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Appendix A Proof of Theorem 1

In order to prove the equivalence of Problem (15) and Problem (16), we have to demonstrate that they share the identical

optimal solution when f(η∗) = 0. It is plain to see that Problem (15) and (16) possess the same the same range of feasible

solutions. First, we denote (
⌢
W,

⌢
φ) ∈ R1 and (

⌢
W∗,

⌢
φ∗) ∈ R1 as feasible and optimal solutions of Problem (15) separately.

Then, for any (
⌢
W,

⌢
φ), we have the maximum SSE i.e., η∗ as follows
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(A1)

Since both
∑

k∈K tr(
⌢
W∗

k) ⩾ 0 and
∑

k∈K tr(Wk) ⩾ 0, we can transform (A1) as∑
k∈K
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tr(
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By combing (A2) and (A3), it is clearly observed that (
⌢
W∗,

⌢
φ∗) is the optimal solution for (16). Similarly, we denote

(
⌣
W,

⌣
φ) ∈ R1 and (

⌣
W∗,

⌣
φ∗) ∈ R1 be feasible and optimal solutions of Problem (16) respectively. Let f(η∗) = 0 and we

have ∑
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tr(
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By combing (A4) and (A5), it is clearly observed that (
⌣
W∗,

⌣
φ∗) is the optimal solution for (15). Finally, we can verify the

equivalence between Problem (15) and (16) only if f(η∗) = 0.

Appendix B Proof of Theorem 2

We denote V i
k = (Wi, pit,φ

i,zi,yi) and V i+1
k = (Wi+1, pi+1

t ,φi+1,zi+1,yi+1) as the feasible solution sets at the i-th

and (i+ 1)-th iterations for the problem (28), respectively. So that, we can obtain∑
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Moreover, utilizing (17), we can additionally attain
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Subsequently, adhering to the iterative method outlined in (28), we conclude with∑
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Based on (B3), it is evident that the iterative process (28) consistently yields solutions that are no worse than the previous

iteration, ensuring a monotonically nondecreasing sequence as the number of iterations grows. Furthermore, employing the

transmit power constraint tr(Wk) ⩽ pt and utilizing the Cauchy–Schwarz inequality, we can derive an upper bound for the

objective function, as illustrated below
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1 + e−τkγk
−

1

1 + e−τkφk
)− η

∑
k∈K

tr(Wk) ⩽
∑
k∈K

1

1 + e−τkγ
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k

(B4)

where γmax
k =

pttr(Hk)

σ2 denotes the maximum value of the signal-to-noise ratio. Upon integrating (B3) and (B4), we can

ascertain that the iterative procedure defined in (28) will converge to a ϵ-optimal solution of (16) upon completion of a

sufficient number of iterations.

Appendix C Proof of Theorem 3

We denote the objective function as

f(τk) =
1

τk
(

1

1 + e−τkγk
−

1

1 + e−τkφk
). (C1)

We set τkφk = uk and then τkγk = vkuk, where vk = γk
φk

> 1. The fomula (C1) can be expressed as
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(
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−
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) = φk f̂(uk). (C2)

We construct function g(uk, vk) and its expression can be written as
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1
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1
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then

f̂(uk) = g(uk, vk)− g(uk, 1). (C4)

The first derivative of f̂(uk) is
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where ġ(uk, vk) and ġ(uk, 1) represent the first-order partial derivatives of the function g(uk, vk) and g(uk, 1) with respect

to uk respectively. The derivative of ġ(uk, vk) with respect to vk is

∂ġ(uk, vk)

∂vk
=

g1 − g2(
u2
k(1 + e−vkuk )2

)2 , (C6)

where

g1 = u3
ke

−vkuk (2− vkuk)(1 + e−vkuk )2, (C7)

g2 = 2u3
ke

−vkuk (1 + e−vkuk )
(
1− (vkuk − 1)e−vkuk

)
. (C8)

The formula g1 − g2 can be expanded as

g1 − g2 = vku
4
ke

−vkuk (1 + e−vkuk )(e−vkuk − 1). (C9)

According to (C9), it is evident that g1−g2 is less than zero. Then, function ġ(uk, vk) monotonically decreases with respect

to vk, i.e., ġ(uk, vk) ⩽ ġ(uk, 1), making
df̂(uk)
duk

⩽ 0. Therefore, f̂(uk) is a monotonically decreasing function about uk,

which is equivalent that f(τk) is a monotonically decreasing function about τk.
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Appendix D Proof of Lemma 1

Firstly, the SINR expression in (37a) can be rewritten as

γk,n =

∣∣∣hH
k,nwk

∣∣∣2∑
i∈K,i ̸=k

∣∣∣hH
k,nwi
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n
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∑
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Wi)hk,n ⩽ γeσ
2
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⇔ hH
k,nQkhk,n + γeσ

2
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where we denote Qk ≜ γe
∑

i∈K,i ̸=k Wi − Wk. By substituting hk,n = ĥk,n + △hk,n into (D1c), we get the equivalent

expression as follows

(D1c) ⇔(ĥk,n +△hk,n)
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2
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2
n︸ ︷︷ ︸
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⩾ 0. (D2b)

We represent the CSI error △hk,n as △hk,n = Σ
1/2
k,nvk,n , where vk,n ∼ CN (0, I), Σk,n = Σ

1/2
k,nΣ

1/2
k,n and (Σ

1/2
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H = Σ
1/2
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so that the expression f1 in (D2b) can be reformulated as
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Similarily, the expression f2 in (D2b) can be reformulated as
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1/2
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2
n. (D5)

By substituting (D3c), (D4b) and (D5) into (D2b), we have

vH
k,nAk,nvk,n + uH

k,nvk,n + ck,n ⩾ 0. (D6)

Therefore, the per-eavesdropper secrecy outage probability constraint can be given by

Prhk,n
{vH

k,nAk,nvk,n + 2Re{uH
k,nvk,n}+ ck,n ⩾ 0} ⩾ 1− ρk. (D7)

The equivalence stated in (D7) indicates that the outage probability defined in (37a) can be described through a quadratic

inequality pertaining to the Gaussian random vector vk,n.

By invoking the BTI, we can convert the chance constraint (D7) into a deterministic constraint, which furnishes (D7) with

a reliable approximation and is given by

(D7) ⇔tr(Ak,n)−
√
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∥∥2
F

+ 2
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⇔


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√
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[
vec(Ak,n)√

2uk,n
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2

⩽ pk,n,

qk,nI+Ak,n ⪰ 0, qk,n ⩾ 0.

(D8b)

where λ+(Ak,n) = max(λmax(Ak,n), 0). pk,n and qk,n are slack variables.
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