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Appendix A Stability analysis of the equilibria in infinite and well-mixed population

Solving Eq.7 in the main text, we obtain 12 equilibrium points: (1,0,0,0), (0,1,0,0), (0,0,0,1), (0,0,1,0), (¢,0,0,1 — ¢€),
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(1—73154—7 ,0, il 0). To examine the stability of these equilibria, we calculate the eigenvalues of Jacobian matrix:
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If the eigenvalues have negative real parts, Eq.7 will approach zero regardless of the initial states. Thus, when all eigenvalues have
negative real parts, the corresponding equilibrium is stable. When some eigenvalues have positive real parts, the corresponding
equilibrium is unstable. If some eigenvalues have negative real parts and the rest eigenvalues have zero real parts, the stability
of equilibrium needs to be determined by the center manifold theorem [1-3]. The stability can be determined by analyzing a
lower-order system whose order equals the number of eigenvalues with zero real parts.
Then we have the following conclusion.

Theorem 1. When b < 1+ 3, and € < 0, the equilibrium points (z*,1 — z*,0,0) and (0,0, 1,0) are stable, while the rest of
others are unstable; When b < 1+ 3, and € > 0, the equilibrium points (z*,1 — 2*,0,0) and (0, 0,0, 1) are stable, and the others
are unstable; When b > 1+ 3, only the equilibrium point (0,0, 1, 0) is stable, and the rest of others are unstable. When ¢ > 0, only
the equilibrium point (0, 0,0, 1) is stable, and the rest of others are unstable.

Proof. (1). For Ki: (z,y,z,w) = (1,0,0,0), the Jacobian matrix Jy is

—1+e —1+€e —b+pB+e¢

Jy = 0 0 0 (A2)
0 0 -14+b-p
and its corresponding eigenvalues are
{A1, 22,23 = {0, -1+ b—8,—-1+¢}. (A3)

When b > B+ 1, K; is unstable because —1 + b — 8 is a positive eigenvalue. Otherwise, there is at least one zero eigenvalue. Thus,
we use the center manifold theorem to analyze the stability of K;. Using b < 8 4+ 1 as an example. First, there is an invertible
matrix whose column elements are the eigenvectors of Jy

-1 -11
P=|1 00 (A4)
0O 1 0
and J; can be diagonalized as
0 0 0
P'hP=]0-14b-8 0 . (A5)
0 0 —1+e
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Then change of variable:

w’l T
n | =P |y|= z (A6)
z1 z rT+y+z

and the system becomes Eq.AT.
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Let ac/l = x1 + 1 and the system becomes Eq.AS8.

Z1 =g(z1 —x1 — 1 —y1,2z1 + 1,91)
=(z1+1)(—z1(—e—y1+21) — (w1 + )(—e+b(x1 + 1)+ (b— B)(—z1 — 1 —y1 + 21))—
yi(—e+b(@1+1)+ (b —B)(—z1 —1—-y1 +21)))
Y1 =h(z1 —z1 —1—y1,z1 +1,91)
=y1(—(z1 +1)(—e—y1+21) —yi(—e—y1 — (1 + L)y1 + 21) + (1 —y1)(—e + b(z1 + 1)+
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=(z1+ 1)(e(=1+2(z1 +1) +y1) + (1 + b(x1 + 1) + by1)(y1 — 21) — B(z1 + 1+ y1)(z1 + 1 +y1 — 21))+
y1((=1+y1)(e+b(yr —z1) = B(z1 +1+y1 — z1)) + (z1 + 1)(e+y1 — z1) +yi(e +y1 + (1 + Dy1 — 2z1))+
(w1 414y —2z)(e+ (2 =b+B+z1)y; —ezr + (=14 21)z1 +y1 (L + (x1 + 1% + (21 + 1)(1+ 8 — z1)+
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Put the system into the form
X = AX +F(X,Y)

. ; (A9)
Y = BY + G(X,Y)
Y1 —-14+b-p 0 X .
where X = [z1], Y = ,and A = [0], B = , whose eigenvalues have zero and negative real parts,
21 0 —1+4€

respectively. F and G are the functions of X and Y. They satisfy the condition F(0,0) = 0,F’(0,0) = O. According to
the existence theorem of the center manifold, the system has the center manifold S = {(X, H(X))|H : R' — R?}. We define a
mapping

(M)(X) =¢' (X)(AX + F(X, p(X))

(A10)
— Bp(X) — G(X, ¢(X))

Set (YY) = O(X?), we obtain

1 =(z1 + 1)(—ex1 — (1 + 1)(—€e + b(z1 + 1)

(A11)
— (@1 +1)(b = £)) + O(zy)
Then we define m(x1) = (z1 4+ 1)(—ex1 — (w1 +1)(—e+b(z1 +1) — (z1 +1)(b—B))), and m(z1) = e —b(x1 +1)%> — (z1 +1)(b—B)) +
(x1 + 1)(—2bxy — b — B). Since m(0) = € — 3b < 0, then z; = 0 is asymptotically stable. Accordingly, we can conclude the point
K is stable when b < 8+ 1. When b = 8+ 1, K; is unstable in accordance with the center manifold theorem whose derivation
process is similar to the above analysis.

(2). For Ks: (z,y, z,w) = (0,1,0,0), the corresponding eigenvalues of J are

{A, A2, A3} = {0, —1+b,—1+c}. (A12)

Ko is unstable since —1 + b > 0.
(3). For K3: (z,y,2,w) = (0,0,1,0). Its corresponding eigenvalues of J are

{A1, A2, A3} = {0,¢, =} (A13)

When ¢ < 0, K3 has an eigenvalue with zero real part and other eigenvalues with negative real part. According to the center
manifold theorem, K3 is stable. When € > 0, K3 is unstable because the eigenvalue € has a positive real part.
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(4). For K4 : (z,y,z,w) = (0,0,0,1). Its corresponding eigenvalues of J are
{A1, 22, A3} = {—¢, —¢, —¢€}. (Al4)
K, is stable when € > 0 because all eigenvalues have negative real parts. K4 is unstable when € < 0 because all eigenvalues have

positive real parts.
(5). For K5 : (z,y,z,w) = (6,0,0,1 — €). Its corresponding eigenvalues of J are

{A1, A2, A3} = {0,e(=1+b—B),e(1 — )} (A15)
When 0 < e < 1lore<0andb< 1+, Ks is unstable because one of its eigenvalues has a positive real part. When ¢ < 0 and
b > 1+ B, K5 has at least one eigenvalue with a zero real part and the others have negative real parts. According to the center
manifold theorem, K5 is unstable.
(6). For K¢ : (z,y,z,w) = (0,¢,0,1 — €). Its corresponding eigenvalues of J are
{01, A2, As} = {0, e(—1 4 b), e(1 — &)} (A16)
When € > 0, Kg is unstable because eigenvalue e(—1 + b) >. When € < 0, there is one eigenvalue with a zero real part and two
eigenvalues with negative real parts. According to the center manifold theorem, Kg is unstable.
(7). For K7 : (z,y,2,w) = (z*,1 —x",0,0). Its corresponding eigenvalues of J are

{A, 22,23} ={0,-1+¢,—-1+b— Bz"}. (A17)

When z* > 13—717 namely b < 14 3, there is one eigenvalue with a zero real part and others with negative real parts. According to

the center manifold theorem, K7 is stable. When z* < %, K7 is unstable because one of its eigenvalues has a positive real part.
(8). For Kg : (z,y,z,w) = (z",e —2™,0,1 — € + ™). Its corresponding eigenvalues of J are

{A1, 22,23} = {0,e — €?, —c+ B — Bz*}. (A18)

When € > 0, Kg is unstable because € — €2 > 0. When € < 0, Kg is unstable because —e + 8 — Bz* > 0.
(9). For Kg : (z,y,2z,w) = (%"’b, %, 0,0). Its corresponding eigenvalues of J are

{A1: 22,231 = {0,0, -1 + €}. (A19)
Kg exists only when b < 1+ 8. When Ky exists, there is one eigenvalue with a negative real part and two eigenvalues with zero

real parts. According to the center manifold theorem, kg is unstable.
(10). For Kio : (z,y, 2, w) = (55,0 e=B-eB g cOFIHB=b)y Ttg corresponding eigenvalues of J are

»(b=B)y (b—B)y
{A1, A2, A3} =
{76(71+b7ﬂ)7e(71+b76) +e2(71+bfﬁ+'y)}~ (A20)

b= b-p b —B)y

2
10 exists when 1 — =17—2——>) < 1, namely b > 8 + e=—L. en its eigenvalue € + ——F——F—""> > 0. us, Kjo is unstable.
K1 exists when 1 — <0H1E0=0)) < ly b 2. Th 1 25 > 0. Thus, K bl

(11). For K1 : (z,y, 2z, w) = (%, #, 0,1 — €). Its corresponding eigenvalues of J are
{A1, 22,23} = {0,0,e(1 —€)}. (A21)

K11 exists when € > 0, then eigenvalue €¢(1 — €) > 0. Thus, K11 is unstable.
(12). For K1z : (z,y, 2, w) = (7=575750 1048 _ (). Its corresponding eigenvalues of J are

P I-bFB+Y
{A1, X2, A3} =
(1-b+p)y (A-b+B)ny (=b+8)y - (A22)

{

b 36
b h+ b8+ T Tobratq)

K12 exists when b < 1 4 3, then eigenvalue % > 0. Thus K15 is unstable.
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