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Appendix A Proof of theorem 1

The upper bound of Ry is expressed as

Ny

R = log(1 + rj, LE{hy . Feqrq) Fi Ry }).

c=1
Since hk,CchquHFcHhI,ic = qIIC{FCHhIk{)Chk7CF,3qk7 we have

Ny

RE® = log(1+rj; Lap FYE{h) by o} Feqy).
c=1

Let

€k,c = (1 + T;iQII;IFcHE{hII;I,chk,c}FCQk)71'
Then, we rewrite the upper bound as

Ny
REP = Z —log(eg,c)-
c=1

Given that —log(-) is convex, we have

Ny

R‘]ib > Z 710g(6k,c[d}) - (ek,c[d})_l(ek,c - ek,c[d])

c=1

and the equality achieves at e . = ey c[d].
According to Ry . = E{hgchk,cL we rewrite ey, . as

-1 _HpH -1
ere =1+ .9 Fo Ry cFeqr)™ .
€k, is the minimum of the sum-MSE minimization problem,

1/2 1/2

min(1 — gi' R,/ Feqr)(1 — g R,/ Feqi)” + ,cGi oGk c-

9k,c

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

Based on the above derivations and [25], we obtain the minorizing function provided in (29). Since g is a concave
quadratic function and qj for different users are uncoupled in g, the problem becomes easier to solve if we transform the

objective function from f to g.
Using the function g and the MM methodology, we rewrite (18) as follows:

K
arg max g(qlq[d])  s.t. Z alq, < P.
q1,-9K k=1
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The Lagrangian function is given as

K
L(p,q1,---,qx) =—g(qlqld]) + n <Z @i ax —P>- (A9)
k=1

The derivative of —g(q|q[d]) with respect to gy is

N N
8 _ v v
D) — Y P ARl + Y FED P, (A10)
k c=1 c=1
Then, the derivative of (A9) is
9 Ny Ny
o C Q) = —wi ) F Ay cldFeqild] + 3 F; Deld Fegy + np (A11)
k c=1 c=1

According to the first order condition, we have

N, Ny
S FEDC[IF. + pInn | qp = wi Y FY Ay [d] Feqy[d). (A12)
c=1 c=1

Appendix B Derivation of kinetic energy

We transform the complex vectors to the real vectors for simplicity. Let gr = (Re{q}T Im{q}T)T,rr = (Re{r}* Im{r}T)T,
vgr = (Re{v}T Im{v}T)T be the expanded real vectors of q,r,v, respectively. The kinetic energy is constructed from a
Bregman divergence Dy, (pgr, qr) which is defined from an auxiliary smooth function h(qr) = %(qR, dRrR)R as

T T
PRrPR qr4dRr
Dy (pr;qr) = h(pr) — h(qr) — (@R, PR — GR)R = 7R2 + R2

— qEpr. (B1)

For a given base point qr, we obtain a new time-dependent point q;% = qr + e *®ug in the direction of the velocity vg.
Thus, the kinetic energy can be given as

e=22®(vp, vR)R
K(g,w) =R URlR, (B2)
Using the relation between v and rg, the kinetic energy is reformulated as
_ e (rg,Tr)R
k(q,m) =Dp= (e~ "Wrg + Vh(qr), Vh(qr)) = <2 ) ) (B3)
where h! = %<7‘R,T‘R>R is the Legendre conjugate of h, and
Ah! rirrp  sTsp
Dyi(rr,sg) = h'(rg) — h'(sr) — (sr)(rr—sp) = 2=+ E= —shrp. (B4)
aSR 2 2
We obtain (37) using the relation (rg,rr)r = (r,r).
Appendix C Proof of theorem 2
Rewrite vy . and 7 . as
K - K
The =02+ hicFeqiq) FIRY  + Y mi(Fequa] FYY), (C1)
14k £k
and
K - K
Fhe=02+> hpcFeqa FrR > nu(Foqiq] FY). (C2)
=1 =1

The matrix Ry . = E{hgchk,c} is given as

Ry = hjl hi o +E{h] hyc} =R}l by + B (C3)
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Substituting F. = E.(F ® Ips) into (31) and (32), we have

N, Ny
> FAD.[dIF. = (F @ In)" > EF D JdE(F @ Iny) = (F ® Ing)A[d)(F ® Inr),
c=1 c=1
and
N, N,
ST FRA JdF. = (F@ Iy)" Y EYAg [dEc(F ® Iny) = (F7 @ Ing)T1[d)(F & In).
c=1 c=1

Let f,;i[d} = r;i[d} — F,;i[d] Using the decompositions in (41) and (42), we further obtain

Dld] = (F™ @ Ing)(A[d] + Ald])(F ® Iny),
Apld] = (FH ® In)(Tyld] + T [d]) (F @ In).

The matrices A[d] = Bdiag{D1[d], ..., Dy, [d]} and T4[d] = Bdiag{ Ay, 1(d], ..., Ak n,[d]} are written as
: K
Ald = > @p[dRE,,
k=1
where @/ [d] = Diag{wkflz,ll d,..., wkflz,lN [d]} and ©[d] = Diag{rgi d,... ,T};}\,v [d]} are diagonal.

Then, the stochastic channel related parts of D[d] and Ag[d] can be computed as

K K
(FY @ In)Ad)(F ® Iny) = (F* @ Iny) (Z Apld® Ek’) (FoIn)= Y (FYAu[dF)® &y,
k=1 k=1

and
(FE @ I Tk [d](F @ In) = (FE @ 1) (Or]d] @ E)(F @ Iyg) = (FROL[F) ® Ey.

Finally, we can obtain the results provided in (43).
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