
SCIENCE CHINA
Information Sciences

March 2025, Vol. 68, Iss. 3, 139101:1–139101:2

https://doi.org/10.1007/s11432-024-4262-5

c© Science China Press 2025 info.scichina.com link.springer.com

. LETTER .

GTE: learning code AST representation efficiently
and effectively

Yihao QIN1,2, Shangwen WANG1,2*, Bo LIN1,2, Kang YANG1,2 & Xiaoguang MAO1,2

1College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
2Key Laboratory of Software Engineering for Complex Systems, National University of Defense Technology,

Changsha 410073, China

Received 23 April 2024/Revised 26 August 2024/Accepted 26 December 2024/Published online 8 February 2025

Citation Qin Y H, Wang S W, Lin B, et al. GTE: learning code AST representation efficiently and effectively. Sci China Inf

Sci, 2025, 68(3): 139101, https://doi.org/10.1007/s11432-024-4262-5

With the development of deep learning in recent years, code

representation learning techniques have become the foun-

dation of many software engineering tasks such as program

classification [1] and defect detection. Earlier approaches

treat the code as token sequences and use CNN, RNN, and

the Transformer models to learn code representations. More

recently, to further incorporate the structural information

of code, efforts have been made by building tree-structured

models (TSM) [2] or implanting structural knowledge into

sequenced-based models (SBM) [1].

However, the TSMs focus on encoding code structure by

taking the whole abstract syntax tree (AST) of code as in-

put, but are inferior at processing sequence input and suffer

from overhead problems due to the irregular shape of ASTs.

On the contrary, the AST-implanted SBMs are superior at

handling long input sequences but usually rely on extracted

structural features such as sampled context paths or rela-

tive distance between tokens, which prevent models from

understanding code structure precisely and completely.

In this work, we try to remove the limitations of TSM and

SBM by proposing the graph-based tree encoding (GTE)

framework, which makes it possible to learn code representa-

tion both efficiently and effectively. Inspired by the message-

passing paradigm, GTE first transforms a batch of ASTs

into a large directed graph and then splits it into several

blocks along the hierarchy of the AST. Next, GTE supports

message passing and updating on a bucket of computation

units within a block, where the parent node in each unit has

the same number of children. With the help of the compu-

tation units, powerful sequence models such as Transformer

can be easily integrated into the GTE framework without

any additional modification.

Methodology. The overall procedure of the GTE frame-

work can be summarized into five phases.

Phase 1: preprocess. We first parsed the code snip-

pets C into abstract syntax trees T . Then, by performing a

depth-first traversal, we treated all nodes in an AST t ∈ T

as the set of nodes N in its corresponding graph g, where

each node’s attribute is the AST node type (if it is a non-

leaf node) or the code token of the AST node (if it is a leaf

node). We constructed the edge set E in the graph based

on the parent-child relationships between nodes in the AST.

In addition, for each graph g, we also record its number of

nodes s and its corresponding AST height h for further pro-

cessing. Formally, a code snippet c ∈ C can be represented

as g = (N,E, s, h) ∈ G, where G is the set of all code graphs.

Phase 2: graph batching and blocking. The graph

batch algorithm is commonly used for merging a batch of

small graphs into a large graph, where each graph before

merging corresponds to a sub-graph in the merged large

graph, the nodes in the sub-graph are not connected to other

nodes in the large graph. In this way, the calculations can

be performed on the entire merged graph simultaneously.

This algorithm is commonly utilized to accelerate compu-

tation and improve the generalization performance of GNN

models. To represent the structural information of the en-

tire code snippet, GNNs typically require a pooling layer

that can effectively gather the learned knowledge in nodes

into a single output. Since the design of the pooling process

is non-trivial, we introduce the graph blocking algorithm to

regulate the direction of data aggregation within the graph.

The basic intuition of the graph blocking algorithm is to

extract all nodes and edges in the subgraph that belong

to adjacent layers of the corresponding AST as a block.

Each block is a subgraph consisting of two sets of nodes:

the source nodes (children) and the destination nodes (par-

ents). By extracting multiple such blocks from the graph,

the direction and scope of graph message propagation are

limited, thereby achieving the intent to encode the AST

more efficiently based on the message passing processes that

may happen simultaneously on multiple ASTs. The detailed

steps of the algorithm are shown in Appendix A.

Phase 3: GTE-based model. Intuitively, the graph-

based tree encoding (GTE-based) model possesses charac-

teristics of both GNN and tree structure models. The left

part of Figure 1(a) shows a GTE computation unit, suppos-

ing the model has calculated the hidden state vc1 and vc2
of sub-trees that take nodes nc1 and nc2 as roots, ip is cal-

*Corresponding author (email: wangshangwen13@nudt.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-024-4262-5&domain=pdf&date_stamp=2025-2-8
https://doi.org/10.1007/s11432-024-4262-5
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-024-4262-5
https://doi.org/10.1007/s11432-024-4262-5

Qin Y H, et al. Sci China Inf Sci March 2025, Vol. 68, Iss. 3, 139101:2

Figure 1 (Color online) (a) Computation mechanism of the GTE framework; (b) accuracy for program classification task. The

bold numbers represent the best results under different model architectures.

culated from the attribute of node np, a GTE computation

unit aims to aggregate the information reserved in vc1 , vc2 ,

and ip, and to represent the sub-tree which take node np as

root by a generated hidden state vp.

As the computation processes between parent and child

nodes have been abstracted into computation units, various

GNN and sequence-based models can be integrated into the

GTE framework. For the RNN architecture, we integrate

the widely used GRU model into our GTE framework. The

calculation process can be represented as follows:

vin = [vc1 ; vc2 ; · · · ; vcn],

vp = LayerNorm(GRU(vin, ip)).

We also integrate the Transformer architecture into the

GTE framework. The process is as follows:

vin = [ip; vc1 ; vc2 ; · · · ; vcn],

vout = Transformer(vin),

vp = MaxPooling(vout).

Since the GTE framework limits the length and direction

of information flow between nodes in the graph, it is worth-

while to investigate the influence of this limitation on the

original GNN:

vs =
n∑

i=1

vci ,

vp = LayerNorm(GRU(ip, vs)).

Unlike other tree-structured models, similar calculation

processes in the GTE framework would occur simultaneously

in a batch of computation units in a block. We formally

present the propagation process as

mj→k = (i
(b)
k

, v
(b)
j), (j, k) ∈ E,

v
(b+1)
k

= ρ({mj→k , (j, k) ∈ E}).

Phase 4: downstream task. For evaluating the model

performance on distinguishing code semantics, we apply the

generated vectors to program classification tasks. Since no

pooling operation is required to aggregate different node rep-

resentations, we simply take the hidden state of the root

node vr as the output, and use a single fully connected layer

and a softmax layer to predict the probability of each cate-

gory:

o = W × vr , p = softmax(o),

loss = −

|p|∑

i=1

1y==i log pi.

Results and discussion. We evaluate the models’ perfor-

mance in code understanding on the Project CodeNet [3]

dataset, which has been properly preprocessed for differ-

ent programming languages including Python, Java, and

C++. We compare the GTE-based model with code repre-

sentation models in various architectures such as GGNN [4],

ASTNN [5], MTN-b [2], and HiT [1]. The results are shown

in Figure 1(b), where TF denotes the Transformer model.

As shown in Figure 1(b), the Transformer+GTE model

performs the best among all baselines, with an accuracy of

over 97.5% on each programming language, and an over-

all average accuracy of 98.03%, which improves 3.25% com-

pared to the SOTA AST-implant Transformer-based model

HiT. When we look at the results in GNN and SBM models,

we can find obvious performance increases over the original

models simply by introducing the GTE framework without

changing the model computation mechanism. After combin-

ing with the GTE framework, the average accuracy of the

original GGNN and Transformer models improves by 3.26%

and 10.1%, respectively.

To evaluate the efficiency of models based on the GTE

framework, we record the average runtime for a model to

train an epoch. The result shows that the time cost of the

GTE-based models to run an epoch drops obviously with the

increase in batch size. Specifically, the Transformer+GTE

model takes 914 s to run an epoch with a batch size of 8,

which is nearly 13 times slower than the Transformer (70 s),

but its runtime decreases sharply to 136 when the batch size

comes to 128. More detailed evaluation results can be found

in Appendix C.

Conclusion and future work. In this work, we try to ad-

dress the limitations of tree-structured models and sequence-

based models by introducing the GTE framework, which

can encode AST “naturally” in a bottom-up manner with

sequence models, while also conducting parallel calculations

efficiently on multiple ASTs. For future work, it would be

interesting to apply the GTE framework to more complex

models such as the large language models.

Supporting information Appendixes A–C. The support-
ing information is available online at info.scichina.com and link.
springer.com. The supporting materials are published as sub-
mitted, without typesetting or editing. The responsibility for
scientific accuracy and content remains entirely with the au-
thors.

References
1 Zhang K, Li Z, Jin Z, et al. Implant global and local

hierarchy information to sequence based code representa-
tion models. In: Proceedings of IEEE/ACM 31st Inter-
national Conference on Program Comprehension (ICPC),
2023. 157–168

2 Wang W, Li G, Shen S, et al. Modular tree network for
source code representation learning. ACM Trans Softw Eng
Methodol, 2020, 29: 1–23

3 Puri R, Kung D S, Janssen G, et al. Project CodeNet:
large-scale AI for code dataset for learning a diversity of
coding tasks. 2021. ArXiv:2105.12655

4 Allamanis M, Brockschmidt M, Khademi M. Learning to
represent programs with graphs. In: Proceedings of Inter-
national Conference on Learning Representations, 2018

5 Zhang J, Wang X, Zhang H, et al. A novel neural source
code representation based on abstract syntax tree. In: Pro-
ceedings of IEEE/ACM 41st International Conference on
Software Engineering (ICSE), 2019. 783–794

info.scichina.com
link.springer.com
link.springer.com
https://doi.org/10.1145/3409331
https://arxiv.org/abs/2105.12655

