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Appendix A System and channel model

Here, we consider a terahertz (THz) communication system employing an orthogonal frequency division multiplexing (OFDM)

architecture with K subcarriers. The system consists of a base station equipped with A antennas serving as the signal transmitter,

and multiple users act as the signal receivers, each of whom is equipped with a single antenna. While some users establish a direct

communication link with the base station, others experience signal blockage due to the surrounding structures. To address this

challenge, a reconfigurable intelligent surface (RIS) consisting of M elements is deployed on an unmanned aerial vehicle (UAV)

fixed at an altitude of 80 meters to reflect signals. Let Hk,Gk ∈ CM×1 denote the channels from the BS to the RIS and from the

RIS to the user, respectively, at the kth subcarrier. The received signal at the kth subcarrier can be expressed as

yk = H
T
k ΨG

T
k sk + zk = (Hk ⊙Gk)

T
φsk + zk, (A1)

where sk ∈ C is the signal transmitted over the kth subcarrier, and each subcarrier satisfies the power constraint E
[
|sk|2

]
=

Pk
K ,

with Pk representing the total transmit power. zk ∼ NC
(
0, σ2

)
denotes the Gaussian white noise at the kth subcarrier. Ψ ∈ CI×I

denotes the RIS interaction diagonal matrix, i.e., Ψ = diag(φl), where φ represents the RIS effective phase shift and can be

expressed as [φ]l = ejϕl . All φ are selected from a predefined codebook P, which is generated using a uniform planar array (UPA)

structure.

In this paper, a broadband geometric THz channel model from [1] is used. To mitigate the beam splitting effect in the broadband

model, the model is equipped with a total of L clusters. Each cluster l ∈ {1, · · ·, L} contributes a delay ray from the BS to the RIS

(the same applies from the RIS to the user), at which point the frequency domain delay channel vector can be defined as follows: [2]

Hk =

√
M

ρT

D−1∑
d=0

L∑
l=1

αlaRIS(θl, ϕl)p(dTs − τl)e
−j 2πk

K
d

(A2)

where aRIS(θl, ϕl) ∈ CM×1 is the RIS array response vector, and θl, ϕl ∈ [0, 2π) are the azimuth and elevation angles of arrival,

respectively. αl ∈ C is the complex path gain. τl ∈ R denotes the pulse shaping function for Ts-spaced signaling evaluated at τ

seconds. ρT denotes the uplink path loss.

According to the system and channel models described above, the maximum achievable rate at the receiver is defined as

R = max
φ∈P

1

K

K∑
k=1

log2(1 + SNR|(Hk ⊙Gk)
T
φ|2) (A3)

The maximum power budget assigned to the active RIS can be written as [3]

PRIS =
n∑

i=1

∥ΨGk∥2 + ∥Ψ∥2σ2
k (A4)

where σk represents the composite noise containing complex environmental information at the active RIS units.

Appendix B Simulation setup

This appendix elaborates on the parameter settings of the communication model and the multireward-based double deep Q-network

(MRDDQN) proposed in the main text.
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1) Parameter settings of the communication model: The DeepMIMO dataset in [2] was used to generate the channels based on

the outdoor ray-tracing scenario ”O1-drone”. The dataset parameters are summarized in Table B1. In this scenario, BS 1 remains

stationary on the ground, while BS 2 is a flying RIS-RIS attached to a UAV. BS 2 was positioned at an altitude of 80m on the

UAV. Additionally, each user can move randomly within a predefined range along the x and y axes.

Table B1 Parameters of the communication model

Parameters Value

Center Frequency 200GHz

Active BS BS 1, BS 2(flying RIS)

Active users From row R235 to row R290

Number of BS 1 antennas (Mx,My ,Mz) = (64, 1, 1)

Number of BS 2 antennas (Mx,My ,Mz) = (256, 1, 1)

Bandwidth 1GHz

Number of OFDM subcarriers 2048

OFDM sampling factor 1

OFDM limit 64

BS Antenna spacing 0.5λ

2) Parameter settings of the MRDDQN: States are represented by the sampled channels of each receiver, while actions are

depicted by the candidate interaction vector chosen from a predefined codebook P. To mitigate computational complexity, only

the initial 64 subcarriers were considered. The neural network architecture comprises four fully-connected layers. The first fully

connected layer has input and output dimensions, both set to 512. The second layer is an additional linear layer with the same

input and output dimensions as the first. The next module takes an input of size 512 and passes the data flow through a fully

connected layer with 256 nodes. Subsequently, the output enters another linear layer with size 1, representing the estimation of

the state value. The last module was designed to estimate the action values. Similar to the preceding module, it receives an input

of size 512 and passes the data flow through a fully connected layer with 256 nodes. Finally, the output enters another linear layer

with an output size of 256. Based on the user units activated in the communication model, a total of 30,000 data samples were

generated. Of these, 80% were designated as the training dataset, and 20% were designated as the testing dataset. To manage

the training process effectively, this model employs a replay buffer containing all training samples with a batch size of 512. The

adaptive learning rate optimization algorithm, Adam, is used to dynamically adjust the learning rates by combining the first- and

second-moment estimates of the gradients, and the initial learning rate is set to 2.5× 10−4.

Appendix C Proposed MRDDQN model

This section describes the framework of the proposed MRDDQN model. The operates in two phases: the learning phase and the

prediction phase.

1) Learning phase: As depicted in Algorithm C1, at every coherence block s, the learning phase undergoes the following four

steps.

• Sampled channel estimation (line 4): According to the channel model described in Appendix A, the matrix aRIS is designed

to select the entries corresponding to the active RIS units, where aRIS is an M̄ ×M selection matrix. The sampled channel vector

from the transmitter/receiver to the active RIS elements, H̄k, Ḡk ∈ CM̄×1, can be expressed as H̄k = aRISHk and Ḡk = aRISGk.

Then, the overall RIS sampled channel vector can be expressed as h̄k = H̄k ⊙ Ḡk and the concatenated channel vector is defined

as h̄ = vec([h̄1, h̄2, ..., h̄K ]). Finally, let h̄(s) denote the concatenated sampled channel vector at the sth coherence block, where

s ∈ {1, · · ·, S} and S is the total number of data samples used to construct the learning dataset. For every channel coherence block

s, the transmitter and receiver transmit two orthogonal uplink pilots. The active RIS units will receive these pilots and estimate

the sampled channel vectors to construct the multipath signature, which is expressed as

ˆ̄Hk(s) = H̄k(s) + vk,
ˆ̄Gk(s) = Ḡk(s) + wk, (C1)

ˆ̄hk(s) = ˆ̄Hk(s)⊙ ˆ̄Gk(s), (C2)

ˆ̄h(s) = vec
([

ˆ̄h1(s),
ˆ̄h2(s), ...,

ˆ̄hK(s)
])

, (C3)

where vk,wk ∼ NC
(
0, σn

2I
)
are the received noise vectors at the active RIS units.

• Exhaustive beam training (lines 5-9): In this step, the RIS performs an exhaustive search over the reflection codewords from

the reflection codebook P. Specifically, the RIS tries out every candidate reflection beamforming vector, φn, n = 1, ..., |P|, and

active RIS units receive feedback from the user indicating the achievable rate and the power budget of the active RIS attained by

using this reflection beamforming vector.

• Experience construction (lines 10-12): After receiving the achievable rate and the power budget, the Q-function evaluates

them and calculates the corresponding reward value according to the double-reward DDQN. Upon determining the optimal RIS

beamforming vector for each pertinent block s, the associated environmental label, best RIS beamforming vector, and reward value

are stored as priority experiences in the replay buffer D, constituting the
〈
s, a, r, s

′〉
action tuple.

• Model training (lines 14-23): For each epoch, the model retrieves action pairs from the replay buffer D, extracting an amount

equal to the batch size. First, the model obtains the Q-value of the optimal action according to the current state. It then obtains

the optimal action of the next state through double-Q learning and calculates the Q-update of this action. Subsequently, the Adam

optimizer is utilized to update the gradient of the loss function between the Q-value and the Q-update until convergence is achieved.

It learns how to map an input state to an output action.
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2) Prediction phase: During the prediction phase, the trained model is saved and switched to the evaluation mode, in which it

utilizes the acquired sampled channel vectors of the current state to predict the optimal RIS beamforming vector of the next state.

This phase comprises the following two steps.

• Sampled channel estimation (line 26): This step is the same as the first step in the learning phase. The active RIS units receive

uplink pilots to estimate and construct the concatenated sampled channel vector ˆ̄h.

• Optimal beamforming vector prediction (lines 27 and 28): In this step, the trained model predicts the Q-value, which represents

the best RIS beamforming vector.

Algorithm C1 Double-reward-based DDQN for RIS Beamforming Prediction

1: Phase 1 : Learning phase

2: Initialization: Policy network Q (s, a|θ), target network Q∗ (s, a|θ), replay buffer D
3: for s = 1 to S do

4: active RIS receives two pilots to estimate ˆ̄h (s);

5: for n = 1 to P do

6: active RIS reflects using φn beam.;

7: active RIS receives the feedback R (n) , PRIS (n);

8: active RIS quantizes the reward Rbeam (n);

9: end for

10: active RIS receives two pilots to estimate ˆ̄h (s + 1);

11:
〈
s, a, r, s

′〉
←

〈
ˆ̄h (s) , φ (s) , Rbeam (s) , ˆ̄h (s + 1)

〉
;

12: Store the experience
〈
s, a, r, s

′〉
in D;

13: end for

14: for every epoch do

15: Minibatch experiences from D for training;

16: Feedforward s to calculate Q (s, a|θ);
17: Feedforward s

′
to calculate Q∗

(
s
′
, a

′
|θ
)
;

18: Feedforward a
′
to find Q

(
s, a

′
|θ
)
;

19: Predict and calculate Q∗
(
s
′
, a∗|θ

)
← Rbeam + γQ∗

(
s
′
, a

′
|θ
)
;

20: Use Huber loss function to calculate Loss
{
Q

(
s, a

′
|θ
)
, Q∗

(
s
′
, a∗|θ

)}
;

21: Use Adam optimizer to update gradients;

22: s← s
′
;

23: Until reaching a terminal goal;

24: end for

25: Phase 2 : Prediction phase

26: active RIS receives two pilots to estimate ˆ̄h;

27: Predict the best action using the trained model;

28: active RIS reflects using φ∗.

Appendix D Model training design
This section provides supplementary explanations of the input and loss function settings of the MRDDQN.

1) Input representation: The sampled channel vector serves as the input for the deep Q-network. To ensure uniformity across

the datasets, all samples were normalized by the maximum absolute value of the entire input dataset [4]. This approach maintains

the encoded distance information within the multipath signatures. Each complex entry within the input data is decomposed into

its real and imaginary components, effectively doubling the dimensionality of each input vector to 2KM.

2) Training loss function: According to the Q-value function, the loss function of the MRDDQN should be updated as follows:

Li (θi) = E
s,a,r,s

′ ∼ U (D)
[(

yi −QRbeam
(s, a; θi)

)2]
, (D1)

with

yi = Rk

(
s, a, s

′)
+ γQRbeam

(
s
′
, argmax

a
′Qaction

(
s
′
, a

′
; θi

)
; θ

−
i

)
), (D2)

where a
′
is taken from θi and the value is taken from θ−

i . Both θi and θ−
i are a set of parameters utilized in computing the target

network, where the former evaluates action selection and the latter evaluates state value [5]. Huber loss is used in the proposed

model to minimize the loss function.
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