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RSA [1], a cryptographic system essential for securing net-

work communications, relies on the difficulty of factorizing

an integer into two primes (factorizing an integer N = P×Q,

where P and Q are prime numbers). In theory, quantum

computers can factorize RSA integers in polynomial time.

However, under the current limitations of quantum hard-

ware, the practical ability of quantum algorithms to attack

RSA remains unsatisfactory. In this study, we combine the

advantages of quantum and classical computing, employing

a hybrid architecture of quantum computing and classical

algorithms to attack RSA. Based on the D-Wave Advantage

quantum computer, we successfully conducted an attack on

RSA with up to 80-bit, significantly improving the experi-

mental indicators for quantum computing attacks on RSA.

The core algorithm of D-Wave quantum computer, quan-

tum annealing algorithm [2], is an optimization algorithm

with quantum tunneling effect. It can escape the local min-

ima that traditional intelligent algorithms frequently fall

into, and approach the global minimum quickly. In this

study, we leverage the quantum annealing algorithm to ex-

plore problems within exponential solution spaces, thereby

improving the Babai algorithm [3] for solving the closest vec-

tor problem (CVP). It yielded superior solutions compared

to the Babai algorithm, enhanced the search efficiency for

smooth pairs, and consequently accelerated the integer fac-

torization of RSA.

The framework of integer factorization. The hybrid

framework, combining quantum annealing and classical al-

gorithms for integer factorization, is shown in Figure 1.

The core innovation involves the tunneling effect of quan-

tum annealing to improve Babai’s algorithm for solving the

CVP, thereby accelerating the factorization of RSA integers.

Next, we introduce the process of integer factorization in our

framework through three stages.

• The relationship between the solution quality of CVP

and smooth pairs.

In this study, finding smooth pairs is a crucial and time-

consuming step in the factorization of RSA integers. There-

fore, optimizing the search algorithm for smooth pairs can

significantly accelerate the factorization process. In the fol-

lowing, we will present the definition of smooth pairs.

Smooth pair: Let p1, p2, ..., pn be the smallest n primes.

An integer u is pn-smooth if it can be expressed as u =∏n
i=1

pei
i
, where ei > 0. A relation pair (u, v) is pn-smooth

if both u and v are pn-smooth. If u is pn-smooth and v is

p′n-smooth, then (u, v) is called pn,n′ -smooth.

The integer factorization problem can be expressed as a

CVP of finding a target vector consisting of integers N . As-

suming that there exists a set of integer ei that satisfies the

following conditions:

ϕ :=

∣∣∣∣∣

m∑

i=1

ei ln pi − lnN

∣∣∣∣∣ ≈ 0.

To facilitate computational, u and v can be characterized

by the following mathematical expression:

u =
m∏

ei>0

peii , v =
m∏

ei<0

p−ei
i .

Subsequently, it can be derived through analysis:
∣∣∣ln

( u

vN

)∣∣∣ = ϕ.

According to the Taylor’s theorem, we can obtain u− vN =

vN (eϕ − 1) ≈ ϕvN. If ϕ is smaller, then u − vN is also

smaller, making it more probable that (u, |u− vN |) will be

a smooth pair. As a result, the higher the quality of the

solution to the CVP, the greater the probability of it being

identified as a smooth pair.

• Optimizing CVP solutions by quantum annealing algo-

rithm.

Given a lattice L(Bn) ∈ R
n+1 and the corresponding tar-

get vector T ∈ R
n+1. Assuming that Bn = [b1, · · · , bn] ∈

R
n+1,n is an initial lattice basis, the LLL algorithm [4] is

applied to obtain an approximately orthogonal lattice basis

Dn = [d1, · · · ,dn] ∈ R
n+1,n. Subsequently, the Schmit or-

thogonalized vector D̂n =
[
d̂1, · · · , d̂n

]
∈ R

n+1,n can be

calculated. Furthermore, we can use the Babai algorithm to
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Figure 1 (Color online) The hybrid architecture combining

quantum annealing and classical algorithms for integer factor-

ization.

find b ∈ L(Bn) that is closest to the target vector T . It

can be expressed as b =
∑n

i=1
kidi, where ki = ⌈ui⌋ =⌈〈

d, d̂i

〉
,
〈
d̂i, d̂i

〉⌋
.

From the above formula, it is observed that the value of

ki is obtained by rounding the value of ui in one direction,

which means that the quality of vector b cannot be guaran-

teed. Therefore, considering both rounding up and rounding

down ui simultaneously may yield a higher-quality solution.

However, it would increase the computational complexity

of classical computing exponentially. In order to solve this

problem, we exploit the superposition effect of qubits to

encode the coefficient values obtained by rounding up and

down at the same time, thus constructing a lattice vector

bnew that is closer to the target vector T :

bnew =
n∑

i=1

(ki + xi)di =
n∑

i=1

xidi + b,

where xi ∈ {0, 1,−1}. The Euclidean distance between bnew

and the target vector T can be expressed as the function

F (x1, · · · , xn):

F (x1, · · · , xn) = ‖T − bnew‖2 =

∥∥∥∥∥T − b−
n∑

i=1

xidi

∥∥∥∥∥

2

.

It can be observed that the smaller the value of

F (x1, · · · , xn), the closer the vector bnew will be to the

target vector T . By mapping the variable xi to the Pauli

matrix, the Hamiltonian function for F (x1, · · · , xn) can be

constructed as follows:

Hb =

∥∥∥∥∥T − b−
n∑

i=1

x̂idi

∥∥∥∥∥

2

=

n+1∑

j=1

∣∣∣∣∣Nj − bj −
n∑

i=1

x̂idi,j

∣∣∣∣∣

2

,

where x̂i ∈ {0, 1,−1} is a quantum operator mapped to the

Pauli matrix according to the single qubit encoding rule.

And it is determined by the value of orthogonal coefficients

ui and ki in Babai algorithm, namely:

x̂i =

{ (
I − δiz

)
/2, if ki 6 µi;

(
δiz − I

)
/2, if ki > µi.

In this study, the quantum annealing algorithm is used

to solve the Hamiltonian function Hb. This process can ob-

tain a lattice vector bnew , which may be closer to the target

vector T than the Babai algorithm, thereby enhancing the

probability of obtaining a smooth pair.

• Integer factorization.

Given a sufficient number of smooth pairs, we can con-

struct a corresponding system of equations, which upon res-

olution yields a set of n linearly dependent vectors. From

these vectors, the relations X2 =
∏j∈{1,··· ,n′

+2}
tj=1

uj , Y 2 =

∏j∈{1,··· ,n′
+2}

tj=1
|uj − vjN | can be established. Finally, we

can factorize the integer N into two primes P and Q by the

condition gcd(X ± Y,N) /∈ {1, N}.

Experimental results. In this study, we used a ran-

dom program to generate RSA integers ranging from

4-bit to 80-bit and conducted integer factorization ex-

periments on these integers using the D-Wave Advan-

tage system4.1, equipped with a Pegasus topology of 5760

qubits. The default annealing schedule of [[0,0],[20,1]]

was applied. Notably, we successfully factorized an 80-bit

RSA integer: 1034879359475633166138643=1001721172891

× 1033101213673, which significantly exceeds the largest 48-

bit RSA integer factorized in reference [5]. More experimen-

tal data and details are provided in Appendix B.

Ref. [5] employed the Quantum Approximate Optimiza-

tion Algorithm (QAOA), based on the quantum gate model,

for integer factorization. In contrast, we used the quantum

annealing algorithm, which relies on quantum adiabatic evo-

lution and significantly differs from QAOA in implementa-

tion and operation. Compared to this reference, our ability

to factorize 80-bit RSA integers derives primarily from the

following factors:

(1) Hardware conditions: The D-Wave Advantage, with

over 5000 qubits, enhanced connectivity and improved error

correction capabilities, enables the exploration of a larger

solution space, making it better suited for solving complex

problems.

(2) Annealing schedule: The D-Wave Advantage allows

for flexibility in adjusting the annealing schedule to specific

problem characteristics, enhancing the efficiency and accu-

racy of solving large-scale problems.

(3) Theoretical advantage: Quantum annealing leverages

tunneling effects to escape local minima, increasing the like-

lihood of finding better solutions for complex problems.

Conclusion. In this study, we proposed a hybrid archi-

tecture that integrates quantum annealing with classical al-

gorithms for integer factorization. Our framework enhanced

the Babai algorithm’s performance in solving the CVP, en-

abling it to search for smooth pairs with greater probability

and higher efficiency, thus accelerating the factorization of

RSA integers. Based on the D-Wave Advantage, our experi-

mental results for RSA integer factorization far exceed those

of other quantum computing attacks on RSA in the current

public literature.
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