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Multiarmed bandit (MAB) models are widely used for se-

quential decision-making in uncertain environments, such

as resource allocation in computer communication systems.

A critical challenge in interactive multiagent systems with

bandit feedback is to explore and understand the equilib-

rium state to ensure stable and tractable system perfor-

mance. Markov games are commonly used to track state

evolution and derive learning equilibria with continuous re-

wards but struggle to scale effectively as the number of

agents increases [1]. Mean field game theory has recently

gained attention as a promising solution by approximating

the interactions among large-scale agents with an average

effect. However, most existing mean field bandit models as-

sume a binary reward function [2,3], which presents two crit-

ical limitations. First, the binary reward setting is overly re-

strictive for practical applications, such as in resource com-

petition games, where agents typically share resources. In

these cases, rewards should range continuously within the

range of [0, 1] instead of being limited to binary outcomes

of 0 or 1. Second, the assumption that an agent’s state re-

generates with a certain probability of deducing equilibrium

oversimplifies the dynamics of typical repeated games, which

involve iterative actions without state regeneration.

In this study, we, for the first time, propose a new mean

field analysis framework to explore bandit games with a con-

tinuous reward function in systems encompassing enormous

agents. This approach generalizes the previous binary re-

ward model to a more universal scenario. We focus on de-

riving the existence and uniqueness of mean field equilibrium

(MFE), which ensures the asymptotic stability of the multi-

agent system. To accommodate the continuous reward, we

encode the learned reward into an agent state, which is then

mapped to the agent’s stochastic arm playing policy and

updated using observed outcomes. We show that the state

evolution is upper semi-continuous, enabling the existence

of MFE via the fixed point theorem. Since Markov analysis

suits discrete states, we transform the stochastic continu-

ous state evolution into a deterministic ordinary differential

equation (ODE) by applying stochastic approximation the-

ory. This allows us to characterize a contraction mapping

for ODE to ensure a unique MFE for the bandit game.

System model. We study the bandit game in a mul-

tiagent system involving massive agents N = {1, . . . , N}.
Time is discretized into slots {0, 1, . . . , n, . . .}, during which

each agent locally solves an MAB problem, choosing an

arm from M = {1, . . . ,M} in each slot n. The reward

from playing an arm is influenced by the actions of all

agents due to their interactions. The state of agent i is

sin = [sin(1), . . . , s
i
n(M)] ∈ R

M , where sin(j) is the learned

reward of arm j upon to slot n. Considering large-scale

agents, we adopt the distributed Hedge stationary policy

for arm playing:

σ(sin, j) = (1− η)
Exp

(

βsin(j)
)

∑M
k=1 Exp (βsin(k))

+
η

M
, (1)

where β is the smoothing parameter. We refer to ain as

the selected arm of agent i in time slot n. Then, pop-

ulation profile fn = [fn(1), . . . , fn(M)] indicates the pro-

portion of agents playing various arms, where fn(j) =
1
N

∑N
i=1 1{ai

n
=j}.

To address the challenges of directly analyzing the influ-

ence of individual agents’ actions in large populations, we

use the mean field model to approximate their interactions.

Under this model, the reward r(fn, j) that an agent receives

for playing arm j depends on the population profile fn. We

consider r(fn, j) as a continuous value in the range [0, 1]

which can be easily extended to other intervals. If agent i

observes a reward r(fn, ain) in slot n, its state is updated:

sin+1(j) = (1− γn)s
i
n(j) + γnw

i
n(j), (2)

where wi
n(j) = r(fn, ain) if ain = j, and wi

n(j) = sin(j)

otherwise. The stepsize γn is a deterministic value and sat-

isfies
∑

n γn = ∞,
∑

n γ2
n < ∞. A typical example is

γn = 1
n+1

, while other settings γn = 1
(n+1)α

, α ∈ ( 1
2
, 1] are

also valid. Let sn = [s1n, . . . , s
N
n ] denote the state profile,

thus sn ∈ [0, 1]N×M ⊂ R
N×M since r(fn, j) ∈ [0, 1].
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Potential application. Our multiagent MAB model can

be employed in various communication applications, as de-

tailed in Appendix B. For example, we consider pairwise

communication involving N pairs of transmitters and re-

ceivers sending data over M links. Each link is accessed op-

portunistically, such as via CSMA, by multiple transmitter-

receiver pairs. For link j, its resource capacity is c(j)N ,

where c(j) is a constant. In slot n, we assume N(j) pairs

transmit data over link j. Considering that the reward is

a function g(·) of the occupied link resource, then we have

r(N, j) = g( c(j)N
N(j)

) = g( c(j)
N(j)/N

) = g( c(j)
fn(j)

) , r(fn, j).

Existence and uniqueness of MFE. Characterizing the

MFE is essential for ensuring guaranteed and predictable

performance in multiagent systems. Our goal is to derive

the convergence of the state profile to MFE for the bandit

game. Proofs for the subsequent theorems and lemma are in

Appendixes C and D. Let Γ : sn → sn+1 be the compound

mapping of arm playing in (1) and state update in (2). We

provide the definition of MFE under mapping Γ below.

Definition 1 (MFE). State s is an MFE if s = Γ(s).

From Definition 1, MFE is in fact a fixed point under Γ.

Theorem 1 (Existence of MFE). There exists an MFE s

satisfying s ∈ Γ(s).

Since there may exist multiple MFEs under Γ, it is still

hard to track which MFE the states will converge to. Em-

pirical results in Appendix E highlight this issue by expos-

ing suboptimal regret performance when multiple MFEs are

present. This underscores the need to derive a unique MFE

for more reliable performance. A unique MFE implies that

there is only one fixed point. To handle bandit feedback, we

use stochastic approximation to transform the discrete-time

bandit game into a continuous-time ODE.

Each agent randomly selects an arm under the station-

ary policy, making the state evolution a stochastic process.

To obtain the unique MFE for the stochastic bandit game,

we employ a deterministic ODE grounded in the stochas-

tic approximation theory [4]. The state updating of (2)

is rewritten as sin+1(j) = sin(j) + γn(wi
n(j) − sin(j)) =

sin(j)+γn(E[wi
n(j)]−sin(j)+ui

n(j)), where ui
n(j) = wi

n(j)−
E[wi

n(j)]. Let wn = [w1
n, . . . , w

N
n ], and define a filtration

{Fn}n>0 generated by stochastic processes {sn,wn}n>0.

Clearly, Fn is a σ-algebra with Fn ⊂ Fn+1. As a result,

the process {ui
n}n>0 is a martingale, and E[ui

n(j)|Fn] =

0, ∀j ∈ M. The state profile sn is defined at the discrete

timescale, while the asymptotic pseudotrajectory involves

two continuous-time processes. We introduce a continuous-

time interpolated process for sn to link sn to st. Let τ0 = 0

and τn =
∑n−1

k=1 γk ,∀n > 1. Define the interpolated process

s̃iτn+h = sin + h
si
n+1−si

n

τn+1−τn
, 0 < h < γn,∀i ∈ N . By analyz-

ing the convergence of sn via a deterministic process st, the

interpolated process s̃t is an asymptotic pseudotrajectory.

Lemma 1 (Asymptotic pseudotrajectory). Let s̃it denote

the interpolated process of state sin = [sin(1), . . . , s
i
n(M)] for

agent i. Then, s̃it is an asymptotic pseudotrajectory for the

solution sit to the ODE
dsi

t

dt
= E[wi

t|st]− sit.

This lemma states that if the ODE of st solely con-

verges to a single fixed point, there is a unique MFE for

sn, since the asymptotic pseudotrajectory ensures that the

stochastic approximation error will reduce to zero. The

mapping Γ now indicates that the ODE sit(j) is
dsi

t
(j)

dt
=

σ(sit, j)
(

r(f(st), j)− sit(j)
)

, where r(f(st), j) is the ex-

pected reward over the state profile st since the population

profile f(st) is mapped from st by the stochastic stationary

policy. Next, we first assume that the reward function acts

as a contraction mapping to obtain the unique MFE, and

then derive conditions for this contraction property.

Theorem 2 (Uniqueness of MFE). Suppose r(f(st), j) is

a ||·||∞-contraction in state st. Then the fixed point s is the

unique MFE for the bandit game. s is also the global attrac-

tor for the ODE, and st converges to the global attractor s

with exponential rate.

We also discuss the convergence rate of the discrete-time

sn in Appendix C.4. Suppose that the reward function

r(fn, j) is θ-Lipschitz continuous in the population profile fn
with regard to ||·||1-norm: |r(fn, j)−r(f ′

n, j)| 6 θ||fn−f ′
n||1.

We now characterize the contraction mapping condition.

Theorem 3 (Contraction mapping condition). If param-

eters β, η in (1) and θ for the Lipschitz continuity satisfy

the condition 4θ(1 − η)β < 1, then the reward function

r(f(st), j) is a || · ||∞-contraction in the state profile st.

The contraction condition is less stringent when

r(f(st), j) is linear in f(st), as explained in Appendix C.6.

State change and model extension. We now calculate the

cumulative state change to analyze regret as an agent state

encodes the learned reward. After an agent plays an arm,

its state is updated by (2). The state change is represented

as an M -length vector ∆sin = γn(wi
n−sin). For more results

and proofs, refer to Appendix D.

Theorem 4 (Cumulative state change). For any agent i

and an arbitrary arm j, we have βsi0(j) +
∑T

n=0 β∆sin(j)−
ln(

∑M
j=1 Exp(βs

i
0(j))) 6

∑T
n=0[

1
1−η

β(σ(sin) −
η
M

1)∆sin +
1

1−η
(e−2)β2σ(sin) · (∆sin)

2], where 1 is an M -length vector

with each element equal to 1.

Model extensions are presented in Appendixes D.2–D.4.

Evaluation and conclusion. Comprehensive evaluation

results can be found in Appendix E. To summarize, we vali-

date our theoretical findings by demonstrating the existence

and uniqueness of MFEs and by evaluating the empirical

regrets under diverse reward function types.

In essence, this work proposes a general mean field frame-

work to analyze the multiagent bandit game with a con-

tinuous reward system [5]. We confirm the existence and

uniqueness of MFE to ensure a guaranteed performance.
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