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Localization has become an indispensable function of mod-

ern cellular communication systems [1]. In a cloud radio

access network (C-RAN), the remote radio head (RRH) is

the actual signal transmitter, whose location can assist in

wireless network layout optimization and wireless resource

management. The measurement of the RRH location can

only be done manually on-site due to the lack of global po-

sitioning systems (GPS) at the RRH side, which is thus not

a cost-effective solution for the widely used C-RAN with a

large number of RRH units.

In general, there are three types of localization meth-

ods: two-step localization [2], direct positioning [3], and fin-

gerprinting localization [4]. Different from both two-step

and direct localization methods that need an accurate chan-

nel model, fingerprinting localization establishes the rela-

tionship between signal measurements, e.g., received signal

strength indication (RSSI), and the actual location via of-

fline learning without requiring the knowledge of the channel

model. However, all the above studies focus on user equip-

ment (UE) localization, which is different from the consid-

ered base station (BS) localization. In this study, by using

the measured data provided by China Mobile, we develop

a concatenated image-based deep learning (DL) method to

deal with the challenging BS localization problem. We first

propose a 2D sliding window-based data preprocessing ap-

proach. Then, we develop an enhanced U-Net called BSLoc-

Net. Finally, the BS location estimate is obtained by per-

forming an argmax-N approach on the output heatmap.

Data processing for BSLocNet. Considering a raw

dataset including B BSs. The longitude and the latitude

of the b-th BS (1 6 b 6 B) are denoted by xb
BS and ybBS,

respectively. There are Lb square grids in the coverage area

of the b-th BS. The latitude, the longitude, and the aver-

age RSSI value of all grids in the b-th BS are denoted by

lonb ∈ R
Lb×1, latb ∈ R

Lb×1, and RSSIb ∈ R
Lb×1, respec-

tively. Our task is to estimate the BS coordinates based on

the above dataset, which is expressed by

[

x̂b
BS, ŷ

b
BS

]

= F (lonb, latb,RSSIb) , 1 6 b 6 B, (1)

where
[

x̂b
BS, ŷ

b
BS

]

denotes the estimated coordinate of the

b-th BS and F (·) represents a neural network.

We develop a snapshot-based RSSI image generation

strategy based on the sliding window technique. Without

loss of generality, let us consider the sliding window for the

k-th snapshot of the b-th BS. We define Gb
k

as the set of

the grids located within the k-th sliding window for the b-

th BS. The set of the horizontal and vertical coordinates of

the i-th grid can be expressed by Xb,i,k and Yb,i,k, then we

define Ub,i,k = {[m,n]|∀m ∈ Xb,i,k, ∀n ∈ Yb,i,k} as the set

of pixel coordinates that corresponds to the area of the i-th

grid in this snapshot. See Appendix A.1 for the process of

generating the set of coordinates.

To facilitate the training of the neural network, we nor-

malize the RSSI values as follows:

Rb
k(i) =

RSSIb (i)−min (RSSI)

max (RSSI)−min (RSSI)
, i ∈ Gb

k, (2)

where Rb
k
(i) and RSSIb(i), i ∈ Gb

k
represent the normalized

and the original RSSIs of the i-th grid in the b-th BS lo-

cating in the k-th sliding window, respectively, and RSSI

denotes the set of all RSSI values in the raw data.

Therefore, we can define the pixels of the RSSI image

RIb
k as follows:

RIb
k(m, n) =

{

Rb
k(i), [m,n] ∈ Ub,i,k , i ∈ Gb

k,

0, otherwise.
(3)

The relationship between the BS location and the RSSI

distribution depends on the geographic feature of the con-

sidered region. For the k-th window, we denote the corre-

sponding GIS image as GIk.

Finally, for the b-th BS locating in the k-th window, the

RSSI image RIb
k and the GIS image GIk are concatenated

in channels as the network input, denoted as CIb
k. Note that

there are total 4 channels since GIS images are colorful RGB

images.
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Table 1 Performance comparison of different methods.

Method
Mean error (m) Pr{error 6 50 m} (%) Pr{error > 100 m} (%)

Train Test Train Test Train Test

U-Net with coordinate output 231.17 233.65 7.37 7.46 74.75 74.60

Direct argmax-N 183.21 182.10 23.68 23.68 43.58 45.58

CNN 244.12 125.18 6.51 6.42 76.60 76.80

CoordAtt 39.16 45.16 74.26 72.34 7.28 8.10

Proposed method 11.11 18.36 98.84 98.46 0.26 0.35

We also propose a heatmap label that reflects every

pixel’s probability of being the actual BS location. For spe-

cific details, please refer to Appendix A.2.

Neural network design. U-Net [5] is employed as our

backbone and refined by ResNet-style modules. The orig-

inal U-Net has only 2 Conv layers in each downsample

and upsample block, lacking the capability of providing a

large perceptive field and deep feature extraction from high-

resolution images. By replacing these 2 Conv layers with

stacked residual modules, we not only enhance the network

representation capability but also address the potential chal-

lenges resulting from a deeper network. Moreover, the same

padding is adopted to avoid the interpolation operation for

resizing when concatenating feature images in the U-Net

pipeline. The specific architecture of the network can be

found in Appendix B.

Firstly, we transform the actual coordinates into the pixel

coordinates as follows:

xb
k =

xb
BS − lonkl
lonpixel

, (4)

ybk =
ybBS − latkl
latpixel

, (5)

where µb
k
= [xb

k
, yb

k
] is the pixel coordinate of the b-th BS,

[xb
BS, y

b
BS] is the actual longitude and latitude coordinate of

the b-th BS.

Then, we adopt a circular symmetric Gaussian distribu-

tion based label heatmap. The gray-scale of the pixel with

coordinate µ = [m,n] in the label is defined by

Hb
k (m,n) = exp

(

−
1

2

(

µ− µb
k

)T
C−1

(

µ− µb
k

)

)

, (6)

where

C =

[

δxx δxy

δyx δyy

]

(7)

represents the covariance matrix of the pixel coordinates

along both the horizontal and the vertical axes. For simplic-

ity, we assume that δxy = δyx = 0 and δxx = δyy = δ > 0,

where δ is the variance of the 2D Gaussian distribution. The

MSE between the network output heatmap Ĥb
k

and label

heatmap Hb
k

is selected as the loss function L for super-

vised training, which takes the form

L =
1

|Hb
k
|

∑

m,n

(

Hb
k (m,n)− Ĥb

k (m,n)
)2

, (8)

where |Hb
k
| is the total number of pixels in Hb

k
.

To sufficiently and robustly utilize the information of the

predicted heatmap, we propose to select the brightest N

pixels, record their coordinates in a set Ab
k
, and determine

the predicted BS coordinate by

x̂b
k, ŷ

b
kt=

∑

[m,n]∈Ab

k

Ĥb
k
(m,n)× [m,n]

∑

[m,n]∈Ab

k

Ĥb
k
(m,n)

. (9)

Note that N is a hyperparameter determined beforehand

(see Figure C2 in Appendix C). After estimating pixel coor-

dinates, we need to perform the conversion from pixel coor-

dinates to actual coordinates as follows:

x̂b
BS = x̂b

klonpixel + lonkl , (10)

ŷbBS = ŷbklatpixel + latkl , (11)

where [x̂b
k
, ŷb

k
] is the predicted pixel coordinate of the b-th

BS from the network and [x̂b
BS, ŷ

b
BS] is the predicted actual

coordinate of the b-th BS.

Experiments based on measured data. We evaluate the

performance of our proposed BS localization scheme on the

measured data provided by China Mobile. We provide the

performance comparison of different methods in Table 1.

From Table 1, we can see that the proposed design outper-

forms all benchmark schemes. Compared to the U-Net with

coordinate output, the residual modules and the heatmap

output of our method can both help improve the network’s

learning ability and localization accuracy, as explained in the

previous subsection. Moreover, the skip connection modules

used by the proposed network can achieve feature fusion and

thus endow the network with better performance than CNN.

The evident performance gain over the argmax-N method

is mainly attributed to the fact that this benchmark scheme

can lead to a significant loss of spatial information when

locating the BS. Finally, the coordinate attention mecha-

nism used by CoordAtt is also less effective compared to the

heatmap-based soft-label of our method. More details about

the experiment can be found in Appendix C.
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