fmi(Xmi) + ∆(vmi), then we can use Lemma 3 to estimate it as

gmi(X̄mi) = W∗T
miΦmi(X̄mi) + εmi(X̄mi), (23)

where X̄mi = [XT
mi, vmi]

T is the input variable of network.
From (22) and (23), the compact vector forms of boundary dynamics (1c) and (1d) can be rewritten

as follows:
Mẍ(l) = Γ1 + v1 +W∗T

1 Φ1(X̄1) +D1, (24)

Ihθ̈ = Γ2 + v2 +W∗T
2 Φ2(X̄2) +D2, (25)

whereM = diag{m1, . . . ,mN}, Ih = diag{Ih1, . . . , IhN}, and ẍ(l) = [ẍ1(l), . . . , ẍN (l)]T, θ̈ = [θ̈1, . . . , θ̈N ]T,
vm = [vm1, . . . , vmN ]T, Γm = [Γm1, . . . ,ΓmN ]T with Γ1i = EiIiy

′′′
i (l)− Tiy

′
i(l), Γ2i = Tiyi(l) + EiIiy

′′
i (0),

W∗T
m = diag{W∗T

m1, . . . ,W
∗T
mN}, and Φm(X̄m) = [Φm1(X̄m1), . . . ,ΦmN(X̄mN )]T,Dm = [Dm1, . . . ,DmN ]T,

where Dmi = dmi + εmi(X̄mi) and |Dmi| 6 D̄mi = d̄mi + ε̄mi,m = 1, 2.
To achieve the control objectives, the actual compact control inputs can be designed as

vm = −kmβ̇m − κmsm − κ̄mβm −

(

(1− q(βm)) sec2
(

πβ2
m

2h2
m

)

+q(βm) sec2
(

πβ2
m

2h̄2
m

))

ν−1H̄βm − ŴT
mΦm(X̄m)−

smD̂m

|sm|+ ϕm
,

(26)

˙̂
Wmi = σmismiΦmi(Xmi)− σmi̺miŴmi, (27)

˙̂
Dmi =

̟mis
2
mi

|smi|+ ϕmi
−̟mi̺miD̂mi, (28)

where s1i = µiβ1i + νiẋi(li), s2i = µiβ2i + νiθ̇i, km = diag{km1, . . . , kmN}, κm = diag{κm1, . . . , κmN},
κ̄m = diag{κ̄m1, . . . , κ̄mN}, and ν = diag{ν1, . . . , νN}, µ = diag{µ1, . . . , µN}, are some diagonal positive

definite matrices, and (1−q(βm)) sec2(
πβ2

m

2h2

m

) = diag{(1−q(βm1)) sec
2(

πβ2

m1

2h2

m1

), . . . , (1−q(βmN)) sec2(
πβ2

mN

2h2

mN

)},

(1−q(βm)) sec2(
πβ2

m

2h2

m

) = diag{q(βm1) sec
2(

πβ2

m1

2h2

m1

), . . . , q(βmN ) sec2(
πβ2

mN

2h2

mN

)}, sm
|sm|+ϕm

= diag{ sm1

|sm1|+ϕm1

, . . .,
smN

|smN |+ϕmN

}, and function q(∗) is defined as q(∗) = 1 if ∗ > 0 and q(∗) = 0 when ∗ 6 0. Moreover,

̟mi, σmi are some positive constants, and 0 6 ϕmi ∈ L1(0,∞) and 0 6 ̺mi ∈ L1(0,∞), such as
̺mi = ζmie

−ωmit, where ζmi, ωmi are some positive constants.
In order to save control resources, we further use the dynamic event-triggered mechanism:

ϑmi(t) = vmi(t
i
mh), ∀t ∈ [timh, t

i
m(h+1)), h ∈ Z

+, (29)

tim(h+1) = inf{t > timh|fmi(emi, ϑmi, t) > 0}, (30)

fmi(emi, ϑmi, t) = e2mi − γmis
2
mi − gmi − ϕ̄mi, (31)

ġmi = δ̄mi(γmis
2
mi − e2mi + ϕ̄mi), (32)

where tim1 = 0 and gmi is the interval internal variable with gmi(0) > 0 and 0 6 ϕ̄mi ∈ L1(0,∞), such as
ϕ̄mi = µmie

−ιmit. And, γmi, δ̄mi, µmi, ιmi are some positive constants. Moreover, vmi is the designed
continuous controller and emi = ϑmi − vmi is the measurement error, m = 1, 2.

Note that based on (30) and (31), we have e2mi − γmis
2
mi − ϕ̄mi 6 gmi. Then, it can follow from (32)

that ġmi > −δ̄migmi. It implies that gmi > gmi(0)e
−δ̄mit > 0.

By plugging in the above event-triggered mechanism, it yields

miẍi(li) = Γ1i + v1i + e1i +W∗T
1i Φ1i(X̄1i) +D1i, (33)

Ihθ̈i = Γ2i + v2i + e2i +W∗T
2i Φ2i(X̄2i) + D2i. (34)



Yao X Q, et al. Sci China Inf Sci April 2025, Vol. 68, Iss. 4, 142201:8

3.2 Lyapunov function design

Let xe(s) = sβ2 + H̄y(s) = H̄α be a compact vector, where xe(s) = [xe1(s), . . . , xeN (s)]T. Firstly, choose
the Lyapunov function candidate as

V0 = V1 + V2 + V3, (35)

where V1,V2,V3, are separately defined as

V1 =
1

2

N
∑

i=1

∫ li

0

νiρiẋ
2(s) +

1

2

N
∑

i=1

∫ li

0

νiTi(y
′
i(s))

2ds+
1

2

N
∑

i=1

∫ li

0

νiEiIi(y
′′
i (s))

2ds, (36)

V2 =

N
∑

i=1

µimiβ1iẋi(li) +

N
∑

i=1

µiIhiβ2iθ̇i +

N
∑

i=1

∫ li

0

µiρiẋi(s)xei(s)ds, (37)

V3 =
1

2

N
∑

i=1

µik1iβ
2
1i +

1

2

N
∑

i=1

νimiẋ
2
i (li) +

1

2

N
∑

i=1

νiIhiθ̇
2
i

+
1

2

N
∑

i=1

µik2iβ
2
2i +

1

2

2
∑

m=1

βT
mκ̄mνH̄−1βm +

1

2

∫ l

0

xT
e (s)cµH̄

−1xe(s)ds,

(38)

where νi, µi, k1i, k2i are some positive constants.
Notice that V2 may be negative and thereby V0 cannot become a Lyapunov function. To ensure V0 is

non-negative, we apply the Lemma 2 to estimate |V2| as

|V2| 6
N
∑

i=1

{

∫ l

0

(

ς1ρiµi

2
x2
ei(s) +

µiρi

2ς1
ẋ2
i (s)

)

ds

+
Ihiµi

2ς2
θ̇2i +

Ihiµiς2

2
β2
1i +

miµiς3

2
β2
2i +

miµi

2ς3
ẋ2
i (li)

}

6 Ξ(V1 + V3),

(39)

where Ξ=max{λM (ς1c
−1ρH̄), λM (ς−1

1 µν−1), λM (ς2MK−1
1 ), λM (ς−1

2 µν−1), λM (ς3IhK
−1
2 ), λM (ς−1

3 µν−1)},
and λM (⋆) denotes the maximum eigenvalue of matrix ⋆. If one takes µ, ν, ς1, ς2, ς3, K1, K2 such that
0 < Ξ < 1 and use (39), one can yield

0 6 (1 − Ξ)(V1 + V3) 6 V0 6 (1 + Ξ)(V1 + V3), (40)

which ensures the Lyapunov candidate V0 is non-negative.
Next, by substituting (1a)–(1c) and using the integration by part, we differentiate V1 with respect to

time and can obtain

V̇1 =

N
∑

i=1

∫ li

0

νiẋi(s)ρiẍi(s) +

N
∑

i=1

∫ li

0

νiTiy
′
i(s)ẏ

′
i(s)ds+

N
∑

i=1

∫ li

0

νiEiIiy
′′
i (s)ẏ

′′
i (s)ds

=−
N
∑

i=1

νiẋi(li)Γ1i −
N
∑

i=1

νiθ̇iΓ2i −
N
∑

i=1

∫ li

0

νiciẋ
2
i (s)ds.

(41)

Similarly, by substituting (1a)–(1c) and applying the integration by part and using (6), (7), (33), and
(34), then the time derivative of V2 can be obtained as

V̇2 =

N
∑

i=1

µimiβ̇1iẋi(li) +

N
∑

i=1

µiβ1i

[

Γ1i + v1i + e1i +W∗T
1i Φ1i(X̄1i) +D1i

]

+

N
∑

i=1

µiIhiβ̇2iθ̇i +

N
∑

i=1

µiβ2i

[

Γ2i + v2i + e2i +W∗T
2i Φ2i(X̄2i) +D2i

]

− λm(µT H̄)
N
∑

i=1

∫ li

0

(y′i(s))
2ds+ λM (µρH̄)

N
∑

i=1

∫ li

0

ẋ2
i (s)ds

− λm(µEIH̄)

∫ li

0

(y′′i (s))
2ds−

N
∑

i=1

∫ li

0

µicixei(s)ẋi(s)ds,

(42)
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where λm(⋆) denotes the minimum eigenvalue of matrix ⋆.
Moreover, one can calculate the time derivative of V3 as

V̇3 =

N
∑

i=1

2
∑

m=1

µikmiβmiβ̇mi +

N
∑

i=1

νiẋi(li)
[

Γ1i + v1i + e1i +W∗T
1i Φ1i(X̄1i) +D1i

]

+
N
∑

i=1

∫ li

0

ciµixei(s)ẋi(s)ds+
N
∑

i=1

νiθ̇i

[

Γ2i + v2i + e2i +W∗T
2i Φ2i(X̄2i) +D2i

]

.

(43)

By integrating the above results, we can get

V̇0 =

N
∑

i=1

µi

[

k1iβ1i +miẋi(li)
]

β̇1i +

N
∑

i=1

2
∑

m=1

smi

[

vmi + emi +W∗T
miΦmi(X̄mi) +Dmi

]

+
N
∑

i=1

µi

[

k2iβ2i + Ihiθ̇i

]

β̇2i −
[

λm(µc)− λM (µρH̄)
]

N
∑

i=1

∫ li

0

ẋ2
i (s)ds

− λm(µT H̄)

N
∑

i=1

∫ li

0

(y′i(s))
2ds− λm(µEIH̄)

∫ li

0

(y′′i (s))
2ds,

(44)

where s1i = µiβ1i + νiẋi(li), s2i = µiβ2i + νiθ̇i.
Secondly, to constrain the performances of consensus tracking errors, consider the tangent-type BLF

V4 =
1

2

2
∑

m=1

N
∑

i=1

q(βmi)
h̄2
mi

π

tan

(

πβ2
mi

2h̄2
mi

)

+
1

2

2
∑

m=1

N
∑

i=1

(1− q(βmi))
h2
mi

π

tan

(

πβ2
mi

2h2
mi

)

. (45)

Taking the time derivative of (45) and using (7), one obtains

V̇4 =

2
∑

m=1

N
∑

i=1

q(βmi)βmi sec
2

(

πβ2
mi

2h̄2
mi

)

β̇mi +

2
∑

m=1

N
∑

i=1

(1− q(βmi))βmi sec
2

(

πβ2
mi

2h2
mi

)

β̇mi. (46)

Thirdly, choose the following Lyapunov function as:

V5 =
1

2

2
∑

m=1

N
∑

i=1

(σ−1
m W̃T

miW̃mi +̟−1
m

˜̄D2
mi), (47)

where W̃mi = W∗
mi−Ŵmi is the estimation error of the unknown ideal weight matrix and D̃mi = D̄mi−D̂mi

is the estimation error of D̄m, m = 1, 2.
By substituting (27) and (28) and applying Lemma 2, one can estimate V̇5 as

V̇5 6−
2
∑

m=1

N
∑

i=1

s2miD̃mi

|smi|+ ϕmi
−

N
∑

i=1

2
∑

m=1

smiW̃
T
miΦmi(X̄mi)−

1

2

2
∑

m=1

N
∑

i=1

̺mi‖W̃mi‖
2
2

+
1

2

2
∑

m=1

N
∑

i=1

̺mi‖W
∗
mi‖

2
2 −

1

2

2
∑

m=1

N
∑

i=1

̺miD̃
2
mi +

1

2

2
∑

m=1

N
∑

i=1

̺miD̄
2
mi.

(48)

The term smD̂m

|sm|+ϕm
in (26) is to compensate for unknown disturbances. Actually, it leads to

2
∑

m=1

sTm

(

Dm −
smD̂m

|sm|+ ϕm

)

6

2
∑

m=1

N
∑

i=1

(

s2miD̃mi

|smi|+ ϕmi
+ D̄miϕmi

)

. (49)

Finally, take the following Lyapunov function as:

V6 = V0 + V4 + V5 +

2
∑

m=1

N
∑

i=1

gmi. (50)



Yao X Q, et al. Sci China Inf Sci April 2025, Vol. 68, Iss. 4, 142201:10

Then, it can obtain

V̇6 = V̇0 + V̇4 + V̇5 +
2
∑

m=1

N
∑

i=1

δ̄miγmis
2
mi −

2
∑

m=1

N
∑

i=1

δ̄mie
2
mi +

2
∑

m=1

N
∑

i=1

δ̄miϕ̄mi. (51)

Using Lemma 1 and (44), (46) and (48), (51), and substituting the control design (26), we can get

V̇6 6−
[

λm(µc)− λM (µρH̄)
]

N
∑

i=1

∫ li

0

ẋ2
i (s)ds− λm(µT H̄)

N
∑

i=1

∫ li

0

(y′i(s))
2ds

− λm(µEIH̄)

N
∑

i=1

∫ li

0

(y′′i (s))
2ds−

2
∑

m=1

N
∑

i=1

κ̄miβ
2
mi −

2
∑

m=1

N
∑

i=1

(

κmi − δ̄miγmi −
1

2

)

s2mi

−
2
∑

m=1

N
∑

i=1

(

δ̄mi −
1

2

)

e2mi − λm((νk1 − µm)H̄)

N
∑

i=1

ẋ2
i (li)− λm((νk2 − µIh)H̄)

N
∑

i=1

θ̇2i

−
2
∑

m=1

βT
mq(βm) sec2

(

πβ2
m

2h̄2
m

)

ν−1µH̄βm −
2
∑

m=1

βT
m(1− q(βm)) sec2

(

πβ2
m

2h2
m

)

ν−1µH̄βm

+

2
∑

m=1

N
∑

i=1

(D̄miϕmi + δ̄miϕ̄mi) +
1

2

2
∑

m=1

N
∑

i=1

(‖W∗
mi‖

2
2 + D̄2

mi)̺mi.

(52)

If we can take some appropriate parameters such that λm(µc) − λM (µρH̄) > 0, λm(νk1 − µm) > 0,
λm(νk2 − µIh) > 0, κmi − δ̄miγmi −

1
2 > 0, δ̄mi −

1
2 > 0, then it can further yield

V̇6 6− ιV1 −min

{

2κ̄mi

kmi

}

1

2

2
∑

m=1

N
∑

i=1

kmiµiβ
2
mi

+

2
∑

m=1

N
∑

i=1

(D̄miϕmi + δ̄miϕ̄mi) +
1

2

2
∑

m=1

N
∑

i=1

(‖W∗
mi‖

2
2 + D̄2

mi)̺mi,

(53)

where ι = min{ 2(λm(µc)−λM (µρH̄))
viρi

,
2λm(µT H̄)

viTi
,
λm(µEIH̄)

viEiIi
}.

3.3 Stability analysis

In the sequel, stability analysis of the closed-loop network under a signed digraph is provided.

Theorem 1. Consider the networked flexible-link manipulator (1a)–(1d) under the boundary consensus
control (26) and the dynamic triggering mechanism (29)–(32). If the initial conditions are bounded and
Assumption 1 are satisfied, and there exist positive constants ς1, ς2, ς3 and some positive definite diagonal
matrices µ, ν,K1,K2 such that 0 < Ξ < 1 with Ξ = max{λM (ς1c

−1ρH̄), λM (ς−1
1 µν−1), λM (ς2MK−1

1 ),
λM (ς−1

2 µν−1), λM (ς3IhK
−1
2 ), λM (ς−1

3 µν−1)}, and there are some appropriate parameters δ̄mi and γmi

such that

λm(µc)− λM (µρH̄) > 0, λm(νk1 − µm) > 0, (54)

λm(νk2 − µIh) > 0, κmi − δ̄miγmi −
1

2
> 0, δ̄mi −

1

2
> 0, (55)

then the following several statements hold.
(1) Each manipulator agent can achieve the bipartite consensus tracking (5), and their velocities are

zero, i.e., limt→∞ |θi−aiθd| = 0, limt→∞ |xi(li)−ailθd| = 0 and limt→∞ θ̇i = 0, limt→∞ ẋi(li) = 0 when
ai = 1 if i ∈ VGp and ai = −1 if i ∈ VG3−p, p = 1, 2.

(2) Vibration displacement is convergent to zero, i.e., limt→∞ yi(s) = 0 for ∀s ∈ [0, l], i = 1, . . . , N .
(3) If the initial condition βmi(0) satisfies (8), then tracking errors α1i and α2i are restrained as

(̺
mi

, ¯̺mi) where ̺
m

= [̺
m1

, . . . , ̺
mN

]T, ¯̺m = [¯̺m1, . . . , ¯̺mN ]T and ̺
m

= H̄−1hm, ¯̺m = H̄−1h̄m,
m = 1, 2.

(4) Each manipulator agent can avoid Zeno behaviors.
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Proof. Based on (53), we further have

V̇6 6 −ῑ

(

V1 +
1

2

2
∑

m=1

N
∑

i=1

kmiµiβ
2
mi

)

+

2
∑

m=1

N
∑

i=1

(D̄miϕmi+ δ̄miϕ̄mi)+
1

2

2
∑

m=1

N
∑

i=1

(‖W∗
mi‖

2
2+D̄2

mi)̺mi, (56)

where ῑ = min{ι,min{ 2κ̄mi

kmi

}}.
From (56) and (58), one obtains that V6 ∈ L∞(0,∞) and thereby V1 ∈ L∞(0,∞), βmi ∈ L∞(0,∞),

β̇mi ∈ L∞(0,∞). By referring to [14], it can follow from V1 ∈ L∞(0,∞) that Γ1i ∈ L∞(0,∞) and

Γ2i ∈ L∞(0,∞). Based on (41), we can know that V̇1 +
∑2

m=1

∑N
i=1 kmiµiβmiβ̇mi is bounded. Since

V1 +
1
2

∑2
m=1

∑N
i=1 kmiµiβ

2
mi 6 V6 and 0 6 ϕmi ∈ L1(0,∞), 0 6 ϕ̄mi ∈ L1(0,∞), 0 6 ̺mi ∈ L1(0,∞), it

can follow from the proposed Lemma 4 that V1 → 0 and
∑2

m=1

∑N
i=1 β

2
mi → 0 when t → ∞. This implies

αmi → 0 when t → ∞ and thereby the asymptotical bipartite consensus tracking (5) can be achieved.
On the other hand, using Lemma 2, we have

y2i (s)

2liλmin(νT )
6

1

2

N
∑

i=1

∫ li

0

νiTi(y
′
i(s))

2ds 6 V1, (57)

which implies that yi(s) → 0 when t → ∞. As a result, the statement (2) holds.
By integrating left and right of (56) from 0 to t and V1 is non-negative, it results in

V6 6 V6(0)+

2
∑

m=1

N
∑

i=1

[

D̄mi‖ϕmi‖L1(0,∞)+ δ̄mi‖ϕ̄mi‖L1(0,∞) +(‖W∗
mi‖

2
2+ D̄2

mi)‖̺mi‖L1(0,∞)

]

< ∞, (58)

which indicates that V6 is bounded and thereby V4 is also bounded. Then, we can draw a conclusion that
the output constraint (8) is always satisfied according to the boundedness of V4. It implies −hm < H̄αm <

h̄m. Furthermore, we can obtain −H̄−1hm < αm < H̄−1h̄m, which ensures the transient performances of
the tracking error αmi. Hence, the statement (3) is proved.

Since gmi > gmi(0)e
−δ̄mit > gmi(0)e

−(εmi+δ̄mi)t, the dwell time between two consecutive triggering
instants is bigger than the dynamic triggered mechanisms in [39,42], where the interval internal variable
is ġmi = −εmigmi + δ̄mi(γmis

2
mi − e2mi). The dynamic triggered mechanisms in [39, 42] have been proven

that the minimum dwell time is strictly greater than zero. Hence, Zeno behaviors can excluded for each
manipulator agent for our proposed dynamic triggered mechanism, i.e., the statement (4) is satisfied.

4 Numerical simulations

To illustrate the feasibility of the proposed control algorithm, a numerical example is provided. As shown
in Figure 3, consider a signed graph including six agents labeled by 0 to 6. Obviously, Assumption 1
is satisfied. By using the signed graph theory, one can obtain H̄. In the agent network, all follower
agents from 1 to 6 are taken as flexible manipulators described by (1a)–(1d). The corresponding system
parameters are set as l = 1.0 m, EiIi = 2.0 + 0.01i N·m2, T = 10.0 + 0.02i N, Ihi = 0.10 + 0.01i kg·m2,
mi = 2.5 + 0.1i kg, ρi = 0.1 + 0.01i kg/m, ci = 20 N·s/m. Moreover, the time-varying disturbances are
taken as d1i = 0.1i + sin(it) + sin(0.5it) and d2i = 0.1i + cos(t) + cos(0.5t), and modeling uncertainty
functions f1i = 0.2 sin(xi(li))ẋi(li) + 0.1y′′′i (li), f2i = 0.1i sin(θiθ̇i) + 0.2y′′i (0). The initial conditions
yi(s, 0) = ẏi(s, 0) = θi(0) = θ̇i(0) = 0, where i = 1, . . . , 6. Agent 0 is the reference angle signal
with θd = 0.5 rad. Considering boundary control inputs are affected by saturations and backlashes, let
p1i = 0.6, p2i = 0.5, Br1i = 0.2, Bl1i = −0.1, Br2i = 0.2, Bl2i = −0.1, uLmi = −10, uRmi = 10, where
i = 1, . . . , 6, m = 1, 2. By using the finite difference method [13], the numerical simulations are given.

Case 1. Without boundary control inputs, i.e., umi = 0 for any m = 1, 2, and i = 1, . . . , 6. The
corresponding system responses are shown in Figures 4–6, when no boundary driving forces are applied
to these manipulator agents. As shown in Figures 4 and 5, due to the influence of external disturbances
and modeling uncertainties, the top displacement xi(li) and the steering angle θi of the manipulator agent
cannot track the desired signal, where i = 1, . . . , 6. Hence, it is impossible to use these manipulators
to complete the established work goals. Moreover, it can be seen from Figure 6 that the vibration
displacement yi(s) fluctuates with time, which affects the work efficiency of manipulators, where i =
1, . . . , 6. To enable all manipulators to work, the controlled case is provided.
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Figure 3 (Color online) Signed diagraph Ḡ where the solid (dashed) lines denote the cooperative (antagonistic) interactions.

Figure 4 (Color online) Boundary displacement xi(li) of ma-

nipulator agent without control, where i = 1, . . . , 6.

Figure 5 (Color online) Angle position θi of manipulator

agent without control, where i = 1, . . . , 6.

Figure 6 (Color online) Vibration displacement yi(s) of ma-

nipulator agent without control, where s ∈ [0, l] and i =

1, . . . , 6.

Figure 7 (Color online) Vibration displacement yi(s) of ma-

nipulator agent with event-based control, where s ∈ [0, l] and

i = 1, . . . , 6.

Case 2. Under the proposed event-based control inputs described by (26) and (29)–(32). The corre-
sponding control parameters are taken as k1 = diag{25, 100, 100, 100, 100, 100}, k2 = diag{2, 4, 4, 4, 4, 4},
and κ1 = diag{7.5, 30, 30, 30, 30, 30}, κ2 = diag{5, 10, 10, 10, 10, 10}, and κ̄1 = 30I6, κ̄2 = 5I6, µ =
diag{10, 20, 20, 20, 20, 20}, ν = 2I6. Moreover, adaptive parameters are chosen as σ1 = 1I6, σ2 = 2I6,
̟1 = 5I6, ̟2 = 0.1I6 and ̺mi = ϕmi = e−t for i = 1, . . . , 6 and m = 1, 2. In the dynamic event-triggering
mechanism (29)–(32), let γ1 = 5I6, δ̄1 = 2I6, γ2 = 0.8I6, δ̄2 = 1I6, and g1(0) = 1.5I6, g2(0) = 0.5I6,
ϕ̄mi = 2e−0.5t, where i = 1, . . . , 6 and m = 1, 2. The output constraint boundary coefficients are consid-
ered as h1 = −25I6, h̄1 = 25I6, h2 = −26I6, h̄2 = 26I6. By taking ς1i = ς2i = ς3i = 12.5, δ̄1i = 5, δ̄2i =
1.5, γ1i = 1, γ2i = 0.6, we can obtain that κ = 0.9762, λm(µc)−λM (µρH̄) = 18.7550, λm(νk1−µm) = 24,
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Figure 8 (Color online) Boundary displacement xi(li) of ma-

nipulator agent with event-based control, where i = 1, . . . , 6.

Figure 9 (Color online) Angle position θi of manipulator

agent with event-based control, where i = 1, . . . , 6.

Figure 10 (Color online) Constraint control of α1i with

event-based control, where i = 1, . . . , 6.

Figure 11 (Color online) Constraint control of α2i with

event-based control, where i = 1, . . . , 6.

λm(νk2 −µIh) = 2.8, min{κmi− δ̄miγmi−
1
2} = min{4.5, 3.7} = 3.7, min{δ̄mi−

1
2} = min{1.5, 0.5} = 0.5.

Therefore, 0 < Ξ < 1 and inequalities (54) and (55) are all satisfied in Theorem 1. Based on these
control parameters and using the designed boundary control strategy, the controlled systems’ responses
are provided in Figures 7–9. From Figure 7, vibration displacement yi(s) of the manipulator agent is
quickly and well suppressed under the designed boundary event-based control inputs, where i = 1, . . . , 6.
Besides, from Figures 8 and 9, it can be found that these manipulator agents quickly achieve the bipar-
tite consensus tracking (5) before two seconds, even manipulator systems have multiple constraints such
as time-varying disturbances and modeling uncertainties, unknown input saturations and backlashes.
Moreover, the output constraints of tracking errors are shown in Figures 10 and 11. From Figures 10
and 11, we can observe that the output constraints of tracking errors can be satisfied with the proposed
boundary event-based control laws. In summary, numerical simulations illustrate the effectiveness of the
proposed boundary event-based consensus control strategy, which has a great significance to ensure that
manipulators work together and improve work efficiency.

On the other hand, the event triggering numbers of all manipulators with two different boundary
control inputs are 112, 209, 138, 132, 110, 183, and 200, 216, 159, 161, 135, 195. The second control
input has a greater number of triggers than the first. For the first control input, the maximum event-
triggering rate of the flexible manipulator agent is 209

20000 = 1.045%. The maximum event-triggering rate
for the second control input is 216

20000 = 1.08%. This demonstrates that using the proposed event-based
law, two control inputs of all manipulators can avoid a large number of updates, thereby conserving
control resources. Applying event-based control design is based on the fundamental idea of avoiding
Zeno behaviors. To show that the suggested control algorithm is capable of avoiding Zeno behaviors,
Figures 12 and 13 are given to show the triggering time intervals for two different control inputs of each
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Figure 12 (Color online) Triggering time intervals of the first input.

Figure 13 (Color online) Triggering time intervals of the second input.

manipulator agent. From Figures 12 and 13, their event-based dwell-times are strictly bigger than zero,
implying that all manipulator agents are capable of avoiding Zeno behaviors. As a result, the suggested
distributed boundary dynamic ETC is both effective and practical. Ultimately, Figures 14 and 15 offer
two distributed boundary control inputs for each manipulator agent. For the first control input, Figure
14 respectively describes three different control inputs including time-triggered control inputs, event-
based control inputs, and actual control inputs. Figure 15 respectively shows three different control
inputs including time-triggered control inputs, event-based control inputs, and actual control inputs, for
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Figure 14 (Color online) The first distributed boundary control inputs.

Figure 15 (Color online) The second distributed boundary control inputs.

the second control inputs. As can be seen, event-based control inputs can avoid superfluous controller
updates, but actual controllers will decay and shift and have some limited maximum controls under the
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Table 1 Event numbers of agent 1.

Method The first input The second input The maximum event-triggering rate (%)

ETC used in [39] 217 287 1.435

ETC used in [43] 143 271 1.355

ETC in this work 112 200 1.00

influence of input saturations and backlashes. In general, we can deduce from the above numerical results
that the suggested event-based boundary consensus control algorithm is effective.

To demonstrate the superiority of the proposed approach, we compare them to some existing event-
based control strategies proposed in [39, 43]. In [39], the dynamic ETC is chosen as fmi(emi, ϑmi, t) =
πmi(|emi| − ωmi|ϑmi|) − nmi, and nmi is the interval dynamic variable given by ṅmi = −π̄minmi +
ε̄mi(ωmi|ϑmi| − |emi|), where πmi, ωmi, π̄mi, ε̄mi, are some positive constants. In [43], the triggering
function is chosen as fmi(emi, smi, t) = e2mi − omis

2
mi − εmie

−ǫmit, where omi, εmi, ǫmi, are some positive
constants. By taking π1 = π̄2 = 20I6, ω1 = ε̄2 = 0.2I6, n1(0) = 1.5I6, π2 = π̄2 = 20I6, ω2 = ε̄2 = 0.3I6,
n2(0) = 0.5I6 and o1 = ε1 = 5I6, ǫ1 = 0.5I6, o2 = 0.8I6, ε1 = 0.8I6, ǫ2 = 0.5I6, the counts of triggers
for two boundary different controllers of agent 1 are reported in Table 1. As illustrated in Table 1, the
proposed ETC control strategy exhibits the fewest trigger numbers on both the first and second boundary
control inputs, thereby demonstrating its superiority over existing methodologies.

5 Conclusion

In this article, we mainly focus on boundary event-based bipartite consensus tracking control of multiple
flexible manipulator systems with time-varying disturbances, modeling uncertainties, input saturations
and backlashes, and output constraints. In this case, it is a challenging task to achieve the spatial point-by-
point asymptotic stabilization of a flexible manipulator. To solve this puzzle, we develop a lemma to build
an interesting asymptotically convergent result. By integrating boundary consensus design, BLF, neural
network estimation, and dynamic event-triggering method, a new boundary bipartite consensus tracking
control algorithm is presented. Under the designed control algorithm and the newly developed lemma,
asymptotical bipartite cooperative tracking of multiple manipulators can be realized while suppressing
their unfavorable vibration displacements. Finally, simulation results well illustrate the effectiveness of
the proposed results.
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