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Shape from polarization (SfP) method can use the polar-

ization information in reflected light to estimate the sur-

face normal of the target, which can further reconstruct the

shape of the object. With a simple image capture process, it

can use low-cost equipment to meet a high precision imaging

requirement, which can be used in remote scenes and other

applications.

However, there are two main difficulties in SfP, i.e., the

π-ambiguity in the solution of azimuth angle and the un-

certainty of reflection type. These problems could lead to

low precision and convex/concave ambiguity in the recon-

struction results. To solve these problems, previous re-

searchers have explored various cues and techniques, which

can be mainly divided into physics-based methods and data-

driven methods. The physics-based studies consistently uti-

lize supplementary information as constraints. For instance,

Miyazaki et al. [1] constrained the ambiguity with the as-

sumption of surface convexity, Mahmoud et al. [2] combined

SfP method with shape from shading technology, and Smith

et al. [3] expressed polarization and shading constraints as

linear equations for estimating surface height. Some stud-

ies tried to constrain the ambiguity by limiting reflection

type and illumination condition, and others used other tech-

niques, such as photometric stereo, multi-view, and depth,

to provide reliable bases for ambiguity resolution. To solve

the ambiguity problem with a data-driven method, Ba et

al. [4] first introduced deep learning in object-level SfP, and

Lei et al. [5] adopted a convolutional neural network with

multi-head self-attention to solve the more complicated am-

biguity problem in scene-level SfP.

However, achieving high-precision three-dimensional

(3D) reconstruction of both global structures and local de-

tails is still very challenging due to the following reasons:

(1) It is difficult for the physics-based methods to solve

the problems in SfP effectively, resulting in a large error

in the normal solution results. Besides, the solution pro-

cess is too complicated when multiple reflection types exist

at the same time. (2) Most data-driven methods merely

used convolutional neural network (CNN) networks but ig-

nored the clues provided by the global perception, resulting

in large local ambiguity and the convex/concave ambigu-

ity in the global structure of estimated results, as shown

in Figure 1(b) [6]. (3) Lei et al. [5] introduced global cues

into the network to solve local ambiguity with an indepen-

dent modeling of global and local representations. How-

ever, it has been demonstrated that the local and global

feature representations should be dependently modeled to

corporately provide a better interpretation of images, since

the independent modeling limits the power of extracted fea-

tures and ignores inherent relations between convolution and

self-attention. This results in the imperfection to effectively

combine advantages of global cues and local features, which

makes it hard to solve local convex/concave errors and re-

construct detail texture with high accuracy, as shown in

Figure 1(c).

To address the above issues, we propose a new deep learn-

ing network, named multi-receptive field interaction network

(MRFINet) (as shown in Figure 1(f)), for estimating surface

normal based on the SfP method. The key of MRFINet is

the interaction of multi-receptive field, i.e., the global re-

ceptive field and the local receptive field. The global recep-

tive field allows our proposed network to grasp the surface

normal along the boundary and the convexity of the whole

object, as well as providing neighborhood surface shape as

reference information for solving local ambiguity. The local

receptive field can extract subtle convexity change features,

which helps to outline surface details and texture. With

both global and local receptive fields, the proposed network

can achieve high precision estimation of surface normal, as

shown in Figure 1(d).

MRFINet. In order to grasp and interact with the multi-

receptive field, the proposed MRFINet adopts Conformer

as an encoder to constantly extract both global and local

features in an interactive way. Besides, with global con-
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Figure 1 (Color online) Examples of our estimation. (a) The input polarization images; the estimated results of two learning-

based SfP methods: (b) Kondo et al. [6] and (c) SPW; (d) the estimated result of MRFINet, which can achieve high-quality

reconstruction at both object level and scene level; (e) the ground truth; (f) the overall framework of the proposed MRFINet.

text from the Transformer branch of the Conformer, we

utilize the global guided excitation (GGE) module to en-

hance meaningful features for estimating surface normal.

In addition, a multi-scale enhancement (MSCE) module is

employed to retain more valuable cues with multi-receptive

field interactive information. And the surface normal is esti-

mated from a surface normal estimation (SNE) branch, with

the supplementary features of different scales extracted by

Conformer’s CNN branch.

Encoder. The global context information contains the

convexity of the whole object and neighborhood surface

shape, which can help resolve the local ambiguities in polar-

ization cues. The local feature can provide subtle convexity

change features and contributes to reconstructing regions

with fine details. Therefore, to achieve feature extraction of

both context information and feature details in an interac-

tive way, we adopt Conformer as the encoder, which consists

of a CNN branch and a Transformer branch, adopting a par-

allel structure.

GGE module. Considering that the CNN high-level fea-

tures from Conformer contain rich semantic features, we em-

ploy a GGE module to use the global clues in the final out-

put from the Transformer branch of Conformer. This design

helps guide the expression of high-level semantic features, so

as to selectively enhance meaningful features for estimating

surface normal, while compressing unconsidered features.

MSCE module. As the final result obtained by the en-

coder, the high-level CNN feature from Conformer possesses

the characteristics of low resolution and a large number of

channels. To reduce the information loss in dimension re-

duction of the high-level feature and retain more valuable

cues for surface reconstruction, we introduce an MSCE mod-

ule, which can inject various multi-scale context information

into the original branch and improve the performance of the

decoding part.

SNE branch. The high-level CNN features from Con-

former have stronger semantic information but also lose the

ability to perceive details. However, for high-precision sur-

face reconstruction tasks, fine-grained information (such as

texture, edges, and corners) of the image is very important.

Therefore, we utilize an SNE branch as the decoder and try

to use side outputs of Conformer’s CNN branch in different

scales as Appendixes A–D to feed into the decoder along

with the higher-level features.

Loss function. We supervise both the encoder and de-

coder during training. For the encoder, we use the cross-

entropy loss LCE, which enables the network to learn richer

semantic information. While for the decoder, we adopt a

cosine similarity loss lcosine on the final output [4]:

lcosine =
1
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where N̂ij and Nij are the estimated result N̂ and the

ground truth at the pixel location (i, j), respectively. And

〈·, ·〉 denotes the dot product. Constant α is set as 0.1 and

the total loss function can be expressed as

L = αLCE + lcosine. (2)

Experiments. Experiments were performed on an object-

level dataset DeepSfP [4] and a scene-level dataset SPW

[5]. Our model is implemented on PyTorch and trained

on an NVIDIA GeForce RTX 3090 Ti GPU (24 GB). The

Conformer-S model used in MRFINet is initialized with a

model pre-trained on ImageNet. We train our model for

1000 epochs with a batchsize of 8, use the Adam optimizer

with an initial learning rate of 1E−3 and adopt a cosine de-

cay scheduler. We crop images to 512× 512 patches in each

iteration for memory usage reduction and data augmenta-

tion. Some results are illustrated in Figure 1. Our model

achieved the best results compared with other approaches

under the same conditions. As shown in Appendixes A–D,

the theory and background of SfP, algorithm details, exper-

iment analysis, and limitations are described, respectively.

Conclusion. We propose a novel network structure,

termed MRFINet, with the integration of global and local re-

ceptive fields, to grasp regional reference shape information

as well as extract subtle convexity change features, which

helps to solve the ambiguity problem in SfP and achieves

high-quality reconstruction of surface texture details. Ex-

perimental results demonstrate that MRFINet significantly

outperforms the existing SfP methods on both the object-

level DeepSfP dataset and scene-level SPW dataset.
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