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The maximum principle has bridged mathematical opti-

mization to optimal control, ushering in significant devel-

opments and refinements in optimal control theory, notably

during the 1960s with the advent of linear quadratic (LQ)

control and linear quadratic estimation (LQE). This progres-

sion propelled optimal control theory into further advance-

ments, encompassing stochastic control, robust/H-infinity

control, model predictive control (MPC), networked control,

and reinforcement learning control. Optimal control, estab-

lished upon a rigorous mathematical foundation, extends

static optimization theory to dynamic systems, exhibiting

scientific essence, unity, and perfection. Consequently, since

its inception, optimal control theory has served as an indis-

pensable core role across all control-related domains, includ-

ing communication-constrained control in networked sys-

tems, consensus control, cooperative control, and reinforce-

ment learning control.

The essence of optimal control lies in its essence as an

analysis and synthesis of dynamic systems. Indeed, whether

addressing theoretical aspects such as system feedback sta-

bilization, system stability, or networked systems’ consen-

sus control, or practical applications like trajectory plan-

ning and tracking, industrial process optimization control,

or economic investment portfolio optimization, the key and

essence of these problems are inherently optimal control is-

sues. Moreover, optimal control provides theoretically opti-

mal solutions to these problems.

Optimal control exhibits unity, with nearly all optimal

control problems solvable under a unified framework, in-

volving the establishment of the maximum principle and for-

ward/backward equation solving (decoupling). Specifically,

the LQ control problems can be unified as linear quadratic

regulation (LQR) problems, with controller design unified

as Riccati equation solutions. Indeed, LQR problems were

satisfactorily resolved in the 1960s, subsequently leading to

investigations into linear quadratic Gaussian (LQG) prob-

lems, revealing the unification of LQG problems with LQR,

as both designs employ the solution of the same standard

Riccati equation to design controllers. Moreover, Linear op-

timal estimation and LQR are also unified, as the estimated

gain matrix for the former precisely matches the control

gain matrix for the dual inverse system of the LQR prob-

lem. Furthermore, after decades of research, the results of

stochastic LQ control with multiplicative noise have been

unified with LQR, with the Riccati equation transitioning

into a generalized Riccati equation. In the 1980s, the H-

infinite control/robust control gained widespread attention,

with nearly two decades of research culminating in the uni-

fication of H-infinity control with LQR, with the Riccati

equation transforming into an indefinite Riccati equation.

Additionally, MPC represents a segmented optimal control

problem, while the current hot research topic of consensus

control can also be unified into decentralized LQ control.

Optimal control exhibits perfection in scientific terms,

comprising solvable sufficient and necessary conditions,

unique solutions under certain conditions, clear physical sig-

nificance, and inclusiveness with other theories. Firstly, un-

der the basic assumptions, the solvable conditions and ana-

lytical solutions of LQ control are characterized by a simple

form of the Riccati equation. LQ control is dual to linear op-

timal estimation. Secondly, the Riccati equation possesses

clear physical significance, with its solutions representing

the magnitude of the weighted matrix of the optimal con-

trol performance or the optimal estimation error variance.

Thirdly, the optimal performance is the best Lyapunov func-

tion, leading to necessary and sufficient conditions for sys-

tem stability and stabilization. The Riccati equation can

degenerate/transform into the Lyapunov equation.

The practical value of optimal control lies in its poten-

tial to be the only method for delivering the most effective

and precise algorithms for practical applications. In fact,

generalized predictive control, robust control, and adaptive

control theories, which have been developed based on opti-

mal control theory, provide important and effective precise

control algorithms for practical applications.

Over the past two decades, our research results of non-

standard LQ control have also precisely demonstrated the

essence, unity, and perfection of LQ control. The following
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provides detailed explanations from three aspects.

(1) Stochastic control problems with time delays. The

stochastic LQ control problem with multiplicative noise was

effectively addressed in the 1970s. However, unlike deter-

ministic systems or stochastic systems with additive noise,

the results of stochastic LQ control with multiplicative noise

have long been unable to be extended to situations involv-

ing time delays. Similarly, classical results in time-delayed

system control cannot be generalized to stochastic systems

with multiplicative noise. This limitation arises due to the

inability to design controllers based on existing tools such as

Riccati equations. Moreover, the deeper reason lies in the

difficulty of decoupling and solving the forward-backward

stochastic differential/difference equations (FBDEs) corre-

sponding to this problem. To address this, a general method

for decoupling and solving FBDEs was proposed. As a

result, the stochastic LQ control problems with time de-

lays were comprehensively resolved. Additionally, classical

Smith predictor control theory and Reduction methods were

extended to multiplicative noise systems.

As revealed in [1], the design of stochastic LQ controllers

with time delays can be unified and accomplished using the

Riccati-ZXL equation, or similar equations proposed by us:

−Ż(t) = A′Z(t) + Z(t)A+ A
′
X(t)A − L(t) +Q,

X(t) = Z(t) +
∫
t+h

t
eA

′(s−t)L(s)eA(s−t)ds,
(1)

where
K(t) = −Ω−1(t)[B′Z(t) + B

′
X(t)A],

Ω(t) = R+ B
′
X(t)B,

L(t) = K ′(t)Ω(t)K(t).

(2)

The optimal controller is given by

u(t − h) = K(t)x̂(t|t− h), (3)

where

x̂(t|t− h) = eAhx(t− h) +

∫
t

t−h

eA(s−t)Bu(θ − h)dθ. (4)

Unity. The above results recover the existing results of

LQ control. In fact,

(i) when h = 0, the Riccati-ZXL equations (1)–(2) be-

come:

− Ż(t) = A′Z(t) + Z(t)A +A
′
X(t)A − L(t) +Q, (5)

which is in the classical generalized Riccati equation;

(ii) when A = 0, B = 0, Eqs. (1)–(2) are reduced into

− Ż(t) = A′Z(t) + Z(t)A − L(t) +Q. (6)

It is the standard Riccati equation and the optimal con-

troller in (3) becomes the well-known Smith prediction con-

troller.

Perfection. Parallel to the classical results of LQR con-

trol, the necessary and sufficient conditions for the unique

solution of stochastic LQ control with time delays have been

obtained. Simultaneously, under the basic assumptions, the

necessary and sufficient conditions for system stabilization

have been derived.

Essence. The obtained results in [1] possess the essence

of stochastic control with delay. Actually, with the proposed

approach method in [1], the general cases of multiple input

delays and state delay have been well solved, and more im-

portantly, a long-standing challenging control problem in

areas of NCSs of simultaneously packet losses and the delay

was also well solved in a latter study [2].

(2) Irregular LQR problems. Irregular LQR problems,

also known as singular control, are the only fundamental

issues that classical LQ control theory has not yet fully re-

solved. This problem has garnered widespread attention

since the 1970s. Significant progress has been made in ad-

dressing irregular control under special initial conditions,

but substantial advancements regarding non-regular LQR

problems with arbitrary initial conditions are rare to find [3].

Many issues, including solvable conditions, controller forms,

and distinctions from standard LQR, remain to be eluci-

dated. Over the past decade, we have explored the essen-

tial differences between irregular LQR and standard LQR,

starting from foundational problems such as the maximum

principle and forward-backward differential equations. Our

research has revealed that the key to solving non-regular

LQR lies in constructing analytical solutions for non-regular

FBDEs. Thus, we obtained the necessary and sufficient con-

ditions for solvability and analytical solutions for controllers

by decoupling and solving irregular FBDEs. This research

demonstrates the essence, unity, and perfection of LQ con-

trol.

It is revealed in [4] that the irregular LQR problem is

solvable if and only if there exists a matrix P1(T ) satisfying

B′
2(T )[P1(T ) + P (T )] = 0 such that

J0(t0, x0, T ) = J(t0, x0, T ) + x′(T )P1(T )x(T ) (7)

is regular. Moreover, the optimal controller is given as

u(t) = uo(t) + [I − R†(t)R(t)]z(t), (8)

where uo(t) = R†(t)B′(t)[P (t) + P1(t)]x(t). When z(t) re-

sults in P1(T )x(T ) = 0, J0 is minimized.

Unity. The above results unify the existing results of

LQR. In fact, the regular condition is naturally satisfied for

R > 0 and thus P1(T ) = 0. In this case, the optimal con-

troller (8) becomes

u(t) = −R−1(t)B′(t)P (t)x(t). (9)

Perfection. Parallel to the classical results of LQR con-

trol, the necessary and sufficient conditions for the existence

of a solution to irregular LQR control have been obtained.

Simultaneously, under the basic assumptions, the necessary

and sufficient conditions for system stabilization have been

derived.

Essence. The presented results in [4] provide an essen-

tial method for general irregular LQ control problems, in-

cluding stochastic control, H-infinity control, robust control,

and so on.

(3) Optimization methods based on optimal control. As

mentioned earlier, the maximum principle has bridged the

gap between optimization and optimal control, leading to

the resolution and development of optimal control. However,

despite centuries of research, optimization problems them-

selves have yet to find completely satisfactory solutions.

It is well-known that commonly used optimization al-

gorithms include gradient descent and Newton’s iteration.

However, both of these algorithms have recognized limita-

tions and shortcomings. Gradient descent, for instance, is

advantageous due to its computational simplicity but suffers

from slow convergence. Although improved accelerated gra-

dient descent partially alleviates this issue, it also increases

the complexity of parameter selection. On the other hand,



Zhang H S Sci China Inf Sci January 2025, Vol. 68, Iss. 1, 116201:3

while Newton’s iteration method converges quickly, it suf-

fers from instability and susceptibility to divergence. While

improved quasi-Newton methods enhance stability and com-

plexity, they also slow down the convergence rate. Regular-

ized Newton methods ensure the invertibility of the Hessian

matrix but result in linear convergence.

It is evident that the improved optimization algorithms

proposed in the past have not transcended the framework of

gradient descent and Newton’s iteration, thus still exhibit-

ing shortcomings. In this context, in order to obtain better

(faster, more stable) algorithms, we have conceived a new

idea: solving optimization problems based on the principles

of optimal control. Specifically, we treat the update terms of

iterative algorithms as controllers and seek to minimize the

sum of the optimization function values and the control en-

ergies. This innovative approach theoretically ensures that

the algorithm converges to the extremum point in the fastest

and most stable manner. The new optimization algorithm

we have developed also demonstrates unity and perfection.

Consider the following optimization problem

min
x

f(x), (10)

where f(x) : Rn 7→ R1 is twice continuously differentiable.

Convert the problem (10) into an optimal control problem,

we first get the implicit optimization algorithm

x
k+1 = x

k
−R−1

N+1∑
i=k+1

f ′(xi). (11)

Further, using Taylor expansion linearization and simpli-

fication, the iterative algorithm is obtained as

xk+1 = xk − gk(xk),

gl(xk)=(R+ f ′′(xk))
−1(f ′(xk)+Rgl−1(xk)), l=1, . . . , k,

g0(xk) = (R+ f ′′(xk))
−1f ′(xk).

(12)

More details of our proposed optimization algorithm can be

found in [5].

The iterative algorithm (12) is superlinearly conver-

gent [5]. This algorithm unifies classical Newton’s iteration

algorithm and its improved variants. Setting R = 0, Eq.

(12) reduces to Newton’s iteration. If we set gk−1(xk) =

xk − xk−1, Eq. (12) becomes the accelerated gradient de-

scent algorithm:

xk+1 =xk − αkf
′(xk) − βk(xk − xk−1), (13)

where αk = (R + f ′′(xk))
−1, βk = (R + f ′′(xk))

−1R.

Algorithm (11) originates from the principles of optimal

control, possessing global optimality, and therefore exhibits

the fastest and most stable algorithmic structure. By set-

ting N = 0 and using the first-order Taylor expansion of

f ′(xN+1) in (11), we obtain the regularized Newton’s it-

eration. If we then set R = 0, the iteration simplifies to

Newton’s method. Additionally, if N = 0 and we assume

f ′(xN+1) = f ′(xN ), Eq. (11) reduces to gradient descent.

Thus, it can be observed that classical Newton’s itera-

tion is a locally optimal algorithm, while gradient descent is

a locally suboptimal algorithm.

The algorithm (12) is essential to optimization because

it is derived based on optimal control theory and it provides

the theoretical basis for gradient descent, Newton’s itera-

tion, and their improved algorithms.

Conclusion. In summary, just like the results obtained by

the authors in recent years, optimal control possesses funda-

mental scientific attributes: essence, perfection, and unity.

Much like mathematics in science, optimal control maintains

an irreplaceable core foundation in automation and informa-

tion fields, serving as the fundamental approach to problem-

solving. Similar to the widely used MPC algorithm, optimal

control represents the best theoretical method for providing

precise control algorithms for practical applications.
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