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Abstract Accurate localization ability is fundamental in autonomous driving. Traditional visual localization frameworks

approach the semantic map-matching problem with geometric models, which rely on complex parameter tuning and thus hinder

large-scale deployment. In this paper, we propose BEV-Locator: an end-to-end visual semantic localization neural network

using multi-view camera images. Specifically, a visual BEV (bird-eye-view) encoder extracts and flattens the multi-view images

into BEV space. While the semantic map features are structurally embedded as map query sequences. Then a cross-model

transformer associates the BEV features and semantic map queries. The localization information of ego-car is recursively queried

out by cross-attention modules. Finally, the ego pose can be inferred by decoding the transformer outputs. This end-to-end

model speaks to its broad applicability across different driving environments, including high-speed scenarios. We evaluate the

proposed method in large-scale nuScenes and Qcraft datasets. The experimental results show that the BEV-Locator is capable of

estimating the vehicle poses under versatile scenarios, which effectively associates the cross-model information from multi-view

images and global semantic maps. The experiments report satisfactory accuracy with mean absolute errors of 0.052 m, 0.135 m

and 0.251◦ in lateral, longitudinal translation and heading angle degree.
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1 Introduction

Recently, the research on intelligent driving has attracted considerable attention both in academia and
industries [1, 2]. Accurate and robust vehicle localization is one of the crucial modules of autonomous
driving and advanced driver assistance systems (ADAS) [3]. As shown in Figure 1, founded on the
accurate pose, the perceptual range and capabilities of an intelligent vehicle can be boosted from a pre-
built high-definition (HD) map. Besides, the map also provides rich fundamental prior information for
vehicle navigation [4], planning [5], and control [6]. Therefore, the task of the localization module is to
estimate the precise position and orientation of the vehicle in a known scene through the sensors launched
on itself.

The problem of vehicle localization has been previously explored intensively by exploiting the features
of geometry and visual appearance (e.g., scale-invariant feature transform (SIFT) features, LiDAR inten-
sity [7], LiDAR point clouds [8], etc.), which overcomes the limitations of GPS and IMU when signal drift
and blocking occur. Traditional handcrafted features (e.g., SIFT, speeded up robust features (SURF) [9],
oriented FAST and rotated brIEF (ORB) [10] features) show good performance without much variance
of environment conditions, in the meanwhile, the robustness lacks under varying environments (e.g.,
dynamic objects, motion blur or changes in lighting). As an alternative, onboard LiDAR could acquire
rich landmark information [11]. However, the high cost and expensive computation, as well as the
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Figure 1 (Color online) Perceptual range and capabilities of the intelligent vehicle are boosted from the HD map.

fewer detected features and greater noises in rainy and snowy weather limit its wide application. Recent
studies [12–16] indicate that the semantic map with location and type information of landmarks could help
to improve the robustness in localization task with a reasonable cost, Besides, the semantic description
is more robust against environmental variance caused by weather change, light condition, and pavement
wear.

Previous studies [17–20] have engaged in semantic map information based localization, which tightly
links semantic and visual features. The mainstream approach implies three steps for localizing the
vehicle pose: semantic feature extracting through convolutional neural networks (CNN), semantic features
association (e.g., RANSAC, KD-tree with semantic projection), and pose optimization [21] or filtering [22].
While these model-based methods are fairly effective, the algorithm relies on plane assumption and hand-
crafted features, which may bring projection offset and inconsistent perception ability of features from
different distances and scales. To tackle these problems, previous studies design complex constraints
and strategies based on prior knowledge, which is effort-costly and time-consuming when processing the
cross-model problem with uncertain scales.

With these challenges in mind, in this paper, we propose BEV-Locator: an end-to-end localization
framework that requires little hand-engineering features extraction and parameter tuning. The primary
motivation behind this work is not merely to enhance location precision but to integrate an end-to-end
localization technique, combining surround-view images and semantic maps, into larger models addressing
autonomous driving tasks. In the realm of autonomous driving, the majority of mass-produced techniques
lean heavily on semantic maps. The adaptability of semantic maps, coupled with our multi-view images,
supports the incorporation of diverse semantic categories. This adaptability underscores its wide-ranging
effectiveness in varied driving conditions, notably in high-speed settings. BEV-Locator learns to predict
the optimal pose of the ego-vehicle through supervised learning. We believe this data-driven manner may
significantly simplify the visual semantic localization problem. Specifically, we encode visual features by
transforming surrounding images into bird-eye-view (BEV) feature space. In the meanwhile, the semantic
map is encoded to form map queries. A transformer structure is adopted to associate map queries and
BEV features. Finally, the network decodes ego-pose through transformer outputs.

To the best knowledge of the authors, BEV-Locator is the first work that formulates the visual semantic
localization problem as an end-to-end learning scheme. The major contributions of this research are as
follows:

• We propose a novel end-to-end architecture for visual semantic localization from multi-view images
and semantic environment, allowing accurate pose estimation of the ego-vehicle. The data-driven manner
avoids geometry optimization strategy design and parameter tuning.

• By adopting the transformer structure in cross-modal feature association, querying, and encoding-
decoding. we address the key challenge of the cross-modality matching between semantic map elements
and camera images.



Zhang Z H, et al. Sci China Inf Sci February 2025, Vol. 68, Iss. 2, 122106:3

• We utilize the surrounding images to enhance the perceptual capabilities of the images through a
unified BEV feature space. The feasibility of the visual semantic localization problem to be a subtask of
BEV feature-based large model is validated.

• Through a series of experiments on the large-scale nuScenes and Qcraft datasets, we show the validity
of our proposed model, which achieves the state-of-the-art performance on both datasets. We also verify
the necessity and performance of the BEV grid setting, transformer encoder strategy and positional
embedding strategy by ablation study.

2 Related work

2.1 Geometric information based localization

Geometric features have been explored to apply in large-scale visual localization with many attempts.
Traditional local features (e.g., SIFT, SURF, ORB, etc.) play an important role to create 2D-3D cor-
respondences from points in images and structure from motion (SfM) model point sets, and then the
camera pose is retrieved using the matches. For instance, Ref. [23] employed random forest to directly
predict correspondences between RGB-D images and 3D scene points. Ref. [24] proposed a bidirectional
matching with SIFT features and geo-registered 3D point cloud. However, suffering from the environ-
ment with variance or repetitive conditions, the matching accuracy of local features drastically decreases
especially in long-term localization. While global features (e.g., vector of locally aggregated descriptors
(VLAD)-like feature [25] and DenseVLAD [26]) show impressive performance and robustness in terms of
long-term localization, they still need training data for each scene with less scalability.

With the development of deep learning, learnable features have recently been integrated into image
matching tasks instead of hand-crafted features. The learnable descriptors (e.g., group invariant feature
transform (GIFT) [27], HardNet [28], and SOSNet [29], etc.) are applied after the local detection features
extraction process. Furtherly, the detection and description steps are replaced into end-to-end networks,
such as detect-then-describe (e.g., SuperPoint [30]), detect-and-describe (e.g., R2D2 [31], D2-Net [32]),
and describe-then-detect (e.g., DELF [33]) strategies. With the filtered matches calculated from CNN
feature based image matching algorithms, the localization information is then computed by RANSAC or
SfM, which is computation-consuming in a multi-stage manner. Localization from the information fusion
is formulated into optimization [21] or filtering problem [22], which relies on the plane assumption, prior
knowledge, and multiple parameters in a time-consuming multi-stage manner.

Our proposed approach proposes an end-to-end framework that can be easily augmented to extract
image features in changing environmental conditions (e.g., day and night, varying illumination, etc.). It
also incorporates semantic information auxiliary approach, unlike some approaches that use multi-stage
procedures with optimization or filtering to fuse the information, which allows the network to learn robust
and accurate localization in a concise and environment-insensitive way.

2.2 Cross-view encoding surrounding images

Due to the great need for facilitating the cross-view sensing ability of vehicles, many approaches have
tried to encode surrounding images into the BEV feature space. In the past few years, four main types of
view transformation module schemes have emerged for BEV perception. Methods (e.g., Cam2BEV [34]
and VectorMapNet [35]) based on inverse perspective mapping (IPM) inversely map the features of the
perspective space to the BEV space through the plane assumption. However, the IPM based BEV
encoding method is usually used for lane detection or free space estimation because of its strict plane
assumption. Another series of methods was first proposed by Lift-Splat [36], which uses monocular depth
estimation, lifts 2D image features into frustum features of each camera, and “splat” on BEV. Following
work includes BEV-Seg [37], CaDDN [38], FIERY [39], BEVDet [40], and BEVDepth [41]. Although
improvements are considered in different aspects, the Lift-Splat-based method consumes a lot of video
memory due to the use of additional network estimation depth and limits the size of other modules, which
affects the overall performance.

Since 2020, transformers [42] have become popular in computer vision, attention-based transformer
shows attractiveness for modelling view transformation, where each location in the target domain has
the same distance to visit any location in the source domain, and overcomes the limited local receptive
field of the convolutional layer in CNN. PYVA [43] is the first method to propose that a cross-attention
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decoder can be used for view transformation to lift image features to the BEV space. BEVFormer [44]
interacts spatio-temporal information through pre-defined grid-shaped BEV query, spatial cross attention
(SCA) and temporal self attention. Although the data dependencies of transformers make them more
expressive, they are also difficult to train. Additionally, deploying a transformer module in embedded
systems with limited resources for autonomous vehicles can also be a significant challenge.

The MLP series of methods learn the mapping between perspective space and BEV space by modelling
view transitions. VPN [45] stretches the 2D physical extent of the BEV into a 1-dimensional vector
and then performs a full join operation on it. But it ignores strong geometric priors, each camera
must learn a network with many parameters, with a certain risk of overfitting. Considering the prior
knowledge, PON [46] proposed a semantic Bayesian occupancy grid framework, which accumulates multi-
cameras information cross-image scales and timestamps. The multi-layer perceptron (MLP) method
adopts a data-driven approach, and could easily employ on vehicles. Our work integrated MLP-based
BEV generating mechanism [47] into the visual semantic localization model to show the effectiveness
of unifying the surrounding images features and connecting the BEV space, which could model 3D
environments implicitly and consider the camera extrinsic explicitly, thus could be easily fused with
semantic information to further improve the accuracy and robustness.

2.3 Semantic map based localization

Maps could provide powerful cues for tasks such as scene understanding [48] and localization [49, 50] in
robotics using semantic labels (traffic lights, lane lines, pedestrian crossings, etc.). The pose of the vehicle
could be computed by matching sensor input and a prior map, Refs. [51,52] represented maps as LiDAR
intensities, Ref. [53] constructed dense semantic maps from image segmentation and localize by matching
semantic and geometric information, Refs. [54, 55] followed a coarse-to-fine way, firstly the traffic sign
object detection is used to retrieve the in the geometric reference database, and then the position of the
vehicle is estimated through bundle adjustment. The proposal of VectorNet [56] provides inspiration for
our network, using the vector to encode different features of the semantic map information, which enables
a structured representation of semantic maps and can be adapted to the input of convolutional networks.

2.4 Cross-model semantic and visual features association

The semantic map-based visual localization task searches for the best matching vehicle pose by combining
the current visual input and map information. The work of semantic map matching through data associa-
tion and pose estimation process is beneficial to large-scale deployment with a small storage consumption,
but repeatedly associating local and online semantic features brings problems such as false and missing
matching. To address this problem, later studies applied filtering or optimization algorithms to estimate
pose, Ref. [57] used particle filters to update matching features, Ref. [12] reprojected map features and
minimized line and point residuals to optimize the pose. However, with inconsistent perception ability of
features at different distances and scales, these methods need prior knowledge and multiple parameters.

With the impressive continuous development of deep learning technology, transformers have investi-
gated data association. Compared to traditional geometric feature-based methods or semantic map-based
methods, learning-based localization methods combining semantic and visual features could encode useful
features through neural networks without extracting flexible parameter designing and multi-stage work.

We apply the transformer structure to associate visual and semantic features by cross-model querying,
and further decode the vehicle pose from the query features. With the supervision of the transformer
network, the model could match the semantic and visual information in an end-to-end fashion.

3 Methods

This section introduces the details of BEV-Locator: an end-to-end visual localization neural network
architecture to locate the vehicle poses based on surrounding images and the semantic map. The visual
semantic localization problem can be formulated as: given the surrounding multi-view images Ii=1,...,n of
the current state (n indicates the number of cameras), the initial pose [x̌, y̌, ψ̌] (x, y, ψ are the 2D position
and the yaw angle under local navigation coordinate system) of the ego-vehicle, and the corresponding
semantic map (including the position and semantic type of boundaries, dividers, markings, poles, etc.)

from online map-database, determine the optimal pose [x̂, ŷ, ψ̂] of the ego-vehicle. Specifically, the inputs



Zhang Z H, et al. Sci China Inf Sci February 2025, Vol. 68, Iss. 2, 122106:5

Figure 2 (Color online) Overview of our proposed BEV-Locator framework, consisting of BEV encoder (extracts features from

surrounding images and projects to BEV space), semantic map encoder (encodes semantic map information to structural vectors,

which are also considered as map queries for transformer module), cross-model transformer module (computes the attention and

query ego-pose information based on map queries and BEV feature), and pose decoder (maps the query vectors into vehicle pose).

of BEV-Locator are the surrounding camera images and the semantic map that is projected to the initial
pose. The output is the delta pose [∆x̂,∆ŷ,∆ψ̂] between initial pose and the predicted pose. In other
words, we obtain the optimal pose as follows:

[x̂, ŷ, ψ̂]T = [x̌, y̌, ψ̌]T + [∆x̂,∆ŷ,∆ψ̂]T. (1)

Figure 2 illustrates a modular overview of the proposed framework, consisting of a visual BEV encoder
module, a semantic map encoder module, a cross-model transformer module, and a pose decoder module.
The BEV feature of the surrounding images is transferred into a rasterized representation by the visual
BEV encoder. The semantic map is instance-wise encoded as several compact vectors (also regarded as
map queries) through the semantic map encoder. Conditioned on the BEV features and map queries,
the cross-model transformer module computes the self-attention and cross-attention to query out pose
information of ego-vehicle. Based on the queried-out information, the pose decoder module further infers
the ego-pose where the map features have an optimal matching relationship with the corresponding
images.

3.1 Visual BEV encoder

The visual BEV encoder serves to extract features of images from surrounding views and project to BEV
feature space, which is serially parameterized by three components, namely image feature extractor φI ,
view transformer φV and BEV feature dimensionality reduction module φR (see Algorithm 1).

Image feature extractor φI takes the surrounding images {Ii ∈ R
C×Hi×Wi}i=1,...,n from n cameras as

input, where Hi, Wi and C are the dimension of height, width and channel of each image Ii. The feature
map FφI

Ii
⊆ R

CφI
×HφI

×WφI of each image Ii is generated through a shared backbone, where HφI
, WφI

and CφI
represent the feature map dimension.

FφI

Ii
= fφI

(Ii). (2)

Inspired by VPN [45], we transform the extracted image features into BEV space by view transformer
φV , which contains view relation module (VRM) φVRM and view fusion module (VFM) φVFM. VRM
transfers the extracted image features from the image coordinate to the camera coordinate by MLP
φVRM, then with the given corresponding extrinsic matrix Ei, the BEV feature FφVFM

Ii
of each image Ii

is projected from FφVRM

Ii
, then the BEV features FφVRM

Ii
of n cameras are merged into the unified BEV

space FBEV
I ⊆ R

CBEV×HBEV×WBEV .

FφVRM

Ii
= fφVRM

(FφI

Ii
), (3)

FφVFM

Ii
= fφVFM

(FφVRM

Ii
, Ei), (4)
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Algorithm 1 Visual BEV encoder.

Input:

n: number of surrounding cameras;

{Ii}n: images from n cameras;

Ei: the corresponding extrinsic matrix for each image;

Output:

Ft
I
: surrounding images flattened features in BEV space;

PE: positional embedding of the BEV features;

1. F
φI

Ii
←Feature extraction(Ii);

2. F
φVRM

Ii
←View Relation Module(F

φI

Ii
);

3. F
φVFM

Ii
←View Fusion Module(F

φVRM

Ii
, Ei);

4. FBEV

I
← Merge into BEV space (Ii

φVFM , N);

5. FR
I
←Dimension reduction network (FBEV

I
);

6. (Ft
I
,PE)←Flatten into patches(FR

I
).

Algorithm 2 Semantic map encoder.

Input:

M: the semantic map, which includes:

X: number of boundaries or dividers;

B = {Bi}X : elements of boundaries or dividers;

Y : number of markings;

M = {Mi}Y : elements of markings;

K: number of poles;

P = {Pi}K : elements of poles;

Output:

MQ: map queries which is fixed-sized representation;

1. Mt ←Structured represent(M);

2. MQ← Multilayer Perceptron Max Pooling(Mt).

FBEV
I =

1

N

i=N∑

i=1

FφVFM

Ii
. (5)

After feature extraction, perspective transformation and external parameter transformation, we ob-
tained dense images in the BEV space. In order to be better suitable for subsequent transformer-based
network training, we then apply ResNet network φR to reduce the dense BEV images dimension, in which
the features are reduced into a lower-resolution map FR

I .

FR
I = fφR

(FBEV
I ). (6)

Inspired by the transformer structure in DETR [58], the BEV feature map FR
I are flattened into

sequence as F t
I . Besides, the model supplements the BEV features with positional embedding to preserve

spatial order and enhance the perception ability.

3.2 Semantic map encoder

Semantic maps, including the elements of boundaries, dividers, road markings or poles are usually repre-
sented in the form of lines, polygons or points. However these elements lack a unified structure, therefore
they could not be fed directly into neural networks. Inspired by VectorNet [56], we encode the map
elements from discrete points into structured vectors. Specifically, a semantic map M consists of a set of
road elements. Each element can be represented as a set of discrete points. For example, a road divider
Bi = {vi ∈ R

2|i = 1, . . . , Nb} consists of Nb points. The proposed solution is detailed in Algorithm 2.
Following the VectorNet we can denote the vector as follows:

vi = [psi , p
e
i , si, ti], (7)

where psi and p
e
i represent the 2D position of adjacent point inside a map element; si stands for the shape

of the map element (point, line, polygon, etc.), ti is the semantic label of the vector (road curb, road
divider, pole, marking, etc.).

To form fixed-size tensors for feeding semantic map elements into network training, we design a three-
dimensional structure to store semantic map element information. The first dimension size is the max-
imum number D1 of map elements. The second dimension size D2 is the maximum number of vectors
(the number of discrete points in each map element). The third dimension is to represent the vector
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Algorithm 3 Cross-model transformer.

Input:

Ft
I
: surrounding images flattened features in BEV space;

MQ: fixed-sized structured semantic map queries;

PE: positional embedding of the BEV features;

Output:

T Q: transformer guided queried feature;

1. Ft
I,encoder ←Transformer encoder(Ft

I
);

2. T Q ←Transformer decoder(MQ,Ft
I,encoder ,PE).

attributes. Following this pattern, we load the unstructured semantic map M into a fixed-size structured
representation, where Mt ⊆ D1 ×D2 × 8. We pad the blank elements with 0 and prepare a map mask
to indicate existing elements.

The semantic map encoder encodes map elements into map queries. Each node of the semantic element
is first mapped to a high-dimensional space through a shared MLP. And a max pooling layer extracts the
global information inside the element. In practice, the MLP and max pooling operations are repeated to
increase encoder capacity. We denote the global information as a map query, which meets the concept in
the transformer structure. The overall map queries is represented as MQ ⊆ R

D1×dimemb , dimemb is the
encoded query dimension.

3.3 Cross-model transformer module

Our cross-model transformer module is built on the basic structure of the transformer [42], which asso-
ciates the map queries and BEV features to query ego-pose information. The module takes the input
from the visual BEV encoder module and semantic map encoder module and contains an encoder-decoder
structure. The solution of this module is depicted in Algorithm 3.

Transformer encoder. The encoder takes a flattened BEV feature patches sequence F t
I as input.

Each encoder layer contains a multi-head self-attention module and a position-wise fully connected feed
forward network (FFN), each followed by layer normalization (LN) [59] and the residual connection
(RC) [60].

Transformer decoder. The decoder transforms the map queries MQ with D1 embeddings of size
dimemb. Each decoder layer consists of a multi-head self-attention module, a cross-attention module
and the FFN module, each followed by LN and RC. Finally the predicted query embeddings T Q ⊆
R
D1×emb dim are independently decoded by the FFN. Using self-attention and cross-attention mechanisms

makes the model globally map the pair-wise relations between permutation-invariant map queries and
BEV features, while embedding the local position information to assist the querying. Varying from the
traditional transformer decoder in detection task [58], the position information of BEV features would
benefit the localization task. Thus the positional embedding is also applied to the value input in the
cross-attention module. This slight modification of transformer structure is major in the final accuracy,
which will be discussed in the ablation study.

3.4 Pose decoder and pose loss function

Conditioned on the information queried out by the transformer, the pose of the ego-vehicle can be decoded
by the pose decoder. We consider each map query contains pose information or constraint offered by the
corresponding map element. Therefore, the pose decoder is designed to aggregate information from each
map query and predict pose from a global perspective. We adopt a shared MLP to further encode the
map queries and a max pooling layer to aggregate global information. The max pooling layer merges the
map queries into a global permutation-invariant vector. Finally, an MLP maps the global information to
the offset [∆x̂,∆ŷ,∆ψ̂] between the current estimated pose and initial pose (see Algorithm 4):

[∆x̂,∆ŷ,∆ψ̂] = PD(T Q). (8)

The supervision of the BEV-Locator is the ground-truth pose offset, which can be manually generated
or retrieved from a more precise localization module. Given the supervision [∆x,∆y,∆ψ] and network

prediction [∆x̂,∆ŷ,∆ψ̂], the BEV-Locator can be optimized by the Smooth L1 Loss via the following
loss function:

L = α× (||∆x̂,∆x||S1 + ||∆ŷ,∆y||S1) + ||∆ψ̂,∆ψ||S1, (9)

where α is the balance weight for the position loss and rotation loss. || · ||S1 denotes the Smooth L1 loss.
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Algorithm 4 Pose decoder.

Input:

T Q: transformer guided query feature;

Output:

[∆x̂,∆ŷ,∆ψ̂]: predicted pose offset;

[∆x̂,∆ŷ,∆ψ̂]← Multilayer Perceptron Max Pooling(T Q);

Optimization:

L = α× (||∆x̂,∆x||S1 + ||∆ŷ,∆y||S1) + ||∆ψ̂,∆ψ||S1.

Figure 3 (Color online) Experiment platform of Qcraft dataset equipped with onboard sensors and reference devices on MarvelR

car.

4 Experiments and discussions

4.1 Experimental settings

4.1.1 Datasets

nuScenes dataset [61] is a well-known large-scale dataset for multiple autonomous driving tasks (e.g.,
3D object detection task, object tracking task, etc.), which consists of 1000 scenes covering 242 km
collected in Boston and Singapore, each scene contains a full sensor-suite consisting of 1 LiDAR, 5
Radar, 6 cameras, IMU, and GNSS receivers, and 11 semantic layers (crosswalk, sidewalk, traffic lights,
stop lines, lanes, etc.). 1.4 M images were captured in RGB format with a frequency of 12 Hz and
a resolution of 1900 × 900 pixels in a diverse set of challenging locations, changing times and weather
conditions (e.g., nighttime and rainy environments). The corresponding ground truth vehicle poses were
calculated through a Monte Carlo Localization scheme from LiDAR and odometry information [62] in an
offline HD LiDAR points map.

Qcraft dataset is recorded by an autonomous MarvelR car [63] in Suzhou, China over 400 km, with
the speed varying from 3 to 80 km/h. Qcraft dataset was collected by 7 surrounding cameras, 5 LiDAR,
5 Radar, Figure 3 shows the layout of the sensors. The corresponding semantic elements (lane boundary,
lane divider, light pole, etc.) with positions in the global coordinate system are also supplied. The dataset
includes 7 trajectories, each trajectory consists of 7 sets of images from the surrounding views. During
the dataset generation, we crop and resize the images into a uniform resolution of 1920×1080 pixels. The
corresponding ground truth ego poses were obtained from the trajectory of RTK and post-processing.

4.1.2 Task and metrics

Visual semantic localization task takes vectorized semantic map features and surrounding images as input
to estimate the vehicle localization. We measure our proposed approach with the localization metric.

Localization metric is computed in the ego-vehicle coordinate system and measures the 3-DoF pose
differences. We use the mean absolute error (MAE) and 90% percentile values of the [∆x,∆y,∆ψ]
error to evaluate our 3-DoF localization model, which describes the localization performance of lateral,
longitudinal, and yaw estimation.
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Figure 4 (Color online) Results on nuScenes dataset, where the semantic maps are reprojected onto camera images. The upper

row shows the biased poses (also known as the initial guesses) and the lower row indicates that the network predicts optimal poses

where the semantic map features coincide with images.

4.1.3 Implementation details

For the map encoder, the semantic map is loaded into 32× 128× 8 tensor to represent all the semantic
features (e.g., crosswalk, lane boundary, light pole, traffic lights, cross-walks, etc.). And the map is
further encoded as 32× dimemb. We generate the map mask to prevent blank embedding (all set as 0).

Inspired by [36], in the surrounding images encoding period, we use EfficientNet-B0 [64] pre-trained
on ImageNet [65] as the visual backbone to extract the image features. Then, a series of MLPs are
utilized to map the correspondences of the camera and ground plane. Finally, the features in the BEV
are merged into dense features, which equals a physical range of [60 m× 30 m]. To reduce the dimension
of BEV raster map, ResNet18 convolution network with 4 blocks is adopted to reduce images from
[CBEV ×HBEV ×WBEV] to [dimemb ×HBEV/32×WBEV/32].

Our proposed framework is implemented with PyTorch [66] using the ADAM [67] solver with an initial
learning rate of 1e−5 and weight decay of 1e−7 on 4 NVIDIA Tesla V100 GPU using DataParallel.
The SmoothL1Loss is used for calculating translation and rotation offsets, with the weight coefficient of
translation error α = 0.04. The hyperparameters are as follows: cropped image size is 270 × 480, batch
size = 8 (total batch size = 32), max grad norm = 5.0, and dimemb = 256.

In the training process, we generate random pose deviations. Specifically, we sample the random
longitudinal deviation in [−2, 2] m, lateral deviation in [−1, 1] m and yaw deviation in [−2◦, 2◦]. The
semantic maps are first projected to the vehicle coordinate system and then translated by these deviations.
The task of the network is to predict the deviation from the biased map and the surrounding images.
Therefore, the deviations act as supervision, allowing the network to be trained in an end-to-end manner.

4.2 nuScenes dataset results

nuScenes dataset contains 700 train scenes and 150 test scenes in urban areas with images captured by
6 surrounding cameras. We conduct experiments on the nuScenes dataset to validate the effectiveness
BEV-Locator (trained with 35 epochs).

We extract map elements from the map interface. The element types include road boundaries, lane
dividers, and pedestrian crossings. All of the 6 camera images are combined to form the BEV features.
Figure 4 visualizes the localization process. Based on the provided semantic map, the initial pose, and
the camera parameters, the map elements can be reprojected to the image perspective view. The upper
pictures show the biased pose and the lower row pictures present the pose predicted by BEV-Locator.
By comparing the upper and lower pictures, it can be observed that the map elements coincide with the
elements in the camera views, which indicates the ego-vehicle present in the correct position and validates
the effectiveness of the BEV-Locator.

Figure 5(a) illustrates the error distribution of BEV-Locator on the nuScenes dataset. The error
curves indicate BEV-Locator generates excellent pose accuracy. The position errors in the lateral and
longitudinal directions are less than 20 and 60 cm. It means the position in both lateral and longitudinal
directions is well constrained by map elements in most cases. Besides, the heading directions can be
predicted under 1◦ error. Through the investigation, the effectiveness of BEV-Locator in the nuScenes
dataset is validated.

The performance on the nuScenes dataset is not as expected primarily due to two reasons. First, the
camera setup of nuScenes led to inadequate height information, making the system presume all features
to be on the ground. This constrained the exploitation of 3D spatial configurations. Second, the nuScenes
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Figure 5 (Color online) (a) nuScenes dataset quantitative results; (b) Qcraft dataset quantitative results.

Figure 6 (Color online) Comparison of semantic feature visibility during rainy conditions in the nuScenes dataset. This figure

illustrates the challenge of semantic occlusion, with specific cases highlighted: (a) front camera view demonstrates blurred lane

markings and obscured road signs, (b) front-right camera view shows reflection and scattering effects on semantic cues, (c) rear

camera view exhibits occlusion of traffic lines due to rain streaks, and (d) HD map presents the ground truth for reference. These

scenarios underscore the importance of robust feature detection in adverse weather conditions for accurate localization.

map’s quality was not tailored for localization tasks, affecting its suitability. We initially used nuScenes
for preliminary validation. For a more detailed evaluation, we introduced the Qdataset, which comes
with a camera extrinsic for better height data capture. All further analyses and tests pivot on results
from Qdataset, ensuring insights into the model’s real-world performance.

In addressing the impact of semantic occlusion on localization, our experiments demonstrate that
occlusion does affect the accuracy of localization. Figure 6 illustrates the performance of our localization
system under rain conditions from the nuScenes dataset, where critical features are partially obscured.
The tests confirm that robust feature detection is essential, especially in adverse weather, to maintain
localization reliability.

4.3 Qcraft dataset results

We further validate BEV-Locator with the Qcraft dataset, which contains urban roads and expressways
with clearer lane lines and road markings. The semantic map consists of road curbs, lane dividers, road
marks, and traffic light poles. For a fair comparison, 6 cameras are selected out of 7 to form the BEV
features. All the training parameters are the same as those in the nuScenes dataset. Similarly, we show
the reprojected semantic maps from three different views in Figure 7. The semantic map describes the
road markings with enclosed polygons and the traffic poles are presented with the contact points to the
ground. It can also be concluded that the BEV-Locator successfully predicts the optimal pose of the
ego-pose in scenarios of the Qcraft dataset. Combining the constraints of map elements, the position and
heading of the vehicle are correctly predicted by the network.

The error curves of a segmented trajectory are illustrated in Figure 5(b). Most of the lateral and
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Figure 7 (Color online) Results on Qcraft dataset, where the semantic maps are reprojected onto camera images. The lower rows

show the biased poses (also known as the initial guesses) and the upper rows indicate the network predicts optimal poses where

the semantic map features coincide with images.

longitudinal errors are under 10 and 40 cm. Compared with the nuScenes dataset, the BEV-Locator
delivers superior accuracy in the Qcraft dataset and we ascribe this to clearer road elements and higher
map quality. Especially in high-speed scenarios, road curvatures tend to be minimal with clear lane
markings and traffic signs, making localization comparatively easier than in lower-speed conditions. Next,
the quantitative analysis and comparison with other methods would be discussed.

Regarding the effect of semantic occlusion on localization, similar experiments were performed using
the Qcraft dataset. As shown in Figure 8, the system’s ability to localize is challenged when key semantic
features are obstructed by environmental elements such as heavy rain. The results indicate that robust
algorithms could enable accurate localization under diverse conditions.

4.4 Comparison with existing methods

Table 1 [12, 14, 61, 68–70] illustrates the performance comparison of our proposed BEV-Locator with
other existing localization techniques. It is imperative to note at the outset that visual localization
research invariably involves disparate hardware configurations, scenarios, and map utilities, engendering
a considerable diversity in the experimental setups and consequently, the results. Due to this, we have
endeavoured to present a balanced comparison focusing on the overall localization accuracy obtained
through various approaches.

As a pioneering method, the comparable results lack from existing localization methods on the nuScenes
dataset. We assess the efficacy of QDataset with a baseline. Findings underscore the robustness of our
method, which, when tested across both nuScenes and QDataset, displayed a localization error reduction
by an order of magnitude compared to other methods.
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Figure 8 (Color online) Comparison of semantic feature visibility during rainy conditions in the Qcraft dataset.

Table 1 Performance comparison between existing localization methods. To validate the effectiveness and performance of the

proposed framework, we compare our localization results with the following methods: Choi et al. [68], Pauls et al. [69], Xiao et

al. [12], Wang et al. [70] and Zhang et al. [14]. The bold numbers represent the lowest localization errors among the compared

methods.

Method Sensors Descriptions Dataset
Lat.

(m)

Lon.

(m)

Yaw

(◦)

Choi et al. [68]
Mono Camera+WSS

+GNSS (spp)+IMU

Project image feature to ground plane

for particle filtering

Highway

[68]
0.10 0.25 –

Pauls et al. [69] Camera (mono) + WSS
Semantic segmentation as detection front end,

implicit association, pose graph optimization

Karlsruhe

[69]
0.11 0.90 0.56

Xiao et al. [12] Camera (mono)
Reprojecting map elements to image plane,

optimizing the pixel distance errors

MLVHM

[12]
0.29 –

Wang et al. [70]
Camera (mono) + WSS

+ GNSS

Novel association method and sliding

window factor graph optimization

Urban road

[70]
0.12 0.43 0.11

Zhang et al. [14]
Camera (mono)+WSS

+GNSS+IMU

Reconstructing local semantic map,

matching through neural network

Highway

[14]
0.054 0.204 –

nuScenes

[61]
0.096 0.219 –

Imegery LiDAR + GNSS
Histogram filter based LiDAR localization

using intensity and elevation grid map

nuScenes

[61]
0.125 0.185 0.653

QDataset 0.097 0.161 0.213

BEV-Locator Multi-view cameras
Using single time frame images;

end-to-end prediction

Highway 0.063 0.158 0.382

nuScenes

[61]
0.076 0.178 0.510

QDataset 0.052 0.135 0.251

It can be seen that BEV-Locator possesses the best position accuracy both on the nuScenes dataset
and the Qcraft dataset. Compared with the other approaches using multi-sensors fusion based input, our
method is based on camera-only input at a single time. In other words, our method achieves remarkable
performance on the visual localization problem. Besides, since the BEV-Locator can only be trained with
the supervision of the pose offset, this end-to-end manner significantly simplifies the process of building a
visual semantic localization system without complex strategies or parameter fine-tuning. Moreover, since
the transformer structure holds a larger learning capacity that allows for large-scale data training, the
BEV-Locator could be hopefully deployed to a wide range of scenarios.

We now investigate the reason that the lateral error is smaller than the longitudinal error found in the
experiment results and other visual semantic localization methods. Intuitively, the semantic elements,
lane lines, road marks, and light poles provide lateral constraints simultaneously, while longitudinal
position could only be constrained by light poles or road marks. The amount of longitudinal constraint
elements is often less than the number of lateral constraint elements. In addition, these elements may
exist at more distant distances compared with adjacent lane lines. In summary, the longitudinal accuracy
is incomparable to the lateral one. Fortunately, the downstream modules also require less accuracy for
longitudinal positioning, which somewhat makes up for this problem.

4.5 Efficiency evaluation

In order to evaluate the computational efficiency of the BEV-Locator, a semantic localization network,
we conducted a series of experiments to quantitatively assess its inference speed. The configuration of the
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Table 2 Runtime comparison between existing localization methods. To validate the runtime with different platforms, we compare

our localization runtime with the following methods: Xiao et al. [12] and Zhang et al. [14]. Bold values represent the minimum

processing time for the localization module and whole system across all tested methods and platforms.

Method Platform Modules
Time (ms)

[percentage(%)]

Localization module

Time (ms)

Whole system

Time (ms)

Xiao et al. [12]
Intel Core

i7-7700 CPU

Detect lane markings –

4.34 –
Detect lane endpoints –

Detect road signs –

Vehicle localization 4.34 [–]

Zhang et al. [14] GTX 1080

Map-matching inference 8.9 [35.25]

15.5 24.55Visual semantic localization process 15.5 [63.14]

Filter 0.15 [0.61]

BEV-Locator GTX 1080

BEV encoder 28.114 [88.88]

0.520 31.631
Semantic map encoder 0.553 [1.75]

Cross-model transformer 2.444 [7.73]

Pose decoder 0.520 [1.64]

BEV-Locator RTX 3060

BEV encoder 45.846 [91.77]

0.563 49.975
Semantic map encoder 1.114 [2.23]

Cross-model transformer 2.434 [4.87]

Pose decoder 0.563 [1.13]

network model and inputs for these experiments align with those detailed in Subsection 4.3. We utilized
the CUDA Event API within the PyTorch framework to record the runtime of each individual module in
the network. To ensure the accuracy of our timing statistics, the GPU was pre-warmed with a preliminary
run of 1000 cycles before the commencement of each test. Table 2 presents a comprehensive comparison of
runtime performances between our method and existing localization techniques. This comparison spans
different GPU platforms and encompasses the average inference time and corresponding percentages
for each method. Notably, the table is structured to clearly delineate the time consumed by individual
modules and the overall system for each approach, thereby offering insights into the efficiency and resource
allocation of these localization methods.

As can be observed, a single pose estimation operation takes about 31.63 ms on the RTX 3060 platform
and is slightly slower on the GTX 1080, averaging around 50 ms. The generation of BEV features by the
BEV encoder occupies nearly 90% of the runtime, indicating its central role in the system. Excluding
the time consumed for BEV feature generation, the other modules collectively take approximately 3 to
4 ms.

Under the BEV perspective of the autonomous driving perception paradigm where multiple tasks share
a single BEV space feature, the BEV-Locator’s localization approach eliminates common steps seen in
traditional localization methods including semantic element extraction, feature association matching, and
pose optimization. Thanks to the high efficiency of GPU parallel computation, integrating semantic map
matching localization as a sub-task in the BEV perception model entails a small additional computational
burden. Generally speaking, given the camera sampling frequency ranging between 10 and 36 Hz, it can
be concluded that the BEV-Locator meets the real-time requirements for deployment. Moreover, with
ongoing research aimed at efficient BEV feature generation and model deployment optimization, there is
potential for further enhancing the inference efficiency of the entire model in the future.

4.6 Ablation studies

To better understand the effectiveness of each module in our framework, we conduct the ablation study
to validate through a series of comparison experiments with the Qcraft dataset.

Effectiveness of different BEV grid sizes. To investigate the effects of different BEV grid sizes, in
Table 3, we test the impact of different BEV grid sizes on vehicle localization performance. We observe
that a smaller BEV grid size contributes to higher pose accuracy. This can be explained by the fact
that higher resolution allows for better encoding pose information of the map elements. However, higher
resolution also brings computational burdens, posing challenges in terms of both computation time and
graphics memories.

Effectiveness of transformer encoder. Table 4 exhibits the accuracy of the BEV-Locator with or
without the transformer encoder. Without encoder layers, the longitudinal error and lateral error drop
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Table 3 Effectiveness of different BEV grid sizes.

BEV grid size (m) Longitudinal (m) Lateral (m) Yaw (◦)

0.50 0.200 [0.459] 0.072 [0.115] 0.269 [0.499]

0.25 0.177 [0.400] 0.057 [0.118] 0.262 [0.427]

0.15 0.135 [0.309] 0.052 [0.107] 0.251 [0.395]

Table 4 Effectiveness of the transformer encoder strategy.

Transformer encoder Longitudinal (m) Lateral (m) Yaw (◦)

Without encoder 0.214 [0.443] 0.057 [0.122] 0.273 [0.538]

With encoder 0.135 [0.309] 0.052 [0.107] 0.251 [0.395]

Table 5 Effectiveness of the positional embedding strategy in the transformer decoder.

Transformer decoder Longitudinal (m) Lateral (m) Yaw (◦)

With pos embedding in value 0.135 [0.309] 0.052 [0.107] 0.251 [0.395]

Without pos embedding in value 1.212 [1.874] 0.122 [0.343] 0.619 [0.798]

0.0789 and 0.005 m, respectively. We hypothesize that self-attention performs information interaction
between BEV grids. This enables global scene awareness for road elements.

Effectiveness of positional embedding in transformer decoder. In Table 5, we evaluate the
influence of different transformer strategies in the transformer decoder module. Based on our experiments,
we find that the BEV-Locator converges hardly when the conventional transformer structure is adopted,
especially in the longitudinal direction. The problem was solved by a slight change in the transformer
decoder. We add positional embedding to the value term in the cross-attention operation. Intuitively, each
map query contains both semantic information and position information of the map element. Through
the transformer, the map query is meant to query out its relative position information under BEV space.
Therefore, the position information (contained in positional embedding) of each grid needs to be retrieved
as a value. This small change contributes significantly to the performance of the BEV-Locator.

4.7 Discussions

To sum up, we evaluated the availability of BEV-Locator through the above experiments, from which
we could conclude that our method achieves state-of-the-art performance in visual semantic localization.
Conditioned on the results, we summarize the following findings:

(i) We demonstrated that the semantic map elements can be encoded as queries. With the transformer
structure, the pose information of the ego-vehicle can be queried from the BEV feature space. The
effectiveness of the transformer for cross-modality matching between semantic map elements and visual
images is verified.

(ii) We formulate the visual semantic localization problem as an end-to-end learning task. The neural
network requires simple supervision generated by pose offset. Simply using vehicle trajectories with raw
images and the semantic map is sufficient to generate the training dataset for the BEV-Locator.

(iii) We validate the performance and accuracy of the BEV-Locator on the nuScense dataset and Qcraft
dataset. Compared with the existing visual localization methods, BEV-Locator achieves state-of-the-art
performance with only the images in a timestamp. Besides, since BEV-Locator is a data-driven method,
we avoid geometry optimization strategy design and parameter tuning.

(iv) We evaluate the runtime efficiency of the BEV-Locator in different GPU environments, showcasing
a commendable speed with the majority of the computational time attributed to the BEV encoder module,
and the system affirms its readiness for real-time applications.

(v) BEV-Locator explores the feasibility of the visual semantic localization problem as a subtask of
the BEV feature-based large model. Our future work aims to integrate the BEV-Locator with other
perception subtasks in a large uniform BEV model. Benefiting from the BEV and transformer structure,
we hypothesize that the BEV-Locator has the potential to cope with large-scale scenarios.
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5 Conclusion

We presented BEV-Locator, a new design for the visual semantic localization system based on map
encoding, BEV features, and transformers for direct pose estimation of ego-vehicle. The introduced
networks could efficiently encode the images and semantic maps, and further query the pose information
through cross-model transformer structure. BEV-Locator is straightforward to implement following an
end-to-end data-driven manner, without complex optimization strategies or complex parameter tuning.
Our approach achieves state-of-the-art performance based on the nuScenes dataset and the Qcraft dataset.
Our work demonstrates the effectiveness of estimating ego-pose in the BEV space. This allows visual
semantic localization to be one of the subtasks of the BEV-based large model for autonomous vehicle
design.

Acknowledgements This work was supported by Beijing Higher Education Society under the 2024 General Project Scheme

(Grant No. MS2024128). Furthermore, the research received funding from the Ningbo Philosophy and Social Science Planning

Project, as part of the “Ningbo Development Blue Book 2025” Initiative (Grant No. GL24-16). We would like to extend our

gratitude to our colleagues at Qcraft for their invaluable insights and expertise, which significantly contributed to the progress of

this research.

References

1 Meiring G A M, Myburgh H C. A review of intelligent driving style analysis systems and related artificial intelligence

algorithms. Sensors, 2015, 15: 30653–30682

2 Ahmed A H, Elmokashfi A. ICRAN: intelligent control for self-driving RAN based on deep reinforcement learning. IEEE

Trans Netw Serv Manage, 2022, 19: 2751–2766

3 Greenwood P M, Lenneman J K, Baldwin C L. Advanced driver assistance systems (ADAS): demographics, preferred sources

of information, and accuracy of ADAS knowledge. Transp Res Part F, 2022, 86: 131–150

4 Alkendi Y, Seneviratne L, Zweiri Y. State of the art in vision-based localization techniques for autonomous navigation

systems. IEEE Access, 2021, 9: 76847–76874

5 Artunedo A, Villagra J, Godoy J, et al. Motion planning approach considering localization uncertainty. IEEE Trans Veh

Technol, 2020, 69: 5983–5994

6 Patel R H, Härri J, Bonnet C. Impact of localization errors on automated vehicle control strategies. In: Proceedings of the

IEEE Vehicular Networking Conference (VNC), 2017. 61–68

7 Barsan I A, Wang S, Pokrovsky A, et al. Learning to localize using a LiDAR intensity map. 2020. ArXiv:2012.10902

8 Yin H, Tang L, Ding X, et al. LocNet: global localization in 3D point clouds for mobile vehicles. In: Proceedings of the

IEEE Intelligent Vehicles Symposium (IV), 2018. 728–733

9 Bay H, Tuytelaars T, Gool L V. SURF: speeded up robust features. In: Proceedings of the European Conference on Computer

Vision, 2006. 404–417

10 Rublee E, Rabaud V, Konolige K, et al. ORB: an efficient alternative to SIFT or SURF. In: Proceedings of the International

Conference on Computer Vision, 2011. 2564–2571

11 Lu W, Zhou Y, Wan G, et al. L3-Net: towards learning based LiDAR localization for autonomous driving. In: Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019. 6389–6398

12 Xiao Z, Yang D, Wen T, et al. Monocular localization with vector HD map (MLVHM): a low-cost method for commercial

IVs. Sensors, 2020, 20: 1870

13 Qin T, Zheng Y, Chen T, et al. A light-weight semantic map for visual localization towards autonomous driving. In:

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2021. 11248–11254

14 Zhang Z, Zhao J, Huang C, et al. Learning visual semantic map-matching for loosely multi-sensor fusion localization of

autonomous vehicles. IEEE Trans Intell Veh, 2023, 8: 358–367

15 Ren Y, Liu B, Cheng R, et al. Lightweight semantic-aided localization with spinning LiDAR sensor. IEEE Trans Intell Veh,

2023, 8: 605–615

16 Zhao Z, Zhang W, Gu J, et al. LiDAR mapping optimization based on lightweight semantic segmentation. IEEE Trans

Intell Veh, 2019, 4: 353–362

17 Toft C, Stenborg E, Hammarstrand L, et al. Semantic match consistency for long-term visual localization. In: Proceedings

of the European Conference on Computer Vision (ECCV), 2018. 383–399

18 Karkus P, Hsu D, Lee W S. Particle filter networks with application to visual localization. In: Proceedings of the Conference

on Robot Learning, 2018. 169–178

19 Xiao L, Wang J, Qiu X, et al. Dynamic-SLAM: semantic monocular visual localization and mapping based on deep learning

in dynamic environment. Robot Auton Syst, 2019, 117: 1–16

20 Wu J, Shi Q, Lu Q, et al. Learning invariant semantic representation for long-term robust visual localization. Eng Appl

Artif Intell, 2022, 111: 104793

21 Cho S, Kim C, Sunwoo M, et al. Robust localization in map changing environments based on hierarchical approach of sliding

window optimization and filtering. IEEE Trans Intell Transp Syst, 2022, 23: 3783–3789

https://doi.org/10.3390/s151229822
https://doi.org/10.1109/TNSM.2022.3191746
https://doi.org/10.1016/j.trf.2021.08.006
https://doi.org/10.1109/ACCESS.2021.3082778
https://doi.org/10.1109/TVT.2020.2985546
https://arxiv.org/abs/2012.10902
https://doi.org/10.3390/s20071870
https://doi.org/10.1109/TIV.2022.3173662
https://doi.org/10.1109/TIV.2021.3099022
https://doi.org/10.1109/TIV.2019.2919432
https://doi.org/10.1016/j.robot.2019.03.012
https://doi.org/10.1016/j.engappai.2022.104793
https://doi.org/10.1109/TITS.2020.3035801


Zhang Z H, et al. Sci China Inf Sci February 2025, Vol. 68, Iss. 2, 122106:16

22 Djuric P M, Kotecha J H, Zhang J, et al. Particle filtering. IEEE Signal Process Mag, 2003, 20: 19–38

23 Shotton J, Glocker B, Zach C, et al. Scene coordinate regression forests for camera relocalization in RGB-D images. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013. 2930–2937

24 Li Y, Snavely N, Huttenlocher D, et al. Worldwide pose estimation using 3D point clouds. In: Proceedings of the European

Conference on Computer Vision, 2012. 15–29

25 Jégou H, Douze M, Schmid C, et al. Aggregating local descriptors into a compact image representation. In: Proceedings of

the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010. 3304–3311

26 Torii A, Arandjelovic R, Sivic J, et al. 24/7 place recognition by view synthesis. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2015. 1808–1817

27 Liu Y, Shen Z, Lin Z, et al. GIFT: learning transformation-invariant dense visual descriptors via group CNNs. In: Proceed-

ings of the Advances in Neural Information Processing Systems, 2019

28 Mishchuk A, Mishkin D, Radenovic F, et al. Working hard to know your neighbor’s margins: local descriptor learning loss.

In: Proceedings of the Advances in Neural Information Processing Systems, 2017

29 Tian Y, Yu X, Fan B, et al. SOSNet: second order similarity regularization for local descriptor learning. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019. 11016–11025

30 DeTone D, Malisiewicz T, Rabinovich A. Superpoint: self-supervised interest point detection and description. In: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018. 224–236

31 Revaud J, Weinzaepfel P, De Souza C, et al. R2D2: repeatable and reliable detector and descriptor. 2019. ArXiv:1906.06195

32 Dusmanu M, Rocco I, Pajdla T, et al. D2-Net: a trainable cnn for joint description and detection of local features. In:

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019. 8092–8101

33 Noh H, Araujo A, Sim J, et al. Large-scale image retrieval with attentive deep local features. In: Proceedings of the IEEE

International Conference on Computer Vision, 2017. 3456–3465

34 Reiher L, Lampe B, Eckstein L. A sim2real deep learning approach for the transformation of images from multiple vehicle-

mounted cameras to a semantically segmented image in bird’s eye view. In: Proceedings of the 23rd International Conference

on Intelligent Transportation Systems (ITSC), 2020. 1–7

35 Liu Y, Wang Y, Wang Y, et al. VectorMapNet: end-to-end vectorized HD map learning. 2022. ArXiv:2206.08920

36 Philion J, Fidler S. Lift, splat, shoot: encoding images from arbitrary camera rigs by implicitly unprojecting to 3D. In:

Proceedings of the European Conference on Computer Vision, 2020. 194–210

37 Ng M H, Radia K, Chen J, et al. BEV-Seg: bird’s eye view semantic segmentation using geometry and semantic point cloud.

2020. ArXiv:2006.11436

38 Reading C, Harakeh A, Chae J, et al. Categorical depth distribution network for monocular 3D object detection. In:

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021. 8555–8564

39 Hu A, Murez Z, Mohan N, et al. FIERY: future instance prediction in bird’s-eye view from surround monocular cameras.

In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021. 15273–15282

40 Huang J, Huang G, Zhu Z, et al. BEVDet: high-performance multi-camera 3D object detection in bird-eye-view. 2021.

ArXiv:2112.11790

41 Li Y, Ge Z, Yu G, et al. BEVDepth: acquisition of reliable depth for multi-view 3D object detection. 2022. ArXiv:2206.10092

42 Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. In: Proceedings of the 31st International Conference on

Neural Information Processing Systems, 2017

43 Yang W, Li Q, Liu W, et al. Projecting your view attentively: monocular road scene layout estimation via cross-view

transformation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021. 15536–

15545

44 Li Z, Wang W, Li H, et al. BEVFormer: learning bird’s-eye-view representation from multi-camera images via spatiotemporal

transformers. 2022. ArXiv:2203.17270

45 Pan B, Sun J, Leung H Y T, et al. Cross-view semantic segmentation for sensing surroundings. IEEE Robot Autom Lett,

2020, 5: 4867–4873

46 Roddick T, Cipolla R. Predicting semantic map representations from images using pyramid occupancy networks. In: Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020. 11138–11147

47 Li Q, Wang Y, Wang Y, et al. HDMapNet: a local semantic map learning and evaluation framework. 2021. ArXiv:2107.06307

48 Wang S, Fidler S, Urtasun R. Holistic 3D scene understanding from a single geo-tagged image. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2015. 3964–3972

49 Brubaker M A, Geiger A, Urtasun R. Lost! Leveraging the crowd for probabilistic visual self-localization. In: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2013. 3057–3064

50 Ma W-C, Wang S, Brubaker M A, et al. Find your way by observing the sun and other semantic cues. In: Proceedings of

the IEEE International Conference on Robotics and Automation (ICRA), 2017. 6292–6299

51 Levinson J, Montemerlo M, Thrun S. Map-based precision vehicle localization in urban environments. In: Robotics: Science

and Systems. Cambridge: MIT Press, 2007

52 Levinson J, Thrun S. Robust vehicle localization in urban environments using probabilistic maps. In: Proceedings of the

https://doi.org/10.1109/MSP.2003.1236770
https://arxiv.org/abs/1906.06195
https://arxiv.org/abs/2206.08920
https://arxiv.org/abs/2006.11436
https://arxiv.org/abs/2112.11790
https://arxiv.org/abs/2206.10092
https://arxiv.org/abs/2203.17270
https://doi.org/10.1109/LRA.2020.3004325
https://arxiv.org/abs/2107.06307


Zhang Z H, et al. Sci China Inf Sci February 2025, Vol. 68, Iss. 2, 122106:17

IEEE International Conference on Robotics and Automation, 2010. 4372–4378

53 Schönberger J L, Pollefeys M, Geiger A, et al. Semantic visual localization. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2018. 6896–6906

54 Welzel A, Reisdorf P, Wanielik G. Improving urban vehicle localization with traffic sign recognition. In: Proceedings of the

18th International Conference on Intelligent Transportation Systems, 2015. 2728–2732

55 Qu X, Soheilian B, Paparoditis N. Vehicle localization using mono-camera and geo-referenced traffic signs. In: Proceedings

of the IEEE Intelligent Vehicles Symposium (IV), 2015. 605–610

56 Gao J, Sun C, Zhao H, et al. VectorNet: encoding HD maps and agent dynamics from vectorized representation. In:

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020. 11525–11533

57 Suhr J K, Jang J, Min D, et al. Sensor fusion-based low-cost vehicle localization system for complex urban environments.

IEEE Trans Intell Transp Syst, 2016, 18: 1078–1086

58 Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers. In: Proceedings of the European

Conference on Computer Vision, 2020. 213–229

59 Ba J L, Kiros J R, Hinton G E. Layer normalization. 2016. ArXiv:1607.06450

60 He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2016. 770–778

61 Caesar H, Bankiti V, Lang A H, et al. nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020. 11621–11631

62 Chong Z J, Qin B, Bandyopadhyay T, et al. Synthetic 2D LiDAR for precise vehicle localization in 3D urban environment.

In: Proceedings of the IEEE International Conference on Robotics and Automation, 2013. 1554–1559

63 Morris Garages. The MG MARVEL R Electric. 2022. https://www.mgmotor.eu/configurator/marvel-r

64 Tan M, Le Q. EfficientNet: rethinking model scaling for convolutional neural networks. In: Proceedings of the International

Conference on Machine Learning, 2019. 6105–6114

65 Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis, 2015, 115: 211–252

66 Paszke A, Gross S, Massa F, et al. PyTorch: an imperative style, high-performance deep learning library. In: Proceedings

of the 33rd International Conference on Neural Information Processing Systems, 2019

67 Kingma D P, Ba J. Adam: a method for stochastic optimization. 2014. ArXiv:1412.6980

68 Choi M J, Suhr J K, Choi K, et al. Low-cost precise vehicle localization using lane endpoints and road signs for highway

situations. IEEE Access, 2019, 7: 149846

69 Pauls J-H, Petek K, Poggenhans F, et al. Monocular localization in HD maps by combining semantic segmentation and

distance transform. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

2020. 4595–4601

70 Wang H, Xue C, Zhou Y, et al. Visual semantic localization based on HD map for autonomous vehicles in urban scenarios.

In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2021. 11255–11261

https://doi.org/10.1109/TITS.2016.2595618
https://arxiv.org/abs/1607.06450
https://www.mgmotor.eu/configurator/marvel-r
https://doi.org/10.1007/s11263-015-0816-y
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/ACCESS.2019.2947287

	Introduction
	Related work
	Geometric information based localization
	Cross-view encoding surrounding images
	Semantic map based localization
	Cross-model semantic and visual features association

	Methods
	Visual BEV encoder
	Semantic map encoder
	Cross-model transformer module
	Pose decoder and pose loss function

	Experiments and discussions
	Experimental settings
	Datasets
	Task and metrics
	Implementation details

	nuScenes dataset results
	Qcraft dataset results
	Comparison with existing methods
	Efficiency evaluation
	Ablation studies
	Discussions

	Conclusion

