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Stability, as one of the most important research directions,

has caught the attention of many scholars [1–3]. Simultane-

ously, in domains such as vessel control and vehicle systems,

external disturbances are unavoidable. The research chal-

lenge thus emerges: “How can one attain the desired system

performance in a finite time while controlling the impact

of external disturbances on output variables?”. Finite-time

H∞ control (H∞ FTC) is a salient solution to this problem.

As opposed to time-invariant systems, the stability of

nonlinear time-varying systems is more meaningful and

practical since it is no longer simply determined by the spec-

tral nature of the nominal system matrix. The stability of a

special class of time-varying systems, such as upper triangu-

lar time-varying systems, has been extensively studied [3].

Ref. [4] proposed simplifying switching systems to time-

varying systems, incorporating an optimization algorithm to

solve the optimal switching problem by targeting cost mini-

mization. Inspired by the above, this study ponders nonlin-

ear delayed systems (NDSs) as a class of special switching

systems in which the system coefficients exhibit continuity

at switching points and the subsystems do not recur. Inter-

val matrix method (IMM) has been applied in memristive

neural networks to address connecting weights [2, 5], but it

is now rarely adopted in time-varying systems. The essence

of IMM can be briefly formulated as an uncertainty analy-

sis of systems with convex analysis and matrix theory. The

salient contributions of this study are encapsulated below:

(1) Switching analysis and IMM are exploited to handle the

time-varying parameters of systems, thereby time-varying

systems are regarded as a special class of uncertain switch-

ing subsystems with time-varying parameters which are con-

tained in the closures. (2) Building upon the above switch-

ing analysis and IMM, a novel type of piecewise state feed-

back controllers (PSFCs) is proposed for imposing more pre-

cise control on the subsystems. (3) Two switching strategies

and a grid search algorithm (GSA)-based optimization al-

gorithm were introduced to pinpoint these switching points

with the goal of minimizing energy cost globally.

Problem formulation. Consider the following NDSs:
{

ẋ(t) = H(x(t), x(t − ι(t)), t) + Bv(t) + Gu(t),

z(t) = E(t)x(t) +Wv(t),
(1)

where x(t) indicates the state vector over R
n; ι(t) ∈ R

ι

is a time-varying delay which satisfies ι̇(t) 6 h < 1 and

0 6 ι(t) 6 ι; v(t) ∈ R
v stands for an exogenous distur-

bance; u(t) ∈ R
u as well as z(t) ∈ R

z indicates the con-

trol input and controlled output, respectively. Furthermore,

H(x(t), x(t−ι(t)), t) := A(t)x(t)+Ad(t)x(t−ι(t))+f(x(t), t)+

g(x(t− ι(t)), t), where E(t), A(t), and Ad(t) are the matrix-

valued functions related to t; B, G, W denote constant ma-

trices with compatible dimensions; f(·, ·) : Rn × R+ → R
n,

g(·, ·) : R
n × R+ → R

n are nonlinear functions. Without

loss of generality, suppose x(0) = ς = {ς(s) : −ι 6 s 6 0},

where ς(s) denotes the real-valued function. Moreover, the

time-varying control gain K(t) is introduced, such that the

PSFCs are described as u(t) = K(t)x(t). The energy cost

required for achieving control of the NDSs is defined as

J =
∫ Tf

t0
|u(s)|2ds. We next proceed with switching anal-

ysis on NDSs, transforming the systems into a special class

of nonlinear delayed switching systems (NDSSs) as follows:














dx(t) =[Aσ(t)(t)x(t) +Adσ(t)(t)x(t − ι(t)) + fσ(t)(x(t), t)

+ gσ(t)(x(t − ι(t)), t) + Bv(t) + Guσ(t)(t)]dt,

z(t) =Eσ(t)(t)x(t) +Wv(t),

(2)

where the switching signal is defined as σ(t) : [t0, Tf ] →

M ≡ {1, 2, . . . ,m}, m ∈ Z+. Following [4], the switching
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sequence is recognized as C = ((t0, i0), (t1, i1), . . . , (tq , iq)),

with t0 6 t1 6 · · · 6 tq 6 Tf , where t0 and Tf refer to the

times of initiation and finalization, respectively. q indicates

the number of switching, which is a positive integer. One

step further, (tp, ip) signifies the switch from the subsystem

ip−1 to ip at time tp, where p ∈ {1, 2, . . . , q}. Considering

the switching function, i(t) is provided by i(t) = ip when

tp 6 t 6 tp+1, and tq+1 is specified as Tf .

Remark 1. The core concept of switching analysis de-

lineated in this study is considering the time-varying pa-

rameters of NDSs through segmentation, transforming the

systems (1) into a series of special NDSSs. Consequently,

precise control can be attained to better cope with the chal-

lenges posed by abrupt variations in coefficients.

Besides, when considering subsystems active, the energy

cost of NDSSs can be defined as

J (t1, t2, . . . , tm−1) =

∫ Tf

t0

|u(s)|2ds =

∫ t1

t0

|u1(s)|
2ds

+ · · ·+

∫ Tf

tm−1

|um(s)|2ds =
m
∑

i=1

∫ ti

ti−1

|ui(s)|
2ds.

(3)

Remark 2. In general, if control cost is not taken into

account, it always allows the controllable system to remain

stabilized. On the other hand, although a system may pos-

sess controllability in principle, its practical controllability

could be rendered impossible if it necessitates inexhaustible

energy cost. In [1], they refer to the switching controllers

in accordance with the state values of the systems. Instead,

we contemplate designing a novel type of PSFCs that relies

on time-switching to attain the reduction in energy cost.

When focusing on the ith subsystem, IMM analysis is

employed to re-express the NDSSs below:






















dx(t) ∈{[Ai +HaiLai(t)Mai + GKi]x(t) + [Adi

+HdiLdi(t)Mdi]x(t− ι(t)) + fi(x(t), t)

+ gi(x(t − ι(t)), t) + Bv(t)}dt,

z(t) ∈[Ei +HeiLei(t)Mei]x(t) +Wv(t).

(4)

The details of IMM analysis and preparations are pre-

sented in Appendix A.

Theorem 1. For given several positive constants d1, β,

Tf , m, α, l1i, l2i, and a matrix R > 0, the NDSSs (2) achieve

finite-time boundedness (FTB) regarding (d1, d2, β, Tf , R,

σ), if there exist positive scalars µi > 1, d2, ǫfi, ǫgi, and

positive definite matrices Pi, Si, satisfying

[

Γ Ξ

∗ Θ

]

< 0,

Ω < 0,

Pi < µiPj , Si < µiSj , j = i− 1, ∀i, j ∈ M.

(5)

Theorem 2. For given some positive constants d1, β, Tf ,

m, α, l1i, l2i, γ, the NDSSs (2) achieve H∞ FTB with re-

spect to (d1, d2, β, Tf , R, σ) by setting H∞ performance

index γ⋆ = (eαTf
∏m

i=2 µi)
1

2 γ, if there exist positive scalars

µi > 1, d2, ǫfi, ǫgi, and positive definite matrices Pi, Si,

such that
[

Π Ξ́

∗ Θ

]

< 0,

Ω̃ < 0,

Pi < µiPj , Si < µiSj , j = i− 1, ∀i, j ∈ M.

(6)

Theorem 3. Combining PSFCs, for given some positive

constants d1, β, Tf , m, α, l1i, l2i, γ, if there exist positive

scalars µi > 1, ǫfi, ǫgi, ǫai, ǫdi, ǫei, d2, and positive definite

matrices Pi, Si, satisfying the following inequalities and the

condition Ω̃ < 0, the closed-loop systems (4) will be H∞

FTC regarding (d1, d2, β, Tf , R, σ), with the same H∞

performance index:

[

Ψ Σ

∗ Θ̃

]

< 0,

Xj < µiXi, Uj < µiUi, j = i− 1, ∀i, j ∈ M.

(7)

The details and proofs of Theorems 1–3 are provided in

Appendixes B–D. The resolution of the above Theorem 3

intricately intertwines with two switching strategies. Strat-

egy 1 contemplates the idea of average segmentation while

Strategy 2 pinpoints optimal switching points through an

optimized GSA-based algorithm. Two strategies are specif-

ically described and the optimized GSA-based algorithm is

proposed in Appendix E.

Remark 3. The introduction of switching Strategies 1

and 2 induces the enforcement of PSFCs, where Strategy 2

is even more oriented to minimize energy cost. An integra-

tion of switching analysis and Strategy 2 is undertaken to

impose constraints on the linear matrix inequalities (LMIs)

for minimizing the redundancy in energy cost. Synthesizing

the above discussions, we describe this optimization problem

as follows:

minJ (t1, . . . , tm−1) s.t.

{

LMIs: (7),

Ω̃ is satisfied.
(8)

Simulations are discussed in Appendix F.

Conclusion. This work delved into the H∞ FTC problem

for a class of NDSs. Switching analysis and IMM on NDSs

were implemented for transforming the time-varying system

into a series of special uncertain subsystems. Two switching

strategies and PSFCs were devised to derive matrix condi-

tions for H∞ FTC and identified optimal switching points

of examples.
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