SCIENCE CHINA

Information Sciences

* Supplementary File ¢

Quantum attack on RSA by D-Wave Advantage: a
first break of 80-bit RSA

Chunlei Hong"?, Zhi Peil?, Qidi Wang"?, Shuxiao Yang!?, Jingjing Yu'? & Chao Wang"?"

LShanghai University, Shanghai 200444, China;
2Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai 200444, China

Appendix A An example of integer factorization

The hybrid architecture of quantum annealing and classical algorithms can factorize any RSA integer from 4-bit to 80-bit. We will
take the 12-bit RSA integer 3959 as an example to explain the process of integer factorization in detail.
B Constructing the CVP

First, a lattice £(Bn,c) € R"T! and the corresponding target vector T € R"*! are constructed. Here, Bnc = [b1,--- ,b,] €
R™+5"™ represents a lattice basis, ¢ > 0 is an adjustable parameter, and N is the integer to be factorized.
fa 0
(1) o
0 f2) - 0
B,. = ; : : , T =
0 0 f(n) ’
[m®In N|
[m®Inp1| [m®Inpa] -+ [mInp,]

Let p;(i = 1,2, -+ ,n) be the smallest n prime numbers, satisfying —1 = pp < p1 < --+ < pp. Considering the influence of m®

on finding smooth pairs and the efficiency of the LLL algorithm, the value of m is fixed at 5. We define the smooth upper bounds
of u,v in (u,|u — vN|) as pn, and the smooth upper bound for |u — vN| in (u, |u — vN|) as p,/, typically setting p,/ = p,,2
as the upper bound. In order to efficiently identify a large number of smooth pairs, we can continuously adjust the values of ¢
and [f(1), f(2), f(3), f(4)] to change the lattice basis By, and the corresponding target vector T. A lot of experiments suggest
that for integers smaller than 30-bit set ¢ between 1 and 4. For integers ranging from 30-bit to 50-bit, the optimal ¢ for searching
smooth pairs is between 3 and 6. When dealing with integers between 50-bit and 60-bit, the most effective of ¢ is between 6 and 9,
and for integers between 60-bit and 80-bit, it is between 8 and 11. Moreover, the diagonal element f(i) in By, denotes a random
permutation f:[1,--- ,n] — [1,--- ,n].
According to reference [1], it can be inferred that the value of the dimension n tends to the following formula:

n & logN/loglogN. (A1)
From the formula (A1), we can determine that the lattice dimension of this example is n = 4. Then, we choose the adjustable

parameter ¢ = 3.3 and the value of [f(1), f(2), f(3), f(4)] is [2,1,3,4] as an example. Thus, the initial lattice basis Ba gz.s =
[b1,ba,bs, by] € R>* and the corresponding target vector Ta,3.3 € R® are as follows:

2 0 0 0 0
0 1 0 0 0
By3zsz = 0O 0 3 0 ,Ta3.3= 0
0 0 0 4 0
140 223 326 394 1678

B Quantum annealing to solve the CVP
Next, we use the LLL algorithm to perform lattice reduction on Bg 3.3, obtaining the lattice reduction basis Dy 3.3 =
[di,dz2,d3s, da] € R

4 8 -2 —4

-3 -4 -2 -2
D433 = 0 3 9 3
4 0 —4 4

5 —6 —2 —6

* Corresponding author (email: wangchao@shu.edu.cn)

Chunlei Hong, et al. Sci China Inf Sci 2

After applying the Babai algorithm, the vector b = [0,9, —3, 0, 1681]T that is closest to the target vector T4 3.3 is obtained.
Then, we can calculate the Euclidean distance between vectors b and T4 3. 3:

. _ 2 . T2 _
disass = ||b—Tass|? = H[o, 9,-3,0,3] H — 99.

The vector b can be further optimized using the quantum annealing algorithm to obtain a new vector b, that is closer to the

target vector. Initially, we should construct the Hamiltonian Hy, = Z‘r?:l ﬁj, where:

J

b1 = (491 + 842 — 293 — 494)*;

ha = (=391 — 492 — 243 — 244 + 9)%;

hs = (091 + 392 + 993 + 394 — 3)?; (A2)
ha = (491 + 092 — 493 + 494)*;

hs = (51 — 632 — 2§3 — 694 + 3).

According to the mapping rule, formula (A3) can be mapped to the Pauli matrix, resulting in the corresponding Hamiltonian as

follows:

5
Hyp =Y h; =1431 — 20} — 32.50% — 22.50% — 11.50% + Tolo> — 1do}0s — 120507 + 15.5050% +10.5020% + 17.5050%, (A3)
j=1

where 14317 is a constant term that does not affect the solution of the lowest energy. According to formula (A3), we can extract
the first-order coefficient to form the local field coefficient matrix h” and extract the second-order coefficient to form the coupling

coefficient matrix J.

oy 02 o of
1
o, s X ol 0 7 —14 —12
| 9% 92 9 J=|o¢%2 0 0 155105 |,
-2 —32.5 —22.5 —11.5 3
620 0 0 175
o2 0 0 0 0

where the values of h” and J will affect the success rate of the quantum annealing.

In our experiment, we embedded the local field coefficient matrix hT and the coupling coefficient matrix J into the Ising
model of the D-Wave Advantage. Then, the lowest energy along with five sub-lowest energies and their corresponding solutions
were obtained, as shown in Table Al. The column labeled "num” indicates the frequency of each solution across 1000 quantum

annealing iterations.

Table A1 Six solutions were obtained using the D-Wave Advantage

S/N energy s1 D) s3 sS4 num
1 -59 —1 +1 +1 —1 767
2 -53 +1 +1 +1 -1 7
3 -51 —1 +1 —1 +1 134
4 -45 +1 —1 +1 +1 11
5 -44 41 +1 41 +1
6 -38 -1 +1 -1 —1

As shown in Table A1, the bolded solution corresponds to the solution obtained by the Babai algorithm. It is observed that the
quantum annealing algorithm can obtain four solutions with lower energy than those obtained by the Babai algorithm.
B Collecting smooth pairs

Based on the six sets of solutions obtained through quantum annealing, we can derive six distinct vectors bye.. Using these
vectors, we can calculate the corresponding values of u, v, and |u — vN|. A smooth boundary of ps was set for u,v during the
factorization of the integer 3959, which implies that the prime factors of u,v are less than or equal to 7. The smooth boundary
for |[u — vN| is p1g, meaning that the prime numbers factorized by |u — vN| are less than or equal to 53. Table A2 shows the
corresponding energy, quantum states, the values of u, v, |u — vN|, and the smoothness of (u, |u — vN|) for these vectors.

Table A2 Comparison of smoothness between the quantum annealing algorithm and the Babai algorithm

levels energy state U v lu — vN| smooth
1 -59 1001 3*72 1 2%5 yes
2 -53 0001 37 %7 2% 2 17 % 31 yes
3 -51 1010 3% 3% %52 1 7%13 yes
4 -45 0100 24 35 1 71 no
5 -44 0000 39 5 24*7 yes
6 -38 0010 32 %53 %7 2 43 yes

Chunlei Hong, et al. Sci China Inf Sci 3

Table A3 Eighteen different smooth pairs

sn u v |lu — vN|
1 22 %355 1 17 % 53
2 2 % 3% % 52 1 713
3 35 %7 1 2% %11 %13
4 3% 5 72 1 2%5
5 37 %7 22 17 31
6 3° 5 2% %7
7 32 %53 %7 2 43

8 5% %7 1 25 %13
9 2% 3%5% 1 11 % 19
10 22 %53 %7 1 3% %17
11 5% 74 3 27
12 22 %52 % 73 32 113
13 2% 5 5% 72 1 313
14 2% 5% 73 1 232
15 28 % 72 3 23 % 29
16 25 5 73 3 17 % 53
17 3% 74 2 5% 11 % 13
18 28 %3%5 1 717

The bolded solution in Table A2 corresponds to the solution obtained by the Babai algorithm. Thus, it is evident that the four
new vectors that outperform the Babai algorithm contain three new smooth pairs. By changing the initial lattice basis B4 3.3
and target vector Ty 3.3, more different smooth pairs (u, |[u — vN|) can be obtained until it reaches 18 different smooth pairs. All
smooth pairs are shown in Table A3.

B Solving linear equations

We can construct a set of Boolean index vectors from the 18 smooth pairs (u, |[u —vN|) in Table A3, as shown in Table A4. The
first column shows the serial number of the smooth pair that corresponds to each Boolean index. The second column shows whether
the value of u — v N is negative. The value is recorded as 0 if positive; otherwise, it is recorded as 1. For each s;(1 < i < 16), a
Boolean value of 0 is assigned if its power index is even; otherwise, the corresponding Boolean value is 1.

Table A4 Boolean index table corresponding to the smooth pairs

sn Sg S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 813 814 S15 S16
1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1
2 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
4 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0
6 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
7 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
8 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
9 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
10 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0
11 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
12 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
13 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
14 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
16 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1
17 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0
18 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0

According to Table A4, we can construct the linear equations. By using the Gaussian elimination, one of the solutions obtained
is (0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0). This solution implies that the 4th and 11th vectors are linearly dependent.
B The result of integer factorization

Taking the linearly dependent vectors obtained in the previous part, i.e., the 4th and 11th vectors are linearly dependent. It
can be calculated that X2 = 30872,Y? = 162. Finally, we can obtain two prime factors of the integer 3959 as: P = gcd (3087 +
16,3959) = 107, Q = gcd(3087 — 16,3959) = 37. Thus, the result of integer factorization is 3959 = 37 x 107.

Chunlei Hong, et al. Sci China Inf Sci 4

Appendix B Analysis of experimental results

We conducted all experiments using the D-Wave Advantage_system4.1, which is equipped with a Pegasus topology that includes
5760 physical qubits. Additionally, we utilized the default annealing schedule of [[0,0],[20,1]], which represents a linear progression
of the control parameter. This parameter starts at a minimum value of 0 and linearly increases to a maximum value of 1 throughout
a period of 20us.

Appendix B.1 Comparative analysis of quantum algorithms for integer factorization

Recent reference [2] uses the quantum approximate optimization algorithm (QAOA) to factorize three RSA integers of 11-bit, 26-bit,
and 48-bit. Based on the Hamiltonian in reference [2], Narendra et al. [3] used the digital counter-diabatic quantum factorization
(DCQF) algorithm to factorize the same 26-bit and 48-bit integers. We also choose the same integers to conduct integer factorization
experiments in order to compare the factorization effects of the quantum annealing (QA), QAOA and DCQF, as shown in Table
B1.

Table B1 Compare the success rate of quantum algorithms for solving CVP corresponding to integer factorization.

The scale of the integer Logical qubits Physical qubits QA QAOA DCQF
26-bit (48567227) 5 6 80.4% < 30%(P=3) 49.3%
48-bit (261980999226229) 10 16 64.5% 2% (P=3),<4%(P=4) 9.7%

According to Table B1, it can be observed that the success rate of solving the CVP corresponding to integer factorization using
the QA far exceeds that of using DCQF and QAOA. Take the CVP for a 48-bit integer factorization as an example: when P=4
(P is the quantum circuit depth), the maximum success rate using the QAOA algorithm does not exceed 4%. In an ideal state,
Narendra used DCQF to factorize the same CVP with a success rate of 11.5%, which has increased to some extent compared to
the reference [2]. However, factorizing the same CVP using a QA on the D-Wave Advantage has a success rate as high as 64.5%.

By comparing the success rates of 48-bit RSA integer factorization corresponding to CVP, it can be inferred that the success
rates of QAOA and DCQF algorithms will be extremely low when solving larger problems, especially CVPs corresponding to 80-bit
RSA integers. Although the success rate of our method in solving the CVP for the 80-bit RSA integer is only about 10%, it can
undoubtedly factorize the 80-bit integer after multiple iterations of solving the CVP problem. As a result, our integer factorization
scale is far beyond the current scale of QAOA and DCQF.

Appendix B.2 Comparative analysis of QA and classical algorithms

In this subsection, we will explore the efficiency of integer factorization using the QA algorithm and the SA algorithm. We will use
the factorization of a 64-bit integer N = 11769431398084725929 as the example to compare and analyze these methods. The CVP
with a lattice dimension of 22 is utilized, where the initial lattice basis diagonal is Diagonal =[19, 21, 22, 11, 13, 3, 12, 6, 18, 2,
1, 7, 5, 10, 15, 16, 17, 20, 4, 8, 9, 14]. The adjustable parameter c is 9.1, and the smoothness bound is 968, aiming to identify at
least 970 smooth pairs for integer factorization.

B QA algorithm

We set up the QA process to run 3000 iterations using 63 physical qubits on the D-Wave Advantage_system4.1. To address
the problem, we used an annealing schedule of [[0, 0], [20, 1]]. Although not every iteration successfully solves the ground state,
acquiring a set of superior suboptimal solutions is beneficial for the search for smooth pairs. Consequently, we do not present the
success rate for each CVP; instead, we primarily focus on comparing the quality and time consumption of the solution set.

Quality of the solution: We obtain an optimal minimum and about 550 suboptimal solutions, where the lowest energy is
-6246. The 61st suboptimal solution identified a smooth pair for integer factorization.

Time consumption: The time for D-Wave to solve the CVP using QPU was 0.51s, and verifying the smoothness of these
solutions took 1.16s. Total_time = QPU solve time + Verify smoothness time= 0.51s + 1.16s = 1.67s.

B SA algorithm

We set the initial temperature for the SA process at 1000, with the final temperature at 0.01 and a cooling coefficient of 0.99.
We configured the SA to execute 3000 iterations and preserved 600 solutions for this problem, consisting of an optimal minimum
and 599 suboptimal solutions.

Quality of the solution: The optimal minimum obtained through SA was significantly inferior to that of QA, ranking about
the 536th suboptimal solution in QA, and failed to identify a smooth pair for these 600 solutions.

Time consumption: The SA takes 263.75s to solve the CVP and 1.04s to verify the smoothness of these solutions. Total_time
= SA solve time + Verify smoothness time= 263.75s + 1.04s = 264.79s.

It is observed that the QA successfully obtains a smooth pair in 1.67s. In contrast, the SA algorithm fails to find any smooth
pairs within 264.79s.

Next, we will present the time consumption of each algorithm for the adjustable parameter ¢ ranging from 9.0 to 10.0, as
demonstrated in Table B2. Furthermore, the comparative analysis of solution quality between the QA and SA algorithms will
be presented in Table B3, using the optimal minimum from SA as a reference for comparing its position relative to the solutions
obtained through QA.

Chunlei Hong, et al. Sci China Inf Sci 5

Table B2 Time comparison. Table B3 Solution quality comparison.
n c SA(s) QA(s) n c SA QA
22 9.0 269.07 1.35 22 9.0 1 343
22 9.1 264.79s 1.67 22 9.1 1 96
22 9.2 276.18 3.17 22 9.2 1 599
22 9.3 264.28 1.66 22 9.3 1 138
22 94 266.31 1.34 22 94 1 419
22 9.5 271.24 1.53 22 9.5 1 304
22 9.6 274.56 2.62 22 9.6 1 451
22 9.7 269.17 1.61 22 9.7 1 252
22 9.8 265.23 1.80 22 9.8 1 250
22 9.9 269.15 1.59 22 9.9 1 103

The QA successfully identified two smooth pairs across these CVPs, while the SA algorithm found none. The data presented
in the preceding tables clearly illustrate that the SA algorithm significantly underperforms compared to QA in both efficiency and
solution quality for addressing suboptimal solutions in these CVPs of this scale.

It is essential to identify at least 970 smooth pairs for effective factorization of this 64-bit integer. We then use the average
time required to solve the ten different CVPs previously described as a foundation for estimating the time necessary to factorize
the 64-bit integer using the QA and the SA.

B QA algorithm

Due to repeated occurrences of the same smooth pairs during the solution process, our experiments showed that QA solved 4800
distinct CVPs and successfully identified 970 smooth pairs. From the data gathered on the ten different CVPs, we estimate that
QA would require approximately 4800 x 1.83s = 8784s. However, the actual time consumed was about 12 hours, due to additional
factors such as internet upload times and other delays.

B SA algorithm

Disregarding the quality of the solutions provided by the SA, it would need to solve at least 4800 CVPs as QA. Consequently,
the time required for SA would be 4800 x 269s = 1291200s, or approximately 15 days. Unfortunately, SA struggles to effectively
find a set of high-quality suboptimal solutions. Therefore, when applied to 4800 different CVPs, it faces difficulties in identifying
970 smooth pairs, necessitating the resolution of additional CVPs to achieve 970 smooth pairs. It is estimated that the QA would
take more than 15 days to factorize this 64-bit integer effectively.

Based on the above, it is evident that the QA algorithm is more efficient than the SA method for the factorization of 64-bit
integers. Moreover, the SA method is highly challenging and time-consuming, which highlights its limitations in factorizing larger
RSA integers efficiently. Consequently, it can be deduced that the SA method faces extreme difficulties when applied to the
factorization of 80-bit RSA integers.

Appendix B.3 Experiment results
In this subsection, we present the factorization data of randomly selected RSA integers ranging from 4-bit to 80-bit, the number

of logical and physical qubits, and the success rate of the QA for solving the CVP corresponding to the integer factorization. The
detailed results are shown in the following Table B4.

Table B4 Experiment results

Scale Data Logical qubits Physical qubits Succes rate
4 15=3x5 2 2 100
5 21 =3x7 2 2 100
6 35=5x7 3 3 100
7 TT=7x11 3 3 100
8 143 =11 x 13 3 3 100
9 451 =11 x 41 3 3 100
10 899 =29 x 31 3 3 100
11 1769 = 29 x 61 3 3 100
12 4009 = 19 x 211 4 4 86.4
13 5723 = 59 x 97 4 4 88.7
14 15853 = 83 x 191 4 4 87.3
15 21733 =103 x 211 4 4 86.3
16 49583 = 179 x 277 4 4 84.4
17 94037 = 271 x 347 4 4 87.4
18 159317 = 313 x 509 4 4 84.9
19 374599 = 521 x 719 4 4 85.8
20 881851 = 727 x 1213 4 4 84.2
21 1794953 = 907 x 1979 4 4 85.4

Chunlei Hong, et al. Sci China Inf Sci 6

Table B5 Experiment results

Scale Data Logical qubits Physical qubits Succes rate
22 3819047 = 1873 x 2039 4 4 86.1
23 6187267 = 2003 x 3089 6 82.9
24 16668371 = 3637 x 4583 5 6 81.4
25 17140121 = 3803 x 4507 5 6 82.2
26 40072889 = 5279 x 7591 5 6 80.4
27 104250163 = 9733 x 10711 5 6 80.2
29 293222843 = 13883 x 21121 5 6 80.9
30 911938673 = 29483 x 30931 6 8 77.3
31 1328094533 = 31607 x 42019 [§ 8 78.3
32 2956694171 = 50683 x 58337 6 8 79.3
33 5893535383 = 72551 x 81233 6 8 78.5
34 10080582527 = 99787 x 101021 6 8 79.9
35 32508933983 = 116279 x 279577 6 8 78.4
36 66847008023 = 257093 x 260011 7 10 76.9
37 77608649207 = 275207 x 282001 7 10 79.4
38 146640072011 = 355361 x 412651 7 10 76.6
39 290430014011 = 521869 x 556519 7 10 72.5
40 673988410211 = 806051 x 836161 8 12 75.7
41 1458932014483 = 23333 X 62526551 8 12 69.9
42 4286501650531 = 68399 x 62669069 8 12 73
43 8441487583957 = 125789 x 67108313 8 12 72
44 9055216757189 = 133051 x 68058239 9 14 72.3
45 18313358001143 = 257077 x 71236859 9 14 72.9
46 45106724258927 = 5387951 x 8371777 9 14 61.4
47 73986123192697 = 1183277 X 62526461 9 14 69.9
48 220190119273699 = 3191303 x 68996933 10 16 64.5
49 464525190752281 = 6731651 x 69006131 10 16 54.3
50 587912113935781 = 25164673 X 23362597 11 20 52.9
51 1188470172067261 = 63308191 x 18772771 12 24 47.8
52 2397353600295959 = 23973869 x 99998611 13 27 45.6
53 4771078001207339 = 47711291 x 99998929 14 32 42.6
54 10404327652314191 = 99991819 x 104051789 15 34 41.1
55 25548168982321613 = 159519929 x 160156597 16 40 39.1
56 47849463811209517 = 204257069 x 234260993 17 42 37.9
57 95970560348802499 = 236242459 x 406237561 17 42 36.1
58 224139446127173377 = 188583061 x 1188544957 18 47 33.6
59 356722702338263059 = 288557369 x 1236228011 18 47 32.5
60 719399297416802543 = 673780379 x 1067705917 19 52 30.6
61 1568108874908342021 = 836883731 x 1873747591 19 52 30.1
62 2434987204800059537 = 1073773889 x 2267690833 20 54 28.6
63 5953607126904735149 = 8511091 x 699511628639 21 60 27.1
64 11769431398084725929 = 3247483669 x 3624169541 22 64 25.2
65 18446787952707673019 = 536872169 x 34359739651 22 64 24.1
66 39202751625508001520 = 977340276 x 40111671020 22 64 23.8
67 130702184608413767897 = 956460047 x 136652006551 23 7 20.1
68 198945304514186667527 = 192377231 x 1034141636617 23 7 19.8
69 344984029271193203537 = 107459773 x 3210355090469 23 7 18.6
70 660405945185390371301 = 7021574327 x 94053828163 23 7 18.2
71 1976827751084769231491 = 7465547413 X 7465547413 24 82 16.6
72 2575206468538622817667 = 5893260847 x 436974798061 24 82 16.4
73 5203485688790766095689 = 26967937511 x 192950821199 24 82 15.8
74 11993367236676401330641 = 120741372161 x 99331049681 24 82 15.1

75 20130328299259895126191 = 85947645103 x 234216170497

[\
ot
0]
oo

14.3

Chunlei Hong, et al. Sci China Inf Sci 7

Table B6 Experiment results

Scale Data Logical qubits Physical qubits Succes rate
76 46608139720297949704307 = 134140447121 x 347457763267 25 88 13.8
7 83661429386261157394423 = 204140136817 x 409823519719 25 88 12.4
78 195723581313196083887639 = 206267979703 x 948880100513 25 88 11.7
79 416177807286551819979989 = 194984774269 x 2134411821881 25 88 10.9
80 1034879359475633166138643 = 1001721172891 x 1033101213673 26 94 10.3
References

1 Schnorr CP. Fast factoring integers by SVP algorithms, corrected. Cryptology ePrint Archive, 2021.

2 Yan B, Tan Z, Wei S, et al. Factoring integers with sublinear resources on a superconducting quantum processor. arXiv

preprint, 2022, 2212-12372.

3 Hegade N, Solano E. Digitized counter-diabatic quantum factorization. arXiv preprint, 2023, 2301. 11005.

