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Appendix A Proof of Theorem 1

In order to prove the equivalence of Problem (15) and Problem (16), we have to demonstrate that they share the identical
optimal solution when f(n*) = 0. It is plain to see that Problem (15) and (16) possess the same the same range of feasible

solutions. First, we denote (\XI, @) € Ry and (W*,p*) € Ry as feasible and optimal solutions of Problem (15) separately.

Then, for any (W, a), we have the maximum SSE i.e., n* as follows
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Since both » 7, i tr(W7) > 0 and D, o tr(Wyg) > 0, we can transform (Al) as
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By combing (A2) and (A3), it is clearly observed that (&*,&‘) is the optimal solution for (16). Similarly, we denote

(V\(f7 @) € Ry and (V\VJ*7 Q;/*) € R be feasible and optimal solutions of Problem (16) respectively. Let f(n*) = 0 and we
have
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By combing (A4) and (A5), it is clearly observed that (VE’/*7 c;;) is the optimal solution for (15). Finally, we can verify the
equivalence between Problem (15) and (16) only if f(n*) = 0.

Appendix B Proof of Theorem 2
We denote Vki = (Wi pl, % 2%, y?) and V,jJrl = (Wi+1,pi+l,cpi+1,zi+1,yi+1) as the feasible solution sets at the i-th
and (¢ + 1)-th iterations for the problem (28), respectively. So that, we can obtain
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Moreover, utilizing (17), we can additionally attain
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Subsequently, adhering to the iterative method outlined in (28), we conclude with
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Based on (B3), it is evident that the iterative process (28) consistently yields solutions that are no worse than the previous
iteration, ensuring a monotonically nondecreasing sequence as the number of iterations grows. Furthermore, employing the
transmit power constraint tr(Wy) < p: and utilizing the Cauchy—Schwarz inequality, we can derive an upper bound for the
objective function, as illustrated below
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where 71%% = % denotes the maximum value of the signal-to-noise ratio. Upon integrating (B3) and (B4), we can
ascertain that the iterative procedure defined in (28) will converge to a e-optimal solution of (16) upon completion of a
sufficient number of iterations.

Appendix C Proof of Theorem 3

We denote the objective function as
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We set T, = up and then 75y, = viug, where v = % > 1. The fomula (C1) can be expressed as
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We construct function g(ug,vy) and its expression can be written as
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then
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The first derivative of f(uy) is

= g(ug,vx) — g(ug, 1)
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where g(uy,vr) and g(ug, 1) represent the first-order partial derivatives of the function g(ug,vg) and g(ug, 1) with respect
to ug respectively. The derivative of g(ug,v) with respect to vy is
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The formula g; — g2 can be expanded as
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According to (C9), it is evident that g1 — g2 is less than zero. Then, function g(u, vr) monotonically decreases with respect
to vg, i.e., g(uk,vr) < g(ug,1), making %"k’c) < 0. Therefore, f(uk) is a monotonically decreasing function about wuy,

which is equivalent that f(7x) is a monotonically decreasing function about 7.
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Appendix D Proof of Lemma 1

Firstly, the SINR expression in (37a) can be rewritten as
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where we denote Qp £ v, Zielc itk W,; — Wy. By substituting hy ,, = flk:,n + Ahy, , into (Dlc), we get the equivalent
expression as follows
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We represent the CSI error Ahy, ,, as Ahy, ,, = Ei/jvkyn , where vy, , ~ CN(0,1), Xy, ,, = Ellc/jﬁi/j and (Ellc/z)H =X
so that the expression fj in (D2b) can be reformulated as
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where Ay, 4 Ellc/ijEi/j,

Similarily, the expression f2 in (D2b) can be reformulated as
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where ukH,n 4 flganZ}i{j And the expression ¢, 5, in (D2b) can be restructured as

chyn = tr(hfl, Quhin) + Ye0r. (D5)
By substituting (D3c), (D4b) and (D5) into (D2b), we have
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Therefore, the per-eavesdropper secrecy outage probability constraint can be given by
Pro, AVE Ak nVin + 2Re{ufl v} +cpn 20} > 1—pp. (D7)
The equivalence stated in (D7) indicates that the outage probability defined in (37a) can be described through a quadratic
inequality pertaining to the Gaussian random vector v ,,.

By invoking the BTI, we can convert the chance constraint (D7) into a deterministic constraint, which furnishes (D7) with
a reliable approximation and is given by
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where AT (A ) = max(Amax(Ak,n),0). Pk,n and gi ., are slack variables.
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