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Appendix A Proof of theorem 1

The upper bound of Rk is expressed as
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Let
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Then, we rewrite the upper bound as

Rub
k =

Nv∑
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−log(ek,c). (A4)

Given that −log(·) is convex, we have
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and the equality achieves at ek,c = ek,c[d].

According to Rk,c = E{hH
k,chk,c}, we rewrite ek,c as
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c Rk,cFcqk)
−1. (A6)

ek,c is the minimum of the sum-MSE minimization problem,

min
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Based on the above derivations and [25], we obtain the minorizing function provided in (29). Since g is a concave

quadratic function and qk for different users are uncoupled in g, the problem becomes easier to solve if we transform the

objective function from f to g.

Using the function g and the MM methodology, we rewrite (18) as follows:

arg max
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g(q|q[d]) s.t.
K∑
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The Lagrangian function is given as

L(µ, q1, . . . , qK) =− g(q|q[d]) + µ
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The derivative of −g(q|q[d]) with respect to qk is
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Then, the derivative of (A9) is
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According to the first order condition, we haveNv∑
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Appendix B Derivation of kinetic energy

We transform the complex vectors to the real vectors for simplicity. Let qR = (Re{q}T Im{q}T)T, rR = (Re{r}T Im{r}T)T,
vR = (Re{v}T Im{v}T)T be the expanded real vectors of q, r,v, respectively. The kinetic energy is constructed from a

Bregman divergence Dh(pR, qR) which is defined from an auxiliary smooth function h(qR) = 1
2
⟨qR, qR⟩R as

Dh(pR, qR) = h(pR)− h(qR)− ⟨qR,pR − qR⟩R =
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For a given base point qR, we obtain a new time-dependent point q′
R = qR + e−α(t)vR in the direction of the velocity vR.

Thus, the kinetic energy can be given as
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e−2α(t)⟨vR,vR⟩R

2
. (B2)

Using the relation between vR and rR, the kinetic energy is reformulated as

k(q, r) =Dh∗ (e−γ(t)rR +∇h(qR),∇h(qR)) =
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2
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where hl = 1
2
⟨rR, rR⟩R is the Legendre conjugate of h, and

Dhl (rR, sR) = hl(rR)− hl(sR)−
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We obtain (37) using the relation ⟨rR, rR⟩R = ⟨r, r⟩.

Appendix C Proof of theorem 2

Rewrite rk,c and r̃k,c as
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and
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The matrix Rk,c = E{hH
k,chk,c} is given as

Rk,c = h̄H
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Substituting Fc = Ec(F ⊗ IM ) into (31) and (32), we have
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and
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Then, the stochastic channel related parts of D̂[d] and Âk[d] can be computed as
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Finally, we can obtain the results provided in (43).


