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Abstract Autonomous decision-making is crucial for aircraft to achieve quick victories in diverse scenarios. Based on a

6-degree-of-freedom aircraft model, this paper proposes a decoupled guidance and control theory for autonomous aircraft ma-

neuvering, distinguishing between close and long-range engagements. We introduce a method for heading attitude control to

enhance stability during close-range interactions and a speed-based adaptive grid model for precise waypoint control in mid-

to-long-range engagements. The paper transforms dynamic aircraft interactions into a Markov decision process and presents a

hybrid discrete and continuous action reinforcement learning approach. This unified learning framework offers enhanced gen-

eralization and learning speed for dynamic aircraft adversarial processes. Experimental results indicate that in a symmetric

environment, our approach rapidly achieves Nash equilibrium, securing over a 10% advantage. In unmanned aerial aircraft game

control with higher maneuverability, the probability of gaining a situational advantage increases by more than 40%. Compared to

similar methods, our approach demonstrates superior effectiveness in decision optimization and adversarial success probability.

Furthermore, we validate the algorithm’s robustness and adaptability in an asymmetric environment, showcasing its promising

application potential in collaborative control of aircraft clusters.
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1 Introduction

In recent years, autonomous drones have been gradually applied across various industries [1, 2]. Re-
searching unmanned aerial vehicles (UAV) dynamic game problems enables effective resolution of their
autonomous decision-making and control challenges in scenarios like interception, interference, and com-
plex environmental threats. This allows UAVs to achieve specific game objectives, including disaster
relief, counter-terrorism, and hazardous environment reconnaissance [3]. In dynamic game scenarios,
UAV models can be categorized into fixed-wing and rotary-wing types. Fixed-wing UAVs have greater
endurance and resilience in some complex environments, but the design of their autonomous decision-
making systems presents greater challenges [4]. Due to the need to control multiple degrees of freedom and
parameters such as pitch, roll, yaw, and speed [5], the dynamic game process of fixed-wing UAVs exhibits
high dimensionality and strong coupling, requiring faster response times and more accurate attitude cal-
culation between control strategies and actual flight states. Furthermore, given the complex and dynamic
nature of current and future scenarios in aircraft adversarial games, research on the generalization and
robustness of game decision control algorithms is crucial.

Currently, in the existing research and applications [6, 7], the dynamic game problem of UAVs can be
transformed into bilateral extreme problems such as pursuit-evasion, attack-evasion, and reconnaissance-
dispersal. These problems involve the autonomous decision-making and control of UAVs, which are
further divided into trajectory planning, attitude control, overload control, and other aspects for inves-
tigation. For nonlinear control of vehicle attitude, Espinoza et al. [8, 9] modeled the nonlinear control
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system of fixed-wing UAV and employed differential methods to solve for the load factor and attitude
angles. Wang et al. [10] proposed a composite adaptive fault-tolerant control strategy for quadcopter
UAVs, building upon baseline sliding mode control, they integrated a neural adaptive control method,
enhancing the robustness of the UAV’s control strategy. Zheng et al. [11] addressed the optimal control
problem of timely fault-tolerant attitude tracking for non-affine nonlinear faulty UAVs using the Lya-
punov function. This type of research addresses the issue of stable attitude control of UAVs in complex
environments. However, in game scenarios, where aircraft are confronted with complex gameplay be-
havior, the algorithmic performance of the solution is poor and unable to handle high-dynamic game
decision-making problems. Therefore, in high-dynamic aircraft games, many scholars have transformed
them into studies on dynamic path planning [12] and aircraft obstacle avoidance issues. Traditional
approaches [13] such as A* [14] and Dijkstra [15], swarm intelligence algorithms [16] like particle swarm
optimization (PSO), artificial bee colony (ABC) [17], and artificial fish swarm (AFS) [18, 19], as well as
methods based on random sampling like probabilistic roadmap (PRM) and rapidly exploring random
tree (RRT) [20], have been widely utilized. Specifically, Huang et al. [21] applied adaptive adjustment
parameters, cylindrical vectors, and different evolution operators to the PSO algorithm (ACVDEPSO),
efficiently generating higher-quality paths for UAVs in complex three-dimensional environments. Zhou
et al. [22] proposed a biomimetic three-dimensional spatial path planning algorithm by simulating the
basic mechanism of plant growth, this algorithm addresses the dynamic obstacle avoidance path planning
problem for drones in unknown environmental maps. Diao et al. [23] introduced an artificial potential
field-enhanced improved rapidly exploring random tree (APF-IRRT*) path planning algorithm, improv-
ing the convergence speed and path smoothness of drone trajectory optimization. These studies have
made contributions to dynamic trajectory planning, but two main issues still exist. Firstly, the perfor-
mance degradation is caused by the increase in search space complexity. For example, the same method
may exhibit a significant performance difference when applied to two-dimensional and three-dimensional
spaces. Secondly, general path planning methods are based on the 3-degree-of-freedom (3-DOF) point
mass model of the aircraft, which introduces significant errors in practical applications. In the context
of dynamic game scenarios for aircraft, relying solely on generated trajectories can lead to a loss of
control over the aircraft’s attitude. In the second aspect, the accuracy of the model in decision-making
algorithms has been increasingly emphasized. Roberge et al. [24] utilized genetic algorithm (GA) and
PSO to optimize the optimal trajectory of fixed-wing UAVs in complex three-dimensional environments,
they composed a rational flight path using discrete line segments, arcs, and vertical spirals. Sandberg
et al. [25] proposed several autonomous trajectory generation algorithms based on the 6-DOF model.
Raigoza et al. [26] solved autonomous policy-making on fixed-wing UAV collision problems based on
Sandberg’s approach. However, the aforementioned methods still rely on path point control and do not
consider the dynamic attitude control issues in UAV games. In our preliminary work [27, 28], we have
studied overload control methods for fixed-wing UAVs and conducted research on autonomous control
decision-making for dynamic interception weapons. However, our approach has not addressed the issue
of autonomous decision-making for both sides in the dynamic game of UAVs. Specifically, research on
autonomous decision-making for red-side aircraft typically overlooks the issue of decision intelligence for
blue-side aircraft. In other words, our current focus is on studying the control decisions of red-side aircraft
in the face of blue-side aircraft whose decision-making capabilities can evolve.

In summary, studying autonomous decision control methods for both sides in one-on-one aircraft games
aims to quickly reach a non-cooperative Nash equilibrium in adversarial scenarios. This research provides
a unified learning framework for future aircraft adversarial games, offering decision control strategies for
various confrontations. This equips aircraft with the ability to guide precisely in advantageous situations
and maneuver to escape in disadvantaged situations. This paper proposes a decision model that combines
discrete and continuous actions based on the actual 6-DOF model of the aircraft. It integrates deep
reinforcement learning (DRL) methods to solve the coupled optimization problem of UAV’s optimal
trajectory planning and attitude control in both two-dimensional and three-dimensional spaces. This
approach addresses the issues of autonomous decision-making and dynamic control for fixed-wing UAVs
in non-cooperative games. The main contributions of this paper are as follows.

(1) By analyzing the relative positions and motion relationships in the dynamic game process of air-
craft, this paper, based on 6-degree-of-freedom aircraft dynamic modeling, designed two control systems:
waypoint control and heading control. It proposed the relationship between different control methods
during the game process and the logic of control intervention. To address issues with waypoint control
on rigid-body aircraft, heading attitude angles are combined with velocity vectors, establishing transfer
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Table 1 Reinforcement learning applications in UAV autonomous decision-making and dynamic control.

Application Problem description Papers

UAV control system Achieving stable attitude control

(continuous or discrete control)

[29–37]

Zhen et al., 2020; Huang et al., 2019; Bohn et al., 2023;

Xie et al., 2023; Din et al., 2022; Zhang et al., 2022; Liu

et al., 2022; Wei et al., 2022a; Wan et al., 2020

Path planning Local or global trajectory control

(discrete waypoints) [38–45]

Lee et al., 2019; Omoniwa et al., 2022; Xu et al., 2022b;

Silvirianti and Shin, 2022; Huang et al., 2020; Byun and

Nam, 2022; Puente-Castro et al., 2022; Hu et al., 2020

Static or moving targets tracking

(discrete waypoints) [46–54]

Ma et al., 2023; Li et al., 2020a; Bhagat et al., 2020;

Akhloufi et al., 2019; Ajmera and Singh, 2020; Moon et

al., 2021; Wang et al., 2019; Yin et al., 2019; Yu et al.,

2023

Take-off or landing control (dis-

crete actions) [55–58]

Jiang et al., 2022; Xie et al., 2020; Mosali et al., 2022;

Rodriguez-Ramos et al., 2019

Obstacle avoidance Sensing and obstacle avoidance

(continuous or discrete sensing)

[59–61]

Hu et al., 2019; Ouahouah et al., 2022; Singla et al., 2021

Dynamic or static obstacle avoid-

ance (continuous or discrete path)

[62–68]

Kim et al., 2020; Liu et al., 2019; Xu et al., 2022a; Li et

al., 2020b; Zhao et al., 2017; Tu and Juang, 2023; Zhu et

al., 2022

functions for stable control of aircraft mid-air attitudes and path planning.
(2) Based on a decoupled control system for heading and waypoint, this paper introduces integrated

guidance control models for mid-guidance (waypoint control) and terminal guidance (heading control)
in the dynamic game process of aircraft confrontation. To ensure effective coordination between the
two guidance methods, the paper proposes a flight space-adaptive grid model based on aircraft heading
attitude, body attitude, and velocity information. This model constrains the path search range during
mid-to-long-range guidance control, enhances stability in waypoint control, and provides a favorable
initial game posture for terminal guidance control in close-range engagements.

(3) We propose a dynamic game approach for 1v1 aerial combat, integrating a spatial scale-adaptive
grid model. It introduces a hybrid action space design based on discrete waypoint control and continuous
heading control for aircraft. Defining a Markov decision process for adversarial games, the paper con-
structs a reinforcement learning decision model tailored for dynamic aircraft games. This model provides
a unified decision-learning framework, enhancing optimal path planning during aircraft games. It also
ensures stable attitude control for tactical maneuvers like attack or interception in close-range combat.
Additionally, the method offers a highly generalized decision model for autonomous control in dynamic
aircraft games across different scenarios. Through the design of game objectives and reward functions,
it enables offline learning for diverse adversarial tasks, further improving the efficiency and accuracy of
UAVs’ autonomous decision-making in unknown environments.

(4) At last, to address the issue of weak decision evolution capability in adversary aircraft during aerial
combat, we propose a non-cooperative control decision framework based on reinforcement learning for
dynamic decision-making in aircraft games. The framework focuses on both adversarial aircraft, enabling
them to autonomously learn control decisions. This approach enhances the adversarial co-evolution of
decision intelligence, significantly improving the learning efficiency and convergence speed of optimal
decision-making for each aircraft.

2 Related work

DRL has played a crucial role in the autonomous decision-making of dynamic games for UAVs. It has
been applied in various aspects, including UAV attitude control, obstacle avoidance, path planning,
and game decision-making. In the study of such problems, DRL typically plays the role of an intelligent
aircraft with environmental perception capabilities. It aims to maximize the rewards of a policy to achieve
the optimal actions that lead to the desired objectives. In this process, DRL often adopts either end-
to-end control (directly outputting trajectories) or two-stage control (attitude and overload controlling
trajectories). Table 1 [29–68] summarizes the applications of reinforcement learning in UAV autonomous
decision-making and dynamic control.

According to the classification results of RL applications by AlMahamid and Grolinger [69], the afore-
mentioned problems are typically based on discrete actions and finite states. Currently, several algorithms
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Figure 1 (Color online) Dynamic gaming scenario of UAVs.

have shown promising results in deterministic action control, such as DDPG (deep deterministic policy
gradient), TD3 (twin delayed deep deterministic policy gradient), and SAC (soft actor-critic), while others
like TRPO (trust region policy optimization), PPO (proximal policy optimization algorithms), and A3C
(asynchronous advantage actor-critic) are suitable for stochastic action control. These methods are com-
monly derived from the actor-critic (AC) framework. However, TD3, SAC, and similar algorithms have
high demands on hyperparameter tuning and rely on hardware performance. TRPO exhibits weaker
learning capabilities than PPO in comparable environments, and A3C consumes significant computa-
tional resources due to its asynchronous processing approach. DDPG, on the other hand, cannot handle
stochastic discrete actions effectively. The paper addresses the dynamic game problem in UAVs and aims
to tackle the high-dimensional state space while addressing the decision-making problem involving both
discrete and continuous actions. In essence, it applies DRL methods to the research of dynamic target
tracking and obstacle avoidance, providing a unified decision control framework for the attitude stability
and trajectory optimization of UAVs.

3 Problem analysis and theoretical modeling

3.1 Game scenario design and description

This paper designs the game scenario for fixed-wing UAVs as depicted in Figure 1, and makes the following
assumptions.

Assumption 1. The game scenario consists of two fixed-wing UAVs engaged in a 1v1 game. The UAVs
have the same structure and can accurately identify each other. It is assumed that there is a satellite
providing real-time detection of UAV positions, and this information is transmitted to both players in
the game, disregarding communication delays and position errors.

Assumption 2. The game scenario is defined as a three-dimensional airspace with specific boundaries.
The depth of the adversarial airspace in the longitudinal direction is D = 8 km, its width is M = 8 km,
and the flight altitude is restricted to within H = 4 km.

Assumption 3. The UAV confrontation is conducted in the form of a non-cooperative game. The
UAVs have radar line-of-sight angle α and a maximum attack distance d.attack. The objectives of both
UAVs in the game are pursuit and evasion.

Assumption 4. Both drones are fully controlled by strategy models. The strategy algorithm outputs
the next waypoint coordinates for the drones, which is defined as the waypoint control mode. The strategy
algorithm continuously provides the drones with the speed tilt angle, speed yaw angle, and rate of speed
change, defined as the heading attitude control.
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Figure 2 (Color online) Theoretical model of the autonomous control system of UAVs. (a) Waypoint control; (b) heading attitude

control.

According to Figure 1, the red and blue lines represent the trajectories of the two teams’ UAVs. The
game process presents two types of adversarial scenarios based on distance: far and close distances.

(1) In the far-distance adversarial scenario (“distance between red and blue” > “d.attack or threshold”),
the UAV primarily uses waypoint control as their main control strategy. The objective is to approach
the opponent’s UAV, occupy advantageous altitudes, or position themselves behind the enemy to observe
and predict the opponent’s actions.

(2) In the close-range adversarial scenario (“distance between red and blue” < “d.attack”), the game
transitions into more intense and direct interactions, similar to a dogfight. Both UAVs possess high
maneuverability, and their control strategies focus on rapid and agile heading attitude control to achieve
more stable and advantageous tactical positions. The game objective is for the UAVs to attempt to
outmaneuver or evade incoming attacks from each other while also trying to strike the opponent.

3.2 UAV control system theoretical analysis and modeling

Based on Figure 1, the dynamic game of fixed-wing UAVs can be decomposed into two function optimiza-
tion processes. (1) Dynamic tracking of moving target points based on the rigid-body model. (2) Attitude
stability and optimization of advantageous positions for the rigid-body model during close-range relative
motion. In this paper, we design the mathematical model for trajectory optimization and attitude control
of UAVs based on the above two points, as shown in Figure 2.

Based on the north-east-down (NED) coordinate system, OX points to the local true north, OY points
to the local true east, OZ is oriented vertically downward, and the theoretical model for waypoint control
is established in Figure 2(a). In the waypoint model, position(t) represents the position of the UAV at
time t, vt represents the current velocity vector, v′t represents the projection of the velocity vector on the
XOY plane, ϑvc represents the pitch angle of the velocity vector, and ψvc represents the yaw angle of the
velocity vector. Figure 2(b) presents the theoretical model for UAV heading and attitude control. In the
heading attitude model, positionR(t) and positionB(t) represent the current positions of the aircraft from
both opposing sides, and vRt and vBt represent the velocities of the red and blue aircraft, respectively. vR−

t

represents the parallel projection of vR′
t , which is used to explain the perpendicular relationship between

the load factor and the velocity vector. The load factor commands in the y and z directions, denoted as
Nyc and Nzc, respectively, are both perpendicular to the velocity vector v. d(t) represents the relative
line of sight distance between the two UAVs in the game.

Based on the decomposition of UAV control decisions shown in Figure 2, this paper proposes a design
of an autonomous decision-making control system for UAVs based on a hybrid of heading attitude and
trajectory. Specifically, the policy model generates heading attitude control commands or trajectory
control commands based on the current environmental state. The output of the policy algorithm is
transformed into load factor and roll angle information for the UAV through an inner-loop feedback
controller. Under the 6-DOF model, this achieves decision control for both aircraft in adversarial states.
The corresponding (1) aircraft modeling, (2) waypoint control system, and (3) heading attitude control
system are designed as follows.
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(1) Aircraft modeling. Define the body coordinate system as OXbYbZb, where OXb points in the
direction of the aircraft’s nose, OZb lies within the longitudinal symmetry plane of the aircraft, pointing
downward and perpendicular to OXb, OYb is perpendicular to OXb, and OZb pointing to the right. Define
the trajectory coordinate system as OXtYtZt, where OXt points in the direction of velocity, OYt lies in
the horizontal plane, pointing to the right and perpendicular to OXt, OZt is perpendicular to OXt, and
OYt pointing downward. The translational motion kinematic equation for the aircraft is given by
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ẏ
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cθcψ sγsθcψ − cθsψ cγsθcψ + sθsψ
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. (1)

Define cx = cosx, sx = sinx. x, y, z represent the position coordinates of the drone in the NED
coordinate system. vx, vy, vz represent the components of the velocity vector v of the drone in the NED
coordinate system along its three axes. γ, θ, ψ represent the roll angle, pitch angle, and yaw angle,
respectively, of the drone’s body relative to the NED coordinate system.

The rotational kinematic equation for the drone is given by
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where ωx, ωy, ωz are the components of the body angular velocity ω along the three axes of the body
coordinate system.

The translational dynamic equation for the drone is given by








v̇x

v̇y

v̇z









=









ωzvy − ωyvz

ωxvz − ωzvx

ωyvx − ωxvy









+
1

m









fx

fy

fz









, (3)

where m is the mass of the aircraft. fx, fy, fz are the components of the total external force F acting on
the drone along the three axes of the body coordinate system.

Define
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where Γ , JxJz − J2
xz. Jx, Jy, Jz represent the rotational inertias, and Jxz is the moment of inertia (due

to the symmetry of the aircraft, Jxy and Jyz are nearly zero and thus ignored in the formula). Therefore,
the rotational dynamics equations for the UAV are given by
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whereMx,My,Mz represent the components of the torque M acting on the drone along the three axes of
the body coordinate system. The total external force F and total external torque M acting on the drone
are functions of the drone’s velocity v, angular velocity ω, attitude angles γ, θ, ψ, elevator deflection angle
δe, rudder deflection angle δr, and aileron deflection angle δa, defined as

{

F = F (v,ω, γ, θ, ψ, δe, δr, δa),

M = M(v,ω, γ, θ, ψ, δe, δr, δa).
(6)

In (6), only three control surface deflection angles δe, δr, δa are adjustable. Therefore, the drone is
controlled by modifying these three control surface deflection angles.

(2) Waypoint control logic. Based on the environmental information, the control decision model outputs
discrete waypoints. The UAVmodel calculates the heading control command, speed bank angle command,
and speed heading angle command based on the current position of the UAV, position(t) = (x, y, z), and
the desired waypoint, position(t + 1) = (xdes, ydes, zdes). The calculation methods for the speed bank
angle command and speed heading angle command are given by











ϑvc = arctan
−(zdes − z)

√

(xdes − x)2 + (ydes − y)2
,

ψvc = atan2
(
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,

(7)

where the function atan2(·) is defined as given in
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2
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(8)

(3) Heading attitude control logic. The control decision model outputs continuous command control for
heading attitude (ψvc, ϑvc) and velocity parameters. The UAV model calculates the overload commands,
denoted as nyc and nzc in the trajectory coordinate system based on the heading control parameters, as
given in
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[

KψP (ψvc − ψv) +KψI

∫ t

0

(ψvc − ψv)

]

cosϑv,

nzc = KθP (ϑvc − ϑv) +KθI

∫ t

0

(ϑvc − ϑv),

(9)

where ϑv represents the actual velocity tilt angle, ψv represents the actual velocity yaw angle, t represents
the current time, and KψP , KψI , KθP and KθI are adjustable parameters. The pitch channel overload
command nc and the roll angle command γc are calculated as











nc = sign(nzc)
√

n2
yc + n2

zc,

γc = arctan
nyc

−nzc
,

(10)

where the function sign(·) represents the sign function, which is defined as

sign(x) =











1, x > 0,

0, x = 0,

−1, x < 0.

(11)
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Figure 3 (Color online) Illustration of 3D spatial mesh discretization and action selection. (a) Spatial discretization modeling;

(b) discrete action selection.

Figure 4 (Color online) Illustration of the size of the grid space and the internal continuous action.

4 Dynamic game control method based on hybrid action reinforcement
learning

4.1 Adaptive discretization method for variable-scale space

In the research on unmanned platform games, conventional approaches for generating UAV trajectories
often rely on heuristic algorithms to determine waypoints. However, these methods suffer from inefficiency
due to the large search space involved. UGVs (unmanned ground vehicles) often employ grid-based
search methods for trajectory exploration. The limitation of such approaches is that they require pre-
computation of the grid cells by performing point cloud calculations and constructing the grid structure,
in many UAV game scenarios, these preconditions do not exist. To enhance the efficiency of trajectory
control strategies for fixed-wing UAVs without compromising search accuracy, this paper proposes a
variable-scale trajectory region grid-based method. The principle is based on constructing a spatial grid
of variable scales along the feasible exploration path for the UAV’s next step, considering its current
state. A random point is selected from the grid as the target waypoint for the UAV in the next time
step. This method avoids the need for global spatial grid discretization and enables the calculation of
trajectory points based on the distance between grid cells. As a result, it reduces the computational time
and spatial resources required for calculating the trajectory points in the control algorithm.

As shown in Figure 3, the UAV constructs a spatial grid for the next time step based on its velocity
and position information at the current time. The size of the grid is illustrated in Figure 4, where
M(t) = vt−1

y × t, D(t) = vt−1
x × t, H(t) = vt−1

z × t, and vx, vy , vz represent the velocity of the UAV.

The adaptive-scale grid is then mapped onto a two-dimensional plane, as shown in Figure 5. At time t,
the UAV has a velocity of vt, and the spatial grid size at this time is denoted as Space(t). Assuming the
UAV is located in the yellow grid in Figure 5(a), the possible positions at time t+ 1 are represented by
the red grid. If the grid scale remains unchanged, the possible positions at time t+2 would be indicated
by the blue grid in Figure 5(a). However, when utilizing the variable-scale grid method, as shown in
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Figure 5 (Color online) 2D spatial mapping representation of the adaptive grid. (a) Discrete actions in the 2D plane; (b) adaptive

variation of the grid in the 2D plane.

Figure 5(b), at time t + 1, the grid form changes due to the altered velocity of the UAV. Consequently,
the range of the grid at time t+ 2 becomes the blue area in Figure 5(b).

4.2 Design of discrete and continuous action spaces based on variable-scale space

Based on the grid-based design method and the definition of Markov processes, this paper defines the
discrete action output as the selection of the next grid cell in the three-dimensional space. The selection
of each grid cell follows a policy denoted as π(a|s), as illustrated in Figure 3(b). Due to the constraints on
the UAV’s speed inclination and yaw angle, the discrete action selection is limited to nine grid intervals
in the direction of the UAV’s velocity. The center grid is labeled as a5, the right side as a1, the top side
as a2, the left side as a3, and the bottom side as a4. The gray area has a selection probability of 0. The
policy π(a|s) is computed using the SoftMax function, and the discrete action space is defined as

actiondiscrete[] = π(a|s) = [a1, a2, a3, a4, a5]. (12)

The trajectory control policy model computes the next trajectory point after determining the grid
space through the algorithm. Taking the current time t as an example for analysis, the size range of the
current space is Space(t) = (vt−1

x , vt−1
y , vt−1

z ). Assuming the current position is position(t) = (xt, yt, zt),
the next time step is position(t+1) = (xt+1, yt+1, zt+1). To ensure the randomness of discretely selecting
points in the grid space, the next trajectory point follows a multi-modal Gaussian distribution centered
around the grid’s central point grid(t) = (x′t, y

′
t, z

′
t). The coordinates of the grid center points between

two consecutive policies are related according to (13)–(15).

x′t+1 = x′t +
1

2
vtx +

1

2
vt+1
x , a = ai, i ∈ [1, 5], (13)

y′t+1 =























y′t, a = a2, a4, a5,

y′t +
1

2
vty +

1

2
vt+1
y , a = a1,

y′t +
1

2
(−vty) +

1

2
(−vt+1

y ), a = a3,

(14)

z′t+1 =























z′t, a = a1, a3, a5,

z′t +
1

2
vtz +

1

2
vt+1
z , a = a2,

z′t +
1

2
(−vtz) +

1

2
(−vt+1

z ), a = a4,

(15)

where vt+1 = vt +∆v.
This discrete action selection process allows the UAV to navigate through the variable-scale space

effectively while maintaining trajectory accuracy. Building upon this foundation, the control system
designed in this paper incorporates continuous actions to facilitate fine-grained adjustments during the
flight process. The continuous action space includes parameters such as tilt angle and yaw angle deviation
of the velocity. The continuous action space, represented by actioncontinuous[] in (16), is utilized to perform
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Figure 6 (Color online) AC Framework.

more precise attitude adjustments for the UAV, enabling it to maneuver within the opponent’s attack
line of sight or evade the opponent’s lock-on.

actioncontinuous[] = µ(s) = (ϑvc, ψvc). (16)

4.3 Dynamic control method based on hybrid action PPO

4.3.1 Dynamic control framework modeling based on AC framework

In this paper, we propose an improved PPO method based on hybrid action spaces to address the chal-
lenges of combining stochastic discrete actions and deterministic continuous actions in dynamic control
of UAV. The basic algorithm framework is illustrated in Figure 6.

Figure 6 can be referred to as the QAC method, where the process indicated by the red arrows is also
known as the value function approximation process, which is used to evaluate the current policy. The
process indicated by the blue arrows is referred to as the policy gradient (PG) process, which is used to
update the current policy. The action value Q(S,A) is represented as

Qπ(S,A) , qα∈π‖µ(S = st,A = at,R = rt+1), (17)

where qπ(s, a) = Eτ∼P (s′|s,a)[Gt|St = s, At = a]. The discounted return Gt is calculated based on the
reward function R in the Markov decision process MDP(S,A,R) = [st, at, rt+1, st+1, . . .], as shown in

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · ·

=

N
∑

i=0

γiRt+i+1. (18)

The reward function R is the sum of individual rewards. According to the AC framework, the dynamic
control method for fixed-wing UAV is defined in Algorithm 1.

4.3.2 Reinforcement learning algorithm design based on hybrid action space

In this paper, we propose a hybrid action space algorithm (hybrid-action-PPO) for dynamic control of
fixed-wing UAV. The algorithm follows the AC framework and utilizes the PPO algorithm as the base. It
integrates the advantages of both discrete and continuous actions to achieve flexible and precise control
of the UAV. On the basis of the AC framework, the PPO algorithm improves the form of the objective
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Algorithm 1 Actor-critic reinforcement learning.

1: Define: Episode max = N , Step max = M ;

2: Initialize: critic network parameters w, actor network parameters θ;

3: for each episode do

4: Reset the environment and obtain the initial state st;

5: for each time step t do

6: Select an action at from π(at|st, θt), get rt+1, enter st+1, and then choose at+1;

7: Update the critic network by minimizing the mean squared TD error:

8: wt+1 = wt + αw[rt+1 + γq (st+1, at+1, wt) − q(st, at, wt)]∇wq (st, at, wt) ;

9: Update the actor network using the sampled policy gradient:

10: θt+1 = θt + αθ∇θInπ (at|st, θt) q (st, at, wt+1);

11: end for

12: end for

Figure 7 (Color online) Neural network structure of the hybrid action.

function and the gradient descent update process. The objective function of the PPO method is defined
as follows:















Lclip
πθk

(πθk) = Eτ∼πθ

[

T
∑

t=0

[min J(θ)]

]

,

J(θ) =
(

ρt(πθ,πθk)A
πθk

t , clip(ρt(πθ,πθk), 1 − ǫ, 1 + ǫ)A
πθk

t

)

,

(19)

where Lclip
πθk

(πθk) represents the PPO objective function with respect to the policy parameters θ, A
πθk

t is
the advantage function, to evaluate the appropriateness of selecting a specific action a in a given state.







A
πθk

t (S = st, A = at) = Qπ(S,A) − Vπ(S),

Vπ(S) = Eπ[Gt|S = st, A = at] =
∑

at
π(A = at|S = st)Qπ(S,A).

(20)

ρt(πθ,πθk) denotes the probability ratio between the new and old policies, defined as

ρt(πθ,πθk) =
πθ

πθk

. (21)

The variable ǫ is a hyperparameter used to control the magnitude of clipping during function updates.
clip(ρt(θ), 1 − ǫ, 1 + ǫ) is a mathematical function that restricts the value x to be within the interval

[a, b].

clip(x, a, b) =











x · · · a < x < b,

a · · ·x 6 a,

b · · ·x > b.

(22)

In our hybrid-action PPO method, the improved action function is defined as
{

ad = π(a|s, θd),

ac = µ(s, θc).
(23)

The neural network design for the corresponding action function, where ac represents the deterministic
continuous action and ad represents the stochastic discrete action, is shown in Figure 7.

Additionally, in order to explore the distribution space of continuous actions more effectively, this
paper replaces the truncated Gaussian distribution with a Beta distribution on the output of the actor
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network. In order to improve the sample reuse rate of importance sampling, the form of ρt(θ) is modified
as follows in (24), where θold represents the parameters from the past K adversarial sample training
iterations.

ρt(θ) ,

[

ω1
πθ

πθold

+ ω2
µθ

µθold

]

. (24)

The computation of action value Q incorporates a weighted sum of discrete action probabilities π(s)
and continuous action µ(s) to calculate the TD− Error = δt, as shown in

δt = rt+1 + ω1δ
1
t + ω2δ

2
t ,

{

δ1t = γ1q(st+1,π(at+1|st+1, θ
d), wt)− q(st,π(at|st, θ

d), wt),

δ2t = γ2q(st+1, µ(st+1, θ
c), wt)− q(st, µ(st, θ

c), wt).

(25)

As a result, the parameter update for the actor network is transformed into

{

θdt+1 = θdt + αθ∇θ Inπ(at|st, θ
d
t )q(st, at, wt+1),

θct+1 = θct + αθ∇θµ(st, θ
c
t )
(

∇aq(st, at, wt+1)
)∣

∣

a=µ(st)
,

(26)

where the weights ω1 or ω2 are obtained from a binary classifier, and the input to the classifier is the
environmental observation. The relationship of the weights is described in

ω1 + ω2 = 1, ω1 = 1 or 0. (27)

4.3.3 Game-theoretic decision model for the UAV via the hybrid PPO method

On the basis of the hybrid action strategy gradient, this paper designs a dynamic control decision model
for the UAV in dynamic game scenarios. Following the definition of reinforcement learning, and the UAV
game scenario, the dynamic control decision model for UAV in this paper consists of three components:
the state space, action space, and reward function.

(1) The environmental state observation(t) of the UAV is defined as

observation (t) = [position (t) , v (t) , φ (t) , ϕ (t) , distance (t)] , (28)

where position(t) = (xt, yt, zt) is consistent with the previous context and represents the spatial position in
the NED coordinate system. v(t) = (vtx, v

t
y, v

t
z) represents the velocity information in the NED coordinate

system. φ(t) = (φtpitch, φ
t
yaw, φ

t
roll) refers to the UAV’s body attitude information in spatial space, and

the attitude information constrains the range of actions that the decision-making model can output.
ϕ(t) = (ψtvc, ϑ

t
vc) represents the heading attitude information. In the discrete action network, it is

automatically computed using (1). In the continuous action network, it is obtained through the policy
algorithm using the variable µ(s, θ). distance(t) represents the Euclidean distance between UAVs.

(2) The action space for dynamic control of the UAV is defined to be consistent with (23). The
decision-making process is influenced by the state space observation(t). When the relative distance(t)
is large, the decision-making model outputs random discrete actions a = π(a|s) = (ai). When the
relative distance(t) is small, the decision-making model outputs deterministic continuous actions a =
µ(s) = (ψ, ϑ, υ). To ensure the stability of the UAV, the values of continuous actions should not change
dramatically. Therefore, for each UAV, the output of the decision-making model represents a small
incremental change. After being added to the current heading attitude angle, the actions are controlled
based on (9) in terms of the absolute values of the attitude angles. Thus, the continuous output of the
decision-making model is represented as a tuple a = (∆ψ,∆ϑ,∆υ).

(3) Considering the game objectives of both sides, the reward functions for the two players are defined
in Algorithm 2. The reward functions for both players satisfy the requirements of zero-sum game and
guide the UAV to achieve a Nash equilibrium in both continuous and discrete action control. Reward.red
and Reward.blue represent the reward value for the two players in the game. Since the rewards are
zero-sum, this paper only shows the calculation of rewards for red’s attack posture.

The determination of the termination state for a complete adversarial round is depicted in Figure 8.
In Figure 8, d represents the line-of-sight distance between the UAVs, d.attack represents the maximum
attack distance, and ϕRβ and ϕBβ represent the angle of view of the game constituted by the UAV and
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Algorithm 2 UAV action reward function.

1: Initialize: Reward.red = Reward.blue = 0, d(t) = distance(t), d.attack = ε, blue.health = K.

2: if d(t) > 50 and blue.health(t) > 0 then

3: if d(t) < d(t− 1) then

4: Reward.red + = ((d(t− 1) − d(t))/d(t− 1));

5: Reward.blue + = ((d(t− 1) − d(t))/d(t− 1));

6: end if

7: if d(t) < ε then

8: if ϕR
β < ϕR

α and ϕB
β > 90◦ then

9: Reward.red + = 100;

10: Reward.blue − = 100;

11: blue.health(t) = (K − 1) ∗ p;

12: end if

13: end if

14: end if

Figure 8 (Color online) Attitude determination of UAV close-range gaming.

Table 2 Relationship between situational information and relative line of sight angle in the close-range combat.

Angle of view (◦) ϕR
β < ϕR

α ϕR
α < ϕR

β < 90◦ 90◦ < ϕR
β < 180◦

ϕB
β < ϕB

α (red = 0, blue = 0) (red = 0, blue = 1) (red = −1, blue = 2)

ϕB
α < ϕB

β < 90◦ (red = 1, blue = 0) (red = 1, blue = 1) (red = −1, blue = 1)

90◦ < ϕB
β < 180◦ (red = 2, blue = −1) (red = 1, blue = −1) (red = 0, blue = 0)

the relative line of sight (the angle between the line connecting the center of mass of the aircraft and the
positive direction of the aircraft’s body axis), respectively. Superscript R for red, B for blue, ϕRα stands
for maximum attack sight angle, when ϕRβ < ϕRα and ϕBβ > 90◦, the red UAV can lock onto the tail of the
blue UAV, causing blue to lose blue.heath with a certain probability P . Based on Figure 8, we can define
the situation in the aircraft game process as absolute advantage (indicated by 2), advantageous position
(indicated by 1), disadvantageous position (indicated by 0), and absolute disadvantage (indicated by −1),
as shown in Table 2. In Table 2, the vector (red, blue) represents the situational information for the red
and blue UAV, where red corresponds to the red side, and blue corresponds to the blue side.

Based on the design of various parameter spaces in this section, we present the training of the fixed-wing
UAV game decision model as shown in Figure 9.

Figure 9 can be divided into three main modules. (1) Environment update module: the UAV model
updates the state information in the game space based on the control parameters, such as waypoints
or heading attitudes. (2) Hybrid-action-RL network: based on the state space information of the UAV,
this module generates a grid-based space with adaptive velocity and generates discrete control actions
for waypoint navigation. In the case of close-range game states, it directly generates continuous control
actions for heading attitudes. (3) Reward and attitude calculation module: this module calculates the
reward values and the Q(S,A) value based on the reward function and the UAV’s actions. It evaluates
and updates the policy function accordingly. Additionally, it changes the state information of the UAV
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Figure 9 (Color online) Dynamic control flow chart based on hybrid-action-PPO method for fixed-wing UAV gaming.

Figure 10 (Color online) UAV control of hybrid-action-PPO dynamic game decision-making in symmetric environments.

(a) Space and action exploration; (b) medium and long-range waypoint guidance; (c) close-range attitude control; (d) game equi-

librium situation.

based on the control system.

5 Experiment and analysis

This paper introduces a hybrid-action-RL framework for dynamic UAV games, simulating typical pursuit-
evasion adversarial behaviors in a 1v1 game scenario. During the game, there are symmetric and asymmet-
ric UAV state parameters. As a result, in the dynamic game with the red UAV as the main subjective
player, there are three possible outcomes: advantage, equilibrium, and disadvantage. The simulation
training environment is Python3.8, GPU Nvidia GeForce RTX3070, RAM 32G. The neural network is
a three-layer fully connected network with the number of neurons 64, 128, and 32, respectively. The
simulation results of the dynamic game for fixed-wing UAVs are shown in Figure 10.

Figure 10 demonstrates the learning effect of the UAV game decision model in a symmetric environment,
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Figure 11 (Color online) 2D displays of the aircraft dynamic game decision control effect. (a) Space and action exploration;

(b) long-range waypoint guidance; (c) close-range attitude control; (d) game equilibrium situation.

where Figure 10(a) shows the UAV exploring the environment at the initial stage, with the maneuvering
range covering the overall game space of 8 km × 6 km. Figures 10(b) and (c) show that the hybrid-action-
PPO algorithm guides the UAV to dynamically track the target through discrete waypoint control during
the far-range gaming process, with the search space on the yaw plane gradually shrinking, and performs
continuous attitude changes after entering the attack distance. Figure 10(d) shows the convergence of
the algorithms to reach the game homogeneous situation due to the same maneuvering capability of the
UAVs and the same intention, at which time the range on the UAV’s yaw plane is narrowed down to less
than 4000 m.

In conjunction with the situational definitions in Table 2, it can be observed that in the early stages
of learning the decision model, both aircraft generally maintain a relatively balanced situation. The
vectors representing the red-blue confrontation situation mostly appear in a state of (0, 0). As the red
side optimizes its decisions in close-range combat, the situational vectors transition from a balanced state
(0, 0) to an advantageous position (1, 0), (1,−1), or an absolute advantage (2,−1). Subsequently, the
decision performance of the blue side evolves, and the situational vectors continuously engage in a game
between (2,−1), (1,−1), and (−1, 1), (−1, 2) until both sides reach a balanced state of (0, 0) to (1, 1)
when the decision model converges. Figure 10 clearly demonstrates the discrete trajectory point control
strategy and the continuous heading attitude control strategy when the UAV is dynamically gaming in
3D space, and a more intuitive 2D depiction is shown in Figure 11.

Figure 11 shows that the decision algorithm model is biased towards the exploration of maneuver
control strategies in the early stages of training, with a tendency to use a large velocity declination for
the UAV’s maneuver control. With the training of hybrid-action-PPO, the dynamic tracking capability
of the strategy algorithm against the enemy target is rapidly enhanced in Figure 11(b). In Figure 11(c),
the UAV close-range gaming quickly adjusts the velocity declination and velocity inclination to lock on
the enemy tail once it occupies a favorable position. After the model is gradually stabilized, due to the
two sides’ maneuvering ability is the same, the two sides tend to adopt mutual circling after entering the
close-range game state, which is aimed at pursuing locking on the enemy while avoiding being attacked
by the enemy in Figure 11(d).

The convergence effect of hybrid-action-PPO in the symmetric environment is shown in Figure 12(a).
Figure 12 demonstrates the variation of the reward values of the UAV controlled by the hybrid-action-PPO
strategy under different game scenarios. The advantageous situation is defined as when UAV locks on to
the other at attack range. Due to the iterative game approach used in this paper’s method for training,
the design of blue UAV strategy parameters is based on the previous moment’s red UAV strategy model.
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Figure 12 (Color online) Convergence values of the reward function of hybrid-action-PPO. The maximum step per episode is

500. (a) Symmetric games, where both the red and blue’s attack lock line-of-sight angles are set to 30◦; (b) asymmetric games,

where the red’s locking line-of-sight angle is 70◦ while the blue’s is unchanged.

Table 3 Red UAV gains a tactical advantage situation with different game view angles.

Line-of-sight angles (◦) Advantage situation probability Multiple advantage situation probability Reward (mean ± std)

red = 20, blue = 30 0.038 0.003 8.839 ± 25.411

red = 30, blue = 30 0.064 0.014 11.348 ± 36.803

red = 50, blue = 30 0.115 0.055 22.749 ± 51.259

red = 70, blue = 30 0.292 0.099 46.003 ± 70.048

red = 60, blue = 40 0.130 0.016 21.944 ± 43.437

red = 70, blue = 40 0.187 0.085 33.189 ± 62.576

Consequently, in Figure 12(a), it can be observed that in the early stages of strategy model training, under
symmetric conditions, the probability of the red team entering the advantageous situation is greater than
that of the blue team. However, after the strategy models converge, the gradients of both the red and
blue teams’ strategy models stabilize, resulting in both teams’ probabilities of entering the advantageous
situation becoming nearly equal.

In conjunction with Algorithm 2, from the perspective of the red aircraft, the maximum reward is
obtained only when the red side has an absolute advantage and the blue side is in an absolute disadvantage
situation. In Figure 12(a), it can be observed that the red UAV enters the absolute advantageous (2,−1)
situation at most 2 times in a single game round with a limited number of actions. On the other hand,
in Figure 12(b), there are 3 occurrences of the absolute advantageous (2,−1) situation, indicating that
the UAV’s locking posture directly affects the change in the game situation. This also suggests that
the strategy model can quickly learn the correlation between UAV performance and game situation in
different game environments, enabling UAVs with better maneuverability to achieve more game victories.
Moreover, in Figure 12(b), even when the red UAV has significantly better maneuver locking capability
than the blue team, the blue UAV can still gain advantages in the game, demonstrating that hybrid-
action-PPO possesses strong autonomous decision-making ability even in disadvantageous environments.

This paper conducted comparative experiments for different locking posture angle parameters, with a
total of 80000 episodes in a single scenario. The results are shown in Table 3. Furthermore, in Figure 13,
we compared the convergence of the algorithm under different aircraft performance parameters, where
the threshold for the attackable line-of-sight angle for the blue aircraft is consistently set to 30◦.

The policy loss in Figure 13 exhibits some fluctuations, attributed to the algorithm simultaneously
computing control decisions for both adversarial parties. Consequently, compared to conventional single-
aircraft control methods, the curve appears less smooth. However, analyzing its trend, when the perfor-
mance parameters of the red aircraft are lower than those of the blue aircraft, the maximum value of the
strategy loss occurs in the mid-training phase. This suggests that in the early stages of the algorithm,
the red aircraft gains fewer advantageous situations in control decisions, and the blue aircraft dominates
more often. Therefore, the red aircraft needs to explore the strategy space more extensively, leading to a
larger increment in strategy loss. Once the red aircraft’s strategy converges, the loss gradually decreases
towards Nash equilibrium. As the attack line of sight angle threshold increases for the red aircraft, its
strategy model’s loss function exhibits a similar converging trend. Notably, the similarity between Fig-
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Figure 13 (Color online) Convergence values of the policy loss of hybrid-action-PPO, where the attackable line-of-sight angles

are (a) 20◦, (b) 30◦, (c) 50◦, and (d) 70◦, respectively.

ures 13(c) and (d) is high, contrasting with the fluctuation in Figure 13(a). With an increase in training
iterations, the algorithm shows earlier exploratory behavior, aiming to obtain possibilities of situational
changes under disadvantaged confrontations. This indicates that under different performance parameters,
hybrid-action-PPO consistently achieves good control results and maintains stable convergence. In sym-
metric situations, due to the asynchronous time difference in the decision algorithms employed by the red
and blue aircraft, the red aircraft explores a larger space in the early stages, leading to a faster strategy
search speed. The algorithm exhibits the best convergence stability. As the training iterations gradually
saturate, the decision situations of the red and blue aircraft maintain stable equilibrium, showing similar
fluctuation patterns to the reward function in Figure 12(a).

From Table 3, it is evident that the UAVs controlled by the hybrid-action-PPO method exhibit a
positive correlation between locking posture and game advantage in 1v1 scenarios. Under larger locking
angles, the UAVs can enter the advantageous state multiple times. In a symmetrical environment, the
algorithm’s reward values converge to around 11, and the game situation stabilizes into a balanced state of
close-range circling between the UAVs. Consistent with Figure 11(d), when the red UAV’s attack locking
range exceeds that of the blue UAV, the algorithm’s convergence value exceeds 20, indicating a significant
enhancement in the drone’s autonomous decision-making capability. In terms of trajectories, this is
manifested by the drone being more likely to occupy advantageous positions, as shown in Figure 13. From
the comparison of different line-of-sight angle parameters, it can be observed that as the angular difference
between the two UAVs decreases, the decision-making model is more likely to enter an equilibrium state.
Under the same line-of-sight angle difference, when the line-of-sight angle parameter of the blue UAV
is larger, the red UAV experiences fewer instances of advantageous situations. This indicates that the
decision-making model can quickly adjust the UAV’s control strategy upon sensing the disadvantage of
the blue UAV, reducing the probability of being pursued by the red UAV.

In Figure 14(a), the enlarged view in the top right corner illustrates the drone’s attitude in a close-range
scenario, with the red and blue arrows representing their current velocity directions. At this moment,
the red UAV occupies a more advantageous pursuit position based on the control strategy, achieving a
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Figure 14 (Color online) Occupying a favorable position during close-range gaming. (a) Advantageous tail-chase position (red

maneuvering to the tail of blue); (b) advantageous dive-chase position (red locks onto blue from above on a diagonal).

Figure 15 (Color online) Close-range dogfighting with small-angle maneuvers. (a) Asymmetric strategy model’s parameters;

(b) asymmetric attitude parameters; (c) 2D display of (a); (d) 2D display of (b).

tail-lock on the blue UAV. Analyzing the situation, the red side has an absolute advantage, while the blue
side is at an absolute disadvantage, resulting in a situation vector of (2,−1). This indicates a scenario
where the red side is pursuing the blue side attempting to escape. Figure 14(b) shows the red UAV
occupying a favorable position for a diving attack, the blue side is at a positional disadvantage, while
the red side has a positional advantage with a situation vector of (1, 0), transitioning towards the (1,−1)
situation.

In Figure 15, the blue UAV, despite its maneuverability disadvantage, can still secure advantageous
positions during the convergence of the strategy algorithm. This forces the opponent’s UAV into a
small-angle dogfight, the blue aircraft transitions from a disadvantaged situation (1, 0) or (1,−1) through
autonomous decision-making, avoiding a shift towards a situation of red absolute advantage and blue
absolute disadvantage represented by (2,−1).

Figure 15(a) indicates that our proposed hybrid-action-PPO method achieves decision-making per-
formance comparable to stronger models even when the training level of the decision model is weaker
during the drone game. From Figure 15(b), it is evident that this method significantly improves the
decision-making performance of weaker drones in asymmetric maneuvering capabilities.

Additionally, the decision method proposed in this paper exhibits high generalization capabilities in
different game environments. Figure 16 displays the flight trajectories of drones controlled by the hybrid-
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Figure 16 (Color online) Generalization test for 1v1 dynamic game typical scenarios. (a) The interception and evasion scenario;

(b) the head-on interception scenario.

action PPO method in other typical dynamic game scenarios.

Figure 16 shows the results of the generalization test of the hybrid-action-PPO method. In this
test, red utilizes proportional guidance for terminal guidance, while blue employs the hybrid-action-
PPO method, various initial positions and velocity distributions of the unmanned aircraft are designed,
and interception evasion and head-on confrontation game objectives are defined. The test validates
the method’s generalization capability and robustness, demonstrating that even in previously unseen
situations, the method can adapt to new game scenarios and achieve good performance.

Figure 17 demonstrates the generalization capability of the hybrid-action-PPO method in a 1v2 asym-
metric game scenario. Figure 17 illustrates the typical adversarial scenario in a 1v2 situation, where
the blue UAVs achieve coordinated pursuit against the red UAV solely based on autonomous decision-
making without information exchange. The blue and green lines represent the trajectories of the two blue
UAVs, while the red line depicts the trajectory of the red UAV. From Figures 17(a) and (b), it can be
observed that the blue UAVs achieve coordinated pursuit against the red UAV, taking advantage of their
numerical superiority, implementing both front and rear encirclement, as well as coordinated pursuit in
high and low altitudes. Figure 17(c) demonstrates the red UAV’s ability to penetrate the encirclement
by employing high angle-of-attack maneuvers in a disadvantageous situation. Figure 17 illustrates the
good performance of our approach in UAV adversarial decision-making in an asymmetric environment,
showcasing the emergence of collaborative decision-making among UAVs and indicating the robustness
and generalization capabilities of our method.

Figure 18 presents the dynamic coordination of UAV trajectories in emergency avoidance during asym-
metric adversarial scenarios. In Figure 18(a), when there is a tendency for trajectory collision during the
pursuit of the two blue UAVs, the decision algorithm demonstrates the ability to control one UAV for
emergency evasion. Figure 18(b) illustrates the coordinated decision-making ability of the blue UAVs,
with one intercepting the red UAV from the front and the other accelerating through a descent from the
rear, highlighting the algorithm’s potential for intelligent applications in cluster scenarios.

Table 4 shows the comparison of this method with other methods, it can be seen from the data that
our method is superior to the traditional PPO method in both symmetric and asymmetric environments.
Due to the proposed mixed strategy structure of discrete and continuous actions, compared with the
DDPG method used solely for deterministic policy, our method has greatly improved. Compared with
the SAC method which also solves discrete and continuous mixed actions, our method has also improved,
and the SAC method is prone to local convergence of strategies, resulting in the premature emergence
of equilibrium situations during game playing, so that the reward average is lower than expected. In
summary, both in terms of the generalization performance of the strategy and the superiority of the
method, our method can achieve better results in the solution of dynamic control decisions in the UAV
game process and realize the advanced nature of the algorithm.

6 Conclusion

This paper focuses on dynamic control strategies and methods for UAVs in pursuit and evasion scenarios,
with applications in civilian and military contexts. The aim is to enhance the accuracy and real-time
capability of fixed-wing UAVs in actual combat situations. To address the errors caused by waypoint
control in close-range UAV encounters, this study proposes a more accurate and stable heading attitude
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Figure 17 (Color online) Generalization tests for 1v2 dynamic game typical scenarios. (a) Blue aircraft surrounds the red aircraft

from both front and rear; (b) blue aircraft pursues the red aircraft in both high and low altitudes; (c) red aircraft performs a high

angle of attack maneuver to escape the encirclement by the blue aircraft.

Figure 18 (Color online) Emergency avoidance decision-making and coordinated decision-making for UAVs in an asymmetric

environment. (a) The blue aircraft cluster makes an emergency avoidance decision; (b) dynamic coordinated decision of the blue

aircraft cluster.

control approach that combines heading and speed. Furthermore, to enhance the maneuverability and
strategy responsiveness of UAVs in dynamic encounters at different distances, a flight space adaptive grid
model is introduced to dynamically adjust the grid scale, improving the response speed of the decision
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Table 4 Comparison of our work with other methods (red UAV gains tactical advantage situation).

Line-of-sight angles (◦) Method Advantage situation probability Reward (mean ± std)

red = 30, blue = 30 Ours 0.064 11.348 ± 36.803

PPO 0.052 9.774 ± 22.513

DDPG 0.037 7.662 ± 19.219

SAC 0.058 11.020 ± 30.117

red = 50, blue = 30 Ours 0.115 22.749 ± 51.259

PPO 0.098 17.519 ± 40.314

DDPG 0.062 15.275 ± 3 0.579

SAC 0.105 17.231 ± 49.718

red = 70, blue = 30 Ours 0.292 46.003 ± 70.048

PPO 0.152 32.637 ± 50.126

DDPG 0.138 28.856 ± 30.599

SAC 0.213 38.102 ± 59.717

algorithm and the flight maneuverability of the aircraft. Based on the adaptive grid design and heading
attitude control theory, a reinforcement learning control method that integrates discrete and continuous
actions is proposed, providing a unified decision learning framework for the UAV’s game process. This
approach enhances the convergence speed and attitude stability of the decision model in close-range
dynamic encounters, as well as its decision robustness. Additionally, this paper verifies the algorithm’s
generalization performance in interception, evasion, and head-on engagement scenarios. The results
demonstrate the method’s strong robustness, improving the control accuracy and winning probability of
fixed-wing UAVs in unknown combat scenarios. In conclusion, the research findings in this paper provide
valuable references for dynamic control strategies and methods in UAV pursuit and evasion games, offering
new insights and approaches for related fields of research and application. In future work, we plan to
combine flight tests to achieve tactical action design, refinement, and optimization for small fixed-wing
UAVs using this approach, laying a technological foundation for UAV swarm game and combat.
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