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Appendix A System Model

Appendix A.1 Distribution Model

In this scenario, there are a platoon of TVs driving on the coverage range of an RSU at a constant speed equipping with computing

capacity. It is assumed that TVs obey the simplified vehicle-following model and the computing resources on each TV are the same.

TVs on the road are distributed stochastically, whose distribution practically obeys type-II Matérn hard-core point process

(MHCPP) Φh which is a stochastic process considering the hard-core distance dh between points based on one-dimensional Poisson

point processes (1D PPP) Φv with density λv. Specifically, MHCPP Φh can be generated with its first-order density is given by [1]

λh =
1 − exp (−2λvdh)

2dh

. (A1)

The RSU is laid on the roadside with a ground coverage radius R, and the distance from the middle of the road is S. Considering

that the height of ENs is farther slighter than R, the height difference between ENs and RSU’s foundation can be negligible. When

TV m is driving in the coverage of the RSU and preparing to process a task, the initial distance from itself to the RSU is random,

satisfying din
m ∈ (S,R). At this time, there are two situations for din

m , shown in Fig. 1. In these cases, the corresponding staying

time in the coverage of the RSU can be given by

tm,stay =


√

R2−S2+
√

dinm −S2

v , case1√
R2−S2−

√
dinm −S2

v , case2

, (A2)

SS

case1�the vehicle behind the RSU case2�the RSU behind the vehicle

Figure A1 The situations of TV m staying in the RSU.

where v is the speed of TVs. It is assumed that the occurrence probabilities of both cases are the same. Considering the high-speed

mobility of TVs, the distance between TV m and the RSU dm is time-varying, which can be shown as

dm (t) =



√[√
(din

m )2 − S2 − vt

]2
+ S2, case1√[√

(din
m )2 − S2 + vt

]2
+ S2, case2

. (A3)

In the coverage of RSU, there are other trusted ENs in line of sight (LoS) with computation capacity distributed stochastically,

including PCs, PVs, and passer-bys’ MDs. Owing to the agglomeration of the same-type electronic devices, the distribution of ENs
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can be seen as a PCP approximately. It is assumed that ENs follow the Neyman-Scott process, the most common Poisson cluster

process (PCP) in the area of spatial statistics [2]. The generation of PCP can be divided into two stochastic processes which are

the parent and daughter process respectively, shown specifically as follows:

Parent process. The parent process is a PPP to ensure the crude locations of clusters. the clusters of ENs are distributed

stochastically in the coverage of the RSU, following a PPP Φc with density λc. Accordingly, the probability that exists N clusters

of ENs in the area centered on the RSU with radius R is

P [Nc (RSU,R) = N ] =

(
λcπR

2
)N

N !
exp

(
−λcπR

2
)
, (A4)

where Nc (RSU,R) is the number of clusters obeying Φc in this area. According to (A4), the cumulative distribution function

(CDF) of dn, the distance from the RSU to nth closest cluster, can be calculated by

Fdn (d) = P (dn ⩽ d) = 1 − P (dn > d) = 1 −
n−1∑
ε=0

P [Nc (RSU, d) = ε] = 1 −
n−1∑
ε=0

(
λcπd

2
)ε

ε!
exp

(
−λcπd

2
)
. (A5)

Thus, the corresponding probability density function (PDF) is

fdn (d) =[Fdn (d)]
′
=

[
1 −

n−1∑
ε=0

(
λcπd

2
)ε

ε!
exp

(
−λcπd

2
)]′

=2λcπd

n−1∑
ε=0

(
λcπd

2
)ε

ε!
exp

(
−λcπd

2
)
− 2λcπd

n−1∑
ε=1

(
λcπd

2
)ε−1

(ε − 1)!
exp

(
−λcπd

2
)

=2λcπd

(
λcπd

2
)n−1

(n − 1)!
exp

(
−λcπd

2
)
.

(A6)

Daughter process. The daughter process is to ensure the number and locations of ENs in each cluster. Assuming that the

number of ENs in each cluster obeys a Poisson distribution with density λn, the probability that there are Kn ENs in cluster n is

P (Nn̂ = Kn) =
(λp)

Kn

Kn!
exp (−λp) , (A7)

where Nn̂ is the number of ENs in cluster n. Accordingly, the set of ENs is K = {K1, ...,Kn, ...,KN | Kn = {1, ..., Kn} , ∀n ∈ N}.
Because each cluster’s coverage range is far smaller than the RSU’s, the distances from the RSU to ENs within the same cluster

can be approximated as equal.

Appendix A.2 Proof of Proposition 1

Particularly, the mmWave band is considered for V2R and R2N communications in this work and the V2R channel and R2N channel

are orthogonal to each other. Generally, mmWave communications satisfy the Nakagami fading model, and the channel gain h

satisfies gamma distribution, which can be given by [3]

f (h; δ) =
δδhδ−1

Γ (δ)
exp (−δh) , (A8)

where δ is a parameter representing the level of fading, and Γ (δ) =
∫+∞
0

zδ−1e−zdz.

In the scenario of the straight-line road, the blocks between TVs and the RSU can be ignored, and all the V2R links are in LoS.

Thus, the corresponding path loss is [4]

PLV 2R (d) =

(
4πd

Lmmw

)−αR
, (A9)

where Lmmw is the wavelength and αR is the path fading exponent of V2R links. Thus, for the uplink between RSU and TV m,

the received power is

P
up
m,V 2R (t) = PvhmgmlgmlPLV 2R [dm (t)] , (A10)

where Pv is transmit power of TVs, hm is the channel gain of this link and gml is the main-lobe gain of antennae. Meanwhile,

interference from external communication links should be considered. Taking TV i for instance, the interference of the V2R uplink

between itself and the RSU consists mainly of other V2R links, expressed as

IV 2R =
∑

m∈M\i

hmPvGPLV 2R [dm (t)], (A11)

where G is the discrete variable of the antenna gain based on the stochasticity of the antenna beam direction, whose values is shown

as [5]

G ∼

 gml · gml gml · gsl gsl · gml gsl · gml

θ
π · θ

π
θ
π

(
1 − θ

π

) (
1 − θ

π

)
θ
π

(
1 − θ

π

) (
1 − θ

π

)
 , (A12)

where gsl is the side lobe gain of antennae and θ is a half of the main lobe angle.
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Theorem 1 (Campbell’s Theorem [5]). Campbell’s Theorem is to convert the expectation of a stochastic sum in the point process

to an integral involving the point-process intensity function, which is specifically expressed as E
( ∑

m∈Φ

Z (m)

)
=
∫
R2 Z (x)H (dx) =∫

R2 Z (x)λ (x) dx, where Φ is a point process, R2 is the integral area of point process, and λ (x) is the density function of the

stochastic process.

According to Theorem 1, the average of IV 2R is given by

IV 2R = E

 ∑
m∈M\i

hmPvGPLV 2R (dm)


= PvGhm

∫ +∞

−∞
λhPLV 2R

[√
x2 + S2

]
dx = 2λhPvGhm

∫ +∞

0

PLV 2R

[√
x2 + S2

]
dx,

(A13)

where Ghm is the expectation of the antenna gain G and channel gain hm. Thus, the transmit rate of the V2R uplink is

C
up
m,V 2R (t) =

BV 2R

M
log2

[
1 +

Pup
m,V 2R (t)

σ2 + IV 2R

]
, (A14)

where BV 2R is the total bandwidth of V2R channels which is assumed to be uniformly distributed, and δ2 is the noise power.

However, in the V2R downlink, the RSU occupies orthogonal frequency division multiplexing (OFDM) technology to return

the task result so that the interference between different V2R links can be ignored [6]. Meanwhile, owing to the slight size of the

returned result, the transmit time of the downlink is greatly short and the locations of TVs can be seen as constant during this

time. Thus, the transmit time of the downlink can be expressed as

C
down
m,V 2R =

BV 2R

M
log2

[
1 +

PrhmgmlgmlPLV 2R [dm (∆m)]

σ2

]
, (A15)

where ∆m =

(
ϑRSU
m +

N∑
n=1

ϑn
m

)
tup
m,V 2R + ϑRSU

m tRSU
m,com +

N∑
n=1

[
ϑn
m

(
tdown
m,R2Nn

+ tnm,com + tup
m,R2Nn

)]
, and Pr is the transmit

power of the RSU. Here, tcomm,RSU is the required time of calculation on the RSU, tdown
m,R2Nn

is the transmit time of the R2N downlink

between the RSU and cluster n, tcomm,n is the required time of calculation on the EN in cluster n, and tup
m,n is the transmit time of

the R2N uplink.

Appendix A.3 Proof of Proposition 2

The path fading of R2N links is

PLR2N (d) =

(
4πd

Lmmw

)−αN
, (A16)

where αN is path fading exponent of R2N links. The received power of an EN in cluster n from the RSU via the R2N downlink

can be given by

P
down
R2Nn

= PrhngmlgmlPLR2N (dn) , (A17)

where hn is the channel gain of the links between the ENs in cluster n and the RSU.

Due to the stochasticity of the distribution of ENs, the method based on probability theory is introduced to compute the average

transmit rate of the R2N downlink [7]. Owing to the application of OFDM, the interference between different R2N downlinks can

be ignored. Thus, the coverage rate of the corresponding threshold of the signal-noise ratio (SNR) can be expressed as

P
SNRdown

R2Nn

(χ) =P
(
SNR

down
R2Nn

> χ
)

= P

(
Pdown

R2Nn

σ2
> χ

)
= P

{
h > χ

[
σ2

Θ(d)

]}

=

∫ +∞

χσ2

Θ(d)

δδhδ−1

Γ (δ)
exp (−δh)dh

(a)
≈

 δ∑
q=1

(δh)δ−q

(δ − q)!

 exp (−δh)

∣∣∣∣∣∣
∞

χσ2/Θ(d)

(b)
≈E




δ∑
q=1

[
δχσ2

Θ(d)

]δ−q

(δ − q)!

 exp

[
−δχσ2

Θ(d)

] =

∫ ∞

0


δ∑

q=1

[
δχσ2

Θ(x)

]δ−q

(δ − q)!

 exp

[
−δχσ2

Θ(x)

]
fdn (x) dx,

(A18)

where χ is threshold of SNR, (a) leverages the feature of the gamma function when δ ∈ Z+,1) and (b) is to derive the average

coverage ratio under different distances of the downlink. Accordingly, the coverage ratio of the corresponding transmit rate is

P
Cdown
R2Nn

(ξ) =P
(
C

down
R2Nn

> ξ
)

= P

[(
BR2N/

N∑
n=1

Kn

)
log2

(
1 + SNR

down
R2Nn

)
> ξ

]

=P

SNR
down
R2Nn

> 2
ξ

N∑
n=1

Kn/BR2N
− 1

 = P
SNRdown

R2Nn

2
ξ

N∑
n=1

Kn/BR2N
− 1

 .

(A19)

where ξ is threshold of transmit rate. The average value of the corresponding transmit rate can be calculated by

C
down
R2Nn

= E
(
C

down
R2Nn

)
=

∫ +∞

0

ξP
Cdown
R2Nn

(ξ) dξ
(a)
=

∫ +∞

0

P
SNRdown

R2Nn

2
ξ

N∑
n=1

Kn/BR2N
− 1

dξ, (A20)

1) Generally, δ is set as an integer for convenience of researches.



Yang J J, et al. Sci China Inf Sci 4

where (a) is the application of positive random variables [8].

For the uplink, taking the EN in cluster j as an example, its main interference consists of uplink interference from ENs in other

clusters and the RSU Iup
cl,R2Nj

, and uplink interference from ENs in the same cluster Iup
in,R2Nj

. Due to the slight distance between

ENs in the same cluster, the interference inside the cluster can be simplified to Iup
in,R2Nj

= (Kj − 1)PeGhPLR2N (dj), where Pe

is the transmit power of ENs. Hence, the total interference can be given by

I
up
R2Nj

= I
up
cl,R2Nj

+ I
up
in,R2Nj

=
∑

n∈N\j

hnPeGPLR2N (dn) + I
up
in,R2Nj

,
(A21)

where hn is the channel gain of links between ENs in cluster n and the RSU.

The coverage rate of signal-interference-noise ratio (SINR) of the R2N uplink between an EN in cluster j and the RSU can be

expressed as

PSINR
up
R2Nj

(χ) =P
(
SINR

up
R2Nj

> χ
)

= P

 Pup
R2Nj

σ2 + Iup
R2Nj

> χ

 = P

h > χ

σ2 + Iup
R2Nj

Ψ(d)


=

∫ +∞

χ

σ2+I
up
R2Nj

Ψ(d)


δδhδ−1

Γ (δ)
exp (−δh)dh

(a)
≈

 δ∑
q=1

(δh)δ−q

(δ − q)!

 exp (−δh)

∣∣∣∣∣∣
∞

h=χ

(
σ2+I

up
R2Nj

)
/Ψ(d)

(b)
≈Edj




δ∑

q=1

{
δχ

[
σ2+I

up
R2Nj

Ψ(d)

]}δ−q

(δ − q)!


exp

−δχ

σ2 + Iup
R2Nj

Ψ(d)




=

∫ ∞

0


δ∑

q=1

{
δχ
[

σ2+Υ
Ψ(x)

]}δ−q

(δ − q)!

 exp

{
−δχ

[
σ2 + Ξ (x)

]
Ψ(x)

}
exp

−δχIup
cl,R2Nj

Ψ(x)

 fdj (x) dx

=

∫ ∞

0


δ∑

q=1

{
δχ
[

σ2+Υ
Ψ(x)

]}δ−q

(δ − q)!

 exp

{
−δχ

[
σ2 + Ξ (x)

]
Ψ(x)

}
LI

up
cl,R2Nj

[ −δχ

Ψ(x)

]
fdj (x) dx.

(A22)

Here, the Laplace transform LI of Iup
cl,R2Nj

can be calculated by

LI (s) =E
(
e
−sI

up
R2Nj

)
= E

exp

−s
∑

n∈N\j

hnPeGPLR2N (dn)

 = E

 ∏
n∈N\j

exp [−shnPeGPLR2N (dn)]


=E

 ∏
n∈N\j

Eh {exp [−shnPeGPLR2N (dn)]}

 (a)
= E

 ∏
n∈N\j

[
1 +

sPeGPLR2N (dn)

δ

]−δ


(b)
= exp

{
−2πλcλp

∫ +∞

0

{
1 −

[
1 +

sPeGPLR2N (y)

δ

]−δ}
dy

}
,

(A23)

where (a) is to calculate the interference from the R2N uplinks between ENs in a single cluster and the RSU when h follows a

gamma distribution, and (b) utilizes the probability generation functional (PGFL) of PPP [9].2) Hence, the average probability

can be derived as

PC
up
R2Nn

(ξ) =P
(
C

up
R2Nn

> ξ
)

= P

 BR2N

N∑
n=1

Kn

log2

(
1 + SINR

up
R2Nn

)
> ξ


=P

SINR
up
R2Nn

> 2
ξ

N∑
n=1

Kn/BR2N
− 1

 = PSINR
up
R2Nn

2
ξ

N∑
n=1

Kn/BR2N
− 1

 ,

(A24)

The corresponding average transmit rate is

C
up
R2Nn

= E
(
C

up
R2Nn

)
=

∫ +∞

0

ξPC
up
R2Nn

(ξ) dξ =

∫ +∞

0

PSINR
up
R2Nn

2
ξ

N∑
n=1

Kn/BR2N
− 1

 dξ, (A25)

Appendix B Problem Analysis and Proposed Solution

Appendix B.1 Problem Formulation

The main objective is to reduce the energy consumption of the whole system, which includes computation and transmitted energy

consumption.

2) The PGFL is to convert the expectation of stochastic multiplication of functions in the point process to an inte-

gral over the point-process domain, which is specifically expressed as E
[ ∏
m∈Φ

Z (m)

]
= exp

{
−
∫
R2 [1 − Z (x)]H (dx)

}
=

exp
{
−
∫
R2 [1 − Z (x)]λ (x) dx

}
if the point process obeys PPP.
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For task Ωm, the computation time of the partial task calculated locally is tlocal
m,com = lmDmFm/fm,local. Its corresponding

required energy consumption is elocal
m,com = κ(fm,local)

3tlocal
m,com, where κ is an energy consumption factor depending on hardware

performance [10].

Considering the time variability, the required transmit time of partial Ωm offloaded to the RSU tup
m,V 2R has to satisfy∫ t

up
m,V 2R

0

C
up
m,V 2R (t) dt = omDm. (B1)

Additionally, the corresponding result-returned time is tdown
m,V 2R = ςomDm/Cdown

m,V 2R, where ς is the ratio of the result and original

task [11]. Generally, the total CPU cycle frequency of RSU will be allocated to tasks that require computation resources of the

RSU for task process rather than be employed by any single task. For the part offloaded to the RSU of task Ωm, if it is calculated

by the RSU, the required time is tRSU
m,com = omDmFm/fm,RSU . The computation energy consumption of this part can be given by

eRSU
m,com = κ(fm,RSU )3tRSU

m,com.

But if the partial task is reallocated to the EN in cluster n for computation offloading, the corresponding R2N downlink transmit

time is tdown
m,R2Nn

= omDm/C
down
R2Nn

. Meanwhile, the corresponding returned transmit time can be calculated by tdown
m,R2Nn

=

ςomDm/C
up
R2Nn

. Besides, the required computation time is tnm,com = omDmFm/fn, where fn is the CPU cycle frequency of ENs

in cluster n, which satisfies fn ∈ {fPC , fPV , fMD}. Thus, the partial computation energy consumption is enm,com = κ(fn)
3tnm,com.

Accordingly, the total energy consumption for completing all tasks can be summed as

etotal =
M∑

m=1

{
e
local
m,com +

(
ϑ
RSU
m +

N∑
n=1

ϑ
n
m

)(
Pvt

up
m,V 2R + e

RSU
m,com + Prt

down
m,V 2R

)

+

N∑
n=1

[
ϑ
n
m

(
Prt

down
m,R2Nn

+ e
n
m,com + Pet

up
m,R2Nn

)]}
.

(B2)

Obviously, the total energy consumption is related to task-splitting ratios, offloading strategies and the computation resource

allocation scheme. With the above considerations, the optimization problem can be formulated to minimize the total energy

consumption as follows:

P1 : min
R,S,F

etotal (B3a)

s.t. lm, om ∈ [0, 1] , ∀m ∈ M, (B3b)

lm + om = 1, (B3c)

ϑ
RSU
m , ϑ

n
m ∈ {0, 1} , ∀m ∈ M, ∀n ∈ N , (B3d)

ϑ
RSU
m +

N∑
n=1

ϑ
n
m ⩽ 1,

M∑
m=1

ϑ
n
m ⩽ Kn, (B3e)

t
local
m,com ⩽ Tm, (B3f)

t
up
m,V 2R + t

RSU
m,com + t

down
m,V 2R ⩽ Tlim, (B3g)

t
up
m,V 2R + t

down
m,R2Nn

+ t
n
m,com + t

up
m,R2Nn

+ t
down
m,V 2R ⩽ Tlim, (B3h)

M∑
m=1

fm,RSU ⩽ fRSU , (B3i)

fm,local ⩽ fMD ⩽ fPV ⩽ fPC < fRSU , (B3j)

Appendix B.2 The Game Approach for The Offloading Strategies

With the constraints of limited computation resources and tolerable delays, multi-vehicle offloading strategies interact with each

other. Thus, it can be seen as a game, where all the TVs are the players. In this game, each player competes with the others

for the computation resources to minimize energy consumption. The basic game of the offloading strategies can be defined as

G = {M,S, etotal}, where M is the player set of the game, S is the offloading strategies of players and etotal is the goal of the

game, i.e. the utility function. For TV m, its offloading strategy is ϑm, hence, other TVs’ offloading strategies can be denoted by

ϑ−m = {ϑ1, ..., ϑm−1, ϑm+1, ..., ϑM}. Thus, the utility function of TV m can be denoted by etotal (ϑm, ϑ−m). The objective of

each TV is to choose the most valuable offloading strategy to optimize its utility, that is, to minimize the total energy consumption,

which can be formulated as

min
{ϑm|∀m∈M}

etotal (ϑm, ϑ−m) . (B4)

Definition 1 (The rule of change). For a given S, if TV m’s offloading strategy ϑm is replaced by ϑ′
m and the result of the

utility function satisfies etotal

(
ϑ′
m, ϑ−m

)
< etotal (ϑm, ϑ−m), this change is admitted.

Here, the concept of an NE is introduced in the game to derive the near-optimal offloading strategies.

Definition 2 (NE [12]). A matrix of offloading strategies S∗ can be recognized to be the NE, if it is impossible for any TV

m ∈ M to reduce the total energy consumption by changing its offloading strategy, i.e.

etotal

(
ϑ
∗
m, ϑ

∗
−m

)
⩽ etotal

(
ϑm, ϑ

∗
−m

)
, ∀m ∈ M. (B5)

Definition 3 (Potential game [13]). If there is a potential function ϕ which satisfies (B6) for any TV m ∈ M and offloading

strategy, the game can be called a potential game, which always has an NE.

ϕ (ϑm, ϑ−m) − ϕ
(
ϑ
′
m, ϑ−m

)
= etotal (ϑm, ϑ−m) − etotal

(
ϑ
′
m, ϑ−m

)
. (B6)
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Corollary 1. The game approach for the offloading strategies is a potential game with a potential function and can converge the

NE after finite iterations.

Proof. The corresponding potential function ϕ of the game for the offloading strategies can be expressed by

ϕ (S) =ϑ
RSU
m

∑
M

(
e
local
m,com + Pvt

up
m,V 2R + e

RSU
m,com + Prt

down
m,V 2R

)

+
(
1 − ϑ

RSU
m

){
e
local
m,com + Pvt

up
m,V 2R + e

RSU
m,com + Prt

down
m,V 2R +

N∑
n=1

[
ϑ
n
m

(
Prt

down
m,R2Nn

+ e
n
m,com + Pet

up
m,R2Nn

)]

+
M∑

i=1,i ̸=m

(
e
local
i,com + Pvt

up
i,V 2R + e

RSU
i,com + Prt

down
i,V 2R

) .

(B7)

If the partial task of TV m is calculated by the RSU or by the EN in cluster n, the values of the potential function are respectively

given in (B8) and (B9),

ϕ
(
ϑ
RSU
m , ϑ−m

)
=
∑
M

(
e
local
m,com + Pvt

up
m,V 2R + e

RSU
m,com + Prt

down
m,V 2R

)
, (B8)

ϕ
(
ϑ
n
m, ϑ−m

)
=e

local
m,com + Pvt

up
m,V 2R + e

RSU
m,com + Prt

down
m,V 2R

+ Prt
down
m,R2Nn

+ e
n
m,com + Pet

up
m,R2Nn

+
M∑

i=1,i ̸=m

(
e
local
m,com + Pvt

up
m,V 2R + e

RSU
m,com + Prt

down
m,V 2R

)
.

(B9)

According to (B8) and (B9), we can obtain

ϕ
(
ϑ
RSU
m , ϑ−m

)
− ϕ

(
ϑ
n
m, ϑ−m

)
=
(
e
local
m,com + Pvt

up
m,V 2R + e

RSU
m,com + Prt

down
m,V 2R

)
−
(
e
local
m,com + Pvt

up
m,V 2R + e

RSU
m,com + Prt

down
m,V 2R + Prt

down
m,R2Nn

+ e
n
m,com + Pet

up
m,R2Nn

)
= etotal

(
ϑ
RSU
m , ϑ−m

)
− etotal

(
ϑ
n
m, ϑ−m

)
.

(B10)

Therefore, the game for the offloading strategies is an exact potential game, which has a pure-strategy NE at least.

Since the number of TVs and clusters is finite, and each TV can only choose at most another node to assist its task computation,

the number of offloading strategies is finite. In addition, if the final offloading strategy matrix is not Nash-stable, there must be a

condition that a TV can lower energy consumption by changing its offloading strategy, which is contradictory to Definition 1 and

the final strategies. Thus, the game can finally converge the NE after finite iterations.

Thus, Corollary 1 is proved.

Appendix B.3 DLM-KKT for The Joint Optimization of Task-Splitting Ratios and Com-
putation Resource Allocation

Based on a determined matrix of offloading strategies, the corresponding optimization problem of optimal task-splitting ratios and

computation resource allocation is analyzed in this subsection.

If task Ωm does not require computation offloading or the partial task is calculated on ENs, i.e. ϑRSU
m = 0 and fm,RSU = 0,

according to (B2) and (B3j), making full utilization of TV m’ local computation resources can result in less energy consumption.

Consequently, the task-splitting ratio lm satisfies

lm =


fm,localTm

DmFm
, DmFm

fm,local
> Tm,

1, otherwise.
(B11)

It is assumed that the set of TVs whose offloaded partial tasks are calculated on RSU is Mr =
{
m|ϑRSU

m = 1,m ∈ M
}

and

the allocated computation resource from RSU are Fr = { fm,RSU | ∀m ∈ Mr}. The energy consumption minimization problem of

this set can be simplified as

P2 : min
Rr,Fr

etotal (B12a)

s.t. lm, om ∈ [0, 1] , ∀m ∈ Mr, (B12b)

lm + om = 1, (B12c)

t
local
m,com ⩽ Tm, (B12d)

t
up
m,V 2R + t

RSU
m,com + t

down
m,V 2R ⩽ Tlim, (B12e)∑

Mr

fm,RSU ⩽ fRSU , (B12f)

where the total energy consumption of TVs in Mr can be expressed as

etotal (Rr,Fr) =
∑
Mr

[
κ(fm,local)

2
lmDmFm + Pvt

up
m,V 2R + κ(fm,RSU )

2
omDmFm + Prt

down
m,V 2R

]
(a)
≈
∑
Mr

[
κ(fm,local)

2
lmDmFm + Pv

(1 − lm)Dm

C
up
m,V 2R

+ κ(fm,RSU )
2
(1 − lm)DmFm + Pr

ς (1 − lm)Dm

C
down
m,V 2R

]
,

(B13)

where (a) utilizes the average rate of V2R uplink C
up
m,V 2R =

∫ ts
0

Cup
m,V 2R (t) dt/ts and downlink C

down
m,V 2R =

∫ ts
0

Cdown
m,V 2R (t) dt/ts

to simplify calculation, and here ts = 2
√
R2 − S2/v.
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Corollary 2. The above optimization problem P2 is convex.

Proof. If P2 is a convex problem, the utility function shown as (B13) should be convex or concave, as well as the constraints

shown as (B12b)∼(B12f). Obviously, the constraints (B12b)∼(B12d) and (B12f) are all linear functions, which satisfy the condition

of the convex problem. For constraint (B12e) and utility function (B13), it is linear for lm, hence it is just required to prove that

they are convex or concave with respect to fm,RSU .

Accordingly, the derivative of (B12e) with respect to fm,RSU can be derived by

∂f

∂fm,RSU

= −
(1 − lm)DmFm

(fm,RSU )2
. (B14)

The corresponding second-order derivative is

∂2f

∂ (fm,RSU )2
=

2 (1 − lm)DmFm

(fm,RSU )3
, (B15)

Due to lm ∈ [0, 1], ∂f2/∂ (fm,RSU )2 ⩾ 0, thus constraint (B12e) is convex.

Here, to demonstrate the crenelation of (B13), it is differentiated with respect to fm,RSU , shown as

∂etotal

∂fm,RSU

= 2κfm,RSU (1 − lm)DmFm. (B16)

The second-order derivative can be calculated by

∂2etotal

∂ (fm,RSU )2
= 2κ(1 − lm)DmFm. (B17)

Due to lm ∈ [0, 1], ∂2etotal/∂ (fm,RSU )2 ⩾ 0. Thus, (B13) is a convex function.

Thus, Corollary 2 is obtained.

For such a convex optimization problem, a Lagrange multiplier equation and its corresponding KKT constraints can be applied

to obtain the optimal solution. Here, for constraint (B12b)∼(B12d), they can be incorporated as lm ∈ [0, lm,lim], where lm,lim =

min {Tmfm,local/ (DmFm) , 1}. The Lagrange multiplier equation can be written as

L (Rr,Fr, βm, γm, ℓ)

=
∑
Mr

[
κ(fm,local)

2
lmDmFm + Pv

(1 − lm)Dm

C
up
m,V 2R

+ κ(fm,RSU )
2
(1 − lm)DmFm + Pr

ς (1 − lm)Dm

C
down
m,V 2R

]

+
∑
Mr

{
βm [lm (lm − lm,lim)] + γm

[
(1 − lm)Dm

C
up
m,V 2R

+
(1 − lm)DmFm

fm,RSU

+
ς (1 − lm)Dm

C
down
m,V 2R

− tm,lim

]}

+ ℓ ·

∑
Mr

fm,RSU − fRSU

 .

(B18)

Since there is a constraint on the total computation resources of the RSU, the complexity of the calculation is exponentially

growing as the number of Mr if we utilize the traditional Lagrange multiplier equation. To reduce computational complexity,

we assume that ℓ is a known value, and take advantage of dichotomy to reduce the deviation of its value and obtain the optimal

(Rr,Fr). For task Ωm, its simultaneous equations for (lm, fm,RSU ) based on KKT constraints can be shown as follows [14]:



∂L
∂lm

= 0, (B19a)

∂L
∂fm,RSU

= 0, (B19b)

βm [lm (lm − lm,lim)] = 0, (B19c)

γm

(
t
up
m,V 2R + t

RSU
m,com + t

down
m,V 2R − tm,lim

)
= 0, (B19d)

ℓ

(
m∑

i=1

fi,RSU − fRSU

)
= 0, (B19e)

βm, γm ⩾ 0, (B19f)

where (B19a) and (B19b) are to calculate the extreme point, (B19c)∼(B19e) are the KKT-based complementary slackness of

inequality constraints, and (B19f) is to limit Lagrange multipliers. According to the characteristic of KKT constraints, there are

two conditions for an inequality constraint. Taking (B19c) as an example, one of the two conditions shown as follows must be

satisfied:

{
lm (lm − lm,lim) = 0, βm > 0, (B20a)

lm (lm − lm,lim) < 0, βm = 0. (B20b)

It is the same for other inequality constraints.

To derive the solution for the joint optimization of task-splitting ratios and computation resource allocation, DLM-KKT is

detailed in Algorithm B1.
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Algorithm B1 DLM-KKT for The Joint Optimization of Task-Splitting Ratios and Computation Resource Allocation

Input: An initial offloading strategy matrix So, task Ωm = {Dm, Fm, Tm}, m ∈ M, computation resources of the RSU fRSU ,

maximum tolerable deviation ϖ, and initial maximum and minimum ℓmax and ℓmin.

Output: The corresponding optimal task-splitting ratio matrix R∗, computation resource allocation set F∗ and energy consump-

tion e∗total.

1: while ℓmax − ℓmin > ϖ do

2: ℓ =
ℓmax+ℓmin

2 ;

3: for m = 1 : M do

4: if ϑRSU
m = 0 then

5: Calculate l∗m according to (B11), and f∗
m,RSU = 0;

6: else

7: Construct the Lagrange multiplier equation and its corresponding KKT constraints based on the initial matrix So and

Ωm = {Dm, Fm, Tm} according to (B18) and (B19a)∼(B19f);

8: Divide the constraints given by (B19c) and (B19d) into 22 conditions as the example taken in (B20a) and (B20b);

9: Build up the simultaneous equations;

10: for I = 1 : 22 do

11: Solve the simultaneous equations expressed as (B19a)∼(B20b), whose solution vector is shown as
[
l(I)
m , f

(I)
m,RSU

]
;

12: end for

13: Select the optimal solution
(
l∗m, f∗

m,RSU

)
that satisfies the constraints and minimizes the value of the utility function

after being substituted into (B18);

14: end if

15: end for

16: if
m∑

i=1
fi,RSU < fRSU then

17: ℓmax = ℓ;

18: else

19: ℓmin = ℓ;

20: end if

21: end while

22: R∗ and F∗ are obtained;

23: Substitute So, R∗ and F∗ into (B2) to calculate e∗total.

Appendix B.4 CORAJOA Based on Game Theory and DLM-KKT

Initially, a stochastic offloading strategy matrix is constructed as input. Subsequently, once all TVs take offloading strategies, the

task-splitting ratios and computation resource allocation should be jointly optimized by DLM-KKT shown in Alogorithm B1.

After the stage of joint optimization, the game approach updates the offloading strategies until it converges the NE, i.e. each TV

has no desire to change its offloading strategy for energy consumption minimization.

In final, the near-optimal R, S, F and etotal can be derived by the CORAJOA after finite iterations shown in Algorithm

B2. In particular, the complexity of DLM-KKT and CORAJOA can be calculated by O
(
22 log2 (ℓmax − ℓmin/ϖ) ∗ M

)
and

O
(
(T − 1)M ∗ (N + 1) 22 log2 (ℓmax − ℓmin/ϖ) ∗ M

)
[15], respectively, where parameters are explained in Algorithm B1 and

Algorithm B2. From the complexity formulas, it is not difficult to obtain that the computational complexity will spike as

maximum tolerable deviation ϖ decreases, though it favors computational accuracy.

Appendix C Simulation Results and Discussions
Initially, without special instructions, the task size is randomly selected from D = [140, 160) (Kbits), the tolerable delay Tm is set

to be [100, 150] (ms), the total CPU cycle frequency of RSU frsu is 30 (GHz), and density λv is equal to 150 vehicles per kilometer.

Other related parameters are presented in Table C1.

Table C1 Simulation Parameters

Parameter Value Parameter Value

dh (hard-core distance) 5 m λc (density of clusters) 100 per km2

R (coverage radius of RSU) 200 m λp (density of ENs) 5

S (laid distance of RSU) 5 m δ (fading parameter) 2

v (velocity of vehicles) 10 m/s αR, αN (path fading exponent) 2, 4

Pv, Pr, Pn (transmit power) 30 dBm, 40 dBm, 30dBm gml, gsl (lobe gain) 18 dBi, -2 dBi

Lmmw (wavelength) 5 mm θ (half of main lobe angle) 5◦

BV 2R, BR2N (bandwidth) 400 MHz, 400 MHz ς (ratio of result and original task) 0.1

σ2 (noise power) -83 dBm ϖ (maximum tolerable deviation) 0.001

F (computation density) [2000,3000] cycle/bit κ (energy consumption factor) 10−27

fm,local, fMD (cycle frequency) [1.5,2] GHz, [2,2.5] GHz fPV , fPC (cycle frequency) [2.5,3] GHz, [3,3.5] GHz

ℓmax (initial maximum of ℓ) 100 ℓmin (initial minimum of ℓ) 0

To serve as a contrast, the following baseline schemes are considered. 1) Branch-and-bound algorithm (BBA) [16]: In this scheme,

tasks are offloaded to the RSU or computed locally without consideration of ENs, and the computation resources of RSU are also

allocated. The mixed integer nonlinear programming problem is transformed into a convex optimization problem for solution; 2)

Mobility-aware computational efficiency based task offloading and resource allocation algorithm (MACTER) [17]: In [17], MACTER
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Algorithm B2 CORAJOA Based on Game Theory and DLM-KKT

Input: The TV set M, an initial offloading strategy matrix So, task Ωm = {Dm, Fm, Tm}, m ∈ M, total computation resources

of the RSU fRSU , the cluster set N , and the number of ENs K = {K1, ...,Kn, ...,KN | Kn = {1, ..., Kn} , ∀n ∈ N}.
Output: The near-optimal task-splitting ratio matrix R, computation resource allocation set F , offloading strategy matrix S, and

energy consumption etotal.

1: Generate an offloading strategy matrix S (0) randomly;

2: Calculate the corresponding optimal R∗, F∗ and e∗total based on the initial So by Algorithm B1;

3: Set T = 1, S (1) = So, R (1) = R∗, F (1) = F∗ and etotal (1) = e∗total;

4: while S (T ) ̸= S (T − 1) do

5: T = T + 1;

6: S (T ) = S (T − 1), etotal (T ) = etotal (T − 1);

7: for m = 1 : M do

8: for n = 1 : N do

9: ϑRSU
m = 0, ϑn

m = 1, and ϑj
m = 0, j ∈ N\n;

10: if
M∑
i=1

ϑn
i > Kn or Delay constraints cannot be satisfied then

11: etotal (ϑ
n
m, ϑ−m) = ∞;

12: else

13: etotal (ϑ
n
m, ϑ−m) is calculated by (B2);

14: end if

15: if
M∑
i=1

ϑRSU
i is changed then

16: Calculate the corresponding R∗ and F∗ by Algorithm B1;

17: end if

18: if etotal (ϑ
n
m, ϑ−m) < etotal (T ) then

19: etotal (T ) = etotal (ϑ
n
m, ϑ−m);

20: Update the offloading strategy change into S (T ), as well as R∗ into R (T ) and F∗ into F (T );

21: end if

22: end for

23: Set ϑRSU
m = 1 and ϑn

m = 0, ∀n ∈ N , and calculate the corresponding R∗ and F∗ by Algorithm B1;

24: if etotal

(
ϑRSU
m , ϑ−m

)
< etotal (T ) then

25: etotal (T ) = etotal

(
ϑRSU
m , ϑ−m

)
;

26: Update the offloading strategy change into S (T ), as well as R∗ into R (T ) and F∗ into F (T );

27: end if

28: end for

29: end while

30: Derive R, F , S and etotal.

does not consider the ENs and utilizes the binary offloading. Here, partial offloading is introduced into this baseline method but the

task-splitting ratios are not optimized; 3) Game-theoretic partial computation offloading algorithm (GT-PCO) [18]: This approach

utilizes distributed computation offloading technology, however, it only considers ENs and the consideration of RSU is missing.
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Figure C1 The performance versus task size under different schemes. (a) Energy consumption; (b) Success rate.

Figure C1 depicts the impact of the task size on the energy consumption and offloading success rate. From Fig. C1(a), it is

obvious that the total system energy consumption is increasing as the task size enlarges. For all the schemes, the curves are nearly

rising linearly while task size is growing evenly. This is because the expressions of transmitted energy consumption and computation

energy consumption are both first-order functions with respect to task size. As illustrated in Fig. C1(b), the offloading success rate

decreases as the task size enlarges, owing to the enhanced task data and ever-increasing required computation resources for delay

constraints. According to Fig. C1, CORAJOA outperforms other schemes under arbitrary conditions that follow Dm ∈ [100, 200]

(Kbits) in both energy consumption and offloading success rate.

Figure C2 depicts the impact of the density of 1D PPP on the energy consumption and offloading success rate. It’s worth noting

that although λv is the density of initially generated dots, the actual vehicle density with the introduction of MHCPP is λh, which

is calculated in (A1). As shown in Fig. C2(a), with the increasing of λv, the number of TVs is amplifying and the increasing trend
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Figure C2 The performance versus density λv under different schemes. (a) Energy consumption; (b) Success rate.

is slowing down. In particular, the derivative of λh with respect to λv is ∂λh/∂λv = exp (−2λvdh) which is a monotone decreasing

function, that is why the trend is slowing down. In addition, with the number of TVs enhancing, the offloading success rate is

going down because of more intense competition for computation resources and more backlog of task data. In final, CORAJOA

has the best performance among these schemes in energy consumption and offloading success rate under different λv .
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Figure C3 The performance versus total computation resources of the RSU under different schemes. (a) Energy consumption;

(b) Success rate.

Figure C3 depicts the impact of the total computation resources of the RSU on the energy consumption and offloading suc-

cess rate. Except for BBA and GT-PCO, the energy consumption decreases when the RSU is equipped with more computation

resources, according to Fig. C3(a), that is because the task-splitting ratios and computation resource allocation can be optimized

more rationally for energy minimization with richer computation resources benefiting from the distributed computation offloading

technology. BBA does not consider partial offloading so it will cause more energy consumption when tasks are offloaded to RSU

with the increasing computation resources for a higher offloading success rate. According to Fig. C3(b), it is not hard to determine

that the richer computation resources can reach a higher offloading success rate. What is special is that the energy consumption

and success rate of BBA do not change obviously since the RSU is not considered in this scheme. Besides, the proposed CORAJOA

performs better than the other schemes under different frsu.

Figure C4 depicts the impact of the maximum tolerable time on the energy consumption and offloading success rate. As shown in

Fig. C4(a), the total energy consumption diminishes as the tolerable delay enlarges, which is ascribed to the allocated computation

resources becoming less when the delay constraints sustainably get looser. Accordingly, the computation energy consumption

decreases. Besides, with the relaxation of the delay constraints and computation resources, more tasks can be calculated within the

tolerable delay, achieving a higher offloading success rate. Furthermore, CORAJOA outmatches the other three schemes in both

offloading success rate and energy cost under different delay constraints.

Compared with BBA, the results illustrate that distributed computing can lead to a significant reduction in energy consumption

and an increase in offloading success rate. Different from MACTER, the system performance benefits from the optimization of task-

splitting ratios and the introduction of ENs, even if it brings a much higher algorithmic complexity. Additionally, the comparison

between MACTER and GT-PCO shows that ENs can increase the offloading success rate to a great extent, resulting in higher

energy consumption, fortunately, CORAJOA can outperform better in both.

Figure C5 depicts the impact of the maximum tolerable deviation ϖ of the dichotomy on the energy consumption and offloading

success rate. It is worth noting that the smaller ϖ leads to better performance both on the energy consumption and offloading success

rate, which is attributed to the superior accuracy of the dichotomy. Nonetheless, the smaller ϖ also brings higher computational

complexity, which is calculated in Appendix B.4, requiring better hardware performance urgently.

References

1 Yi W Q, Liu Y W, Nallanathan A. Coverage analysis for mmWave-enabled V2X networks via stochastic geometry. In:

Proceedings of the IEEE Global Communications Conference, 2019. 1-6.



Yang J J, et al. Sci China Inf Sci 11

[100,110) [110,120) [120,130) [130,140) [140,150]

Tolerable delay (ms)

40

50

60

70

80

90

100

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 (
J)

CORAJOA

BBA

MACTER

GT-PCO

(a)

[100,110) [110,120) [120,130) [130,140) [140,150]

Tolerable delay (ms)

0

10

20

30

40

50

60

70

80

90

100

S
u

cc
es

s 
ra

te
 (

%
)

CORAJOA

BBA

MACTER

GT-PCO

(b)

Figure C4 The performance versus tolerable time under different schemes. (a) Energy consumption; (b) Success rate.

[100,120) [120,140) [140,160) [160,180) [180,200]

Task size (Kbits)

20

30

40

50

60

70

80

90

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 (
J)

CORAJOA,  = 0.01

CORAJOA,  = 0.001

CORAJOA,  = 0.0001

(a)

[100,120) [120,140) [140,160) [160,180) [180,200]

Task size (Kbits)

0

10

20

30

40

50

60

70

80

90

100

S
u
c
c
e
ss

 r
a
te

 (
%

)

CORAJOA,  = 0.01

CORAJOA,  = 0.001

CORAJOA,  = 0.0001

(b)

Figure C5 The performance versus task size under different ϖ. (a) Energy consumption; (b) Success rate.

2 Stoyan D, Kendall W S, Mecke J. Stochastic geometry and its applications. Hoboken, NJ, USA: Wiley, 1996.

3 Shi X M, Deng N, modelling and analysis of mmWave UAV swarm networks: A stochastic geometry approach. IEEE Trans

Wireless Commun, 2022, 21(11): 9447-9459.

4 Wang Y B, Wu H, Niu Y, et al. Coalition game based full-duplex popular content distribution in mmWave vehicular networks.

IEEE Trans Veh Technol, 2020, 69(11): 13836-13848.

5 Yi W Q, Liu Y W, Deng Y S, et al. Modeling and analysis of mmWave V2X networks with vehicular platoon systems. IEEE

J Sel Areas Commun, 2019, 37(12): 2851-2866.

6 Fang Y, Pan Y C, Ma H, et al. A novel DCSK-based linear frequency modulation waveform design for joint radar and

communication systems. IEEE Trans Green Commun Netw, 2024. doi: 10.1109/TGCN.2024.3422262.

7 Sun Y S, Ding Z G, Dai X C. On the outage performance of network NOMA (N-NOMA) modeled by Poisson line Cox point

process. IEEE Trans Veh Technol, 2021, 70(8): 7936-7950.

8 Bafqi S F, Yazdi Z Z, Asadi A. Analytical Framework for Mmwave-Enabled V2X Caching. IEEE Trans Veh Technol, 2021,

70(1): 585-599.

9 Sun Y S, Ding Z G, Dai X C, et al. Performance of downlink NOMA in vehicular communication networks: An analysis based

on Poisson line Cox point process. IEEE Trans Veh Technol, 2020, 69(11): 14001-14006.

10 Lin Z J, Chen X P, He X F, et al. Energy-efficient cooperative task offloading in NOMA-enabled vehicular fog computing.

IEEE Trans Intell Transp Syst, 2024, 25(7): 7223-7236.

11 Mao Y Y, Zhang J, Letaief K B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices.

IEEE J Sel Areas Commun, 2016, 34(12): 3590-3605.

12 Cui J Y, Tang X J. A method for solving Nash equilibria of games based on public announcement logic. Sci China Inf Sci,

2010, 53: 1358–1368.

13 Zhang J, Xia W W, Yan F, et al. Joint computation offloading and resource allocation optimization in heterogeneous networks

with mobile edge computing. IEEE Access, 2018, 6: 19324-19337.

14 Lin Z J, Fang Y, Chen P P, et al. Modeling and analysis of edge caching for 6G mmWave vehicular networks. IEEE Trans

Intell Transp Syst, 2023, 24(7): 7422-7434.

15 Fang Y, Peng D Y, Ma H, et al. A neural network-aided detection scheme for index-modulation DCSK system. IEEE Trans

Veh Technol, 2024, 73(2): 2109-2121.

16 Fan X G, Gu W T, Long C Q, et al. Optimizing task offloading and resource allocation in vehicular edge computing based

on heterogeneous cellular networks. IEEE Trans Veh Technol, 2024, 73(5): 7175-7187.

17 Raza S, Wang S J, Ahmed M, et al. Task offloading and resource allocation for IoV using 5G NR-V2X communication. IEEE

Internet Things J, 2022, 9(13): 10397-10410.

18 Pham X Q, The T H, Huh E N, et al. Partial computation offloading in parked vehicle-assisted multi-access edge computing:

A game-theoretic approach. IEEE Trans Veh Technol, 2022, 71(9): 10220-10225.


	System Model
	Distribution Model
	Proof of Proposition 1
	Proof of Proposition 2

	Problem Analysis and Proposed Solution
	Problem Formulation
	The Game Approach for The Offloading Strategies
	DLM-KKT for The Joint Optimization of Task-Splitting Ratios and Computation Resource Allocation
	CORAJOA Based on Game Theory and DLM-KKT

	Simulation Results and Discussions

